The BDNF Val66Met Polymorphism Modulates Resilience of Neurological Functioning to Brain Ageing and Dementia: A Narrative Review

. 2020 Mar 25 ; 10 (4) : . [epub] 20200325

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32218234

Brain-derived neurotropic factor (BDNF) is an abundant and multi-function neurotrophin in the brain. It is released following neuronal activity and is believed to be particularly important in strengthening neural networks. A common variation in the BDNF gene, a valine to methionine substitution at codon 66 (Val66Met), has been linked to differential expression of BDNF associated with experience-dependent plasticity. The Met allele has been associated with reduced production of BDNF following neuronal stimulation, which suggests a potential role of this variation with respect to how the nervous system may respond to challenges, such as brain ageing and related neurodegenerative conditions (e.g., dementia and Alzheimer's disease). The current review examines the potential of the BDNF Val66Met variation to modulate an individual's susceptibility and trajectory through cognitive changes associated with ageing and dementia. On balance, research to date indicates that the BDNF Met allele at this codon is potentially associated with a detrimental influence on the level of cognitive functioning in older adults and may also impart increased risk of progression to dementia. Furthermore, recent studies also show that this genetic variation may modulate an individual's response to interventions targeted at building cognitive resilience to conditions that cause dementia.

Zobrazit více v PubMed

Bath K.G., Lee F.S. Variant BDNF (Val66Met) impact on brain structure and function. Cogn. Affect. Behav. Neurosci. 2006;6:79–85. doi: 10.3758/CABN.6.1.79. PubMed DOI

Murer M., Yan Q., Raisman-Vozari R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog. Neurobiol. 2001;63:71–124. doi: 10.1016/S0301-0082(00)00014-9. PubMed DOI

Park H., Poo M.-M. Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci. 2013;14:7–23. doi: 10.1038/nrn3379. PubMed DOI

Hartmann M., Heumann R., Lessmann V. Synaptic secretion of BDNF after high-frequency stimulation of glutamatergic synapses. EMBO J. 2001;20:5887–5897. doi: 10.1093/emboj/20.21.5887. PubMed DOI PMC

Zagrebelsky M., Korte M. Form follows function: BDNF and its involvement in sculpting the function and structure of synapses. Neuropharmacology. 2014;76:628–638. doi: 10.1016/j.neuropharm.2013.05.029. PubMed DOI

Leal G., Afonso P.M., Salazar I.L., Duarte C.B. Regulation of hippocampal synaptic plasticity by BDNF. Brain Res. 2015;1621:82–101. doi: 10.1016/j.brainres.2014.10.019. PubMed DOI

Yang J., Harte-Hargrove L.C., Siao C.-J., Marinic T., Clarke R., Ma Q., Jing D., LaFrancois J.J., Bath K.G., Mark W. proBDNF negatively regulates neuronal remodeling, synaptic transmission, and synaptic plasticity in hippocampus. Cell Rep. 2014;7:796–806. doi: 10.1016/j.celrep.2014.03.040. PubMed DOI PMC

Angelucci F., Čechová K., Průša R., Hort J. Amyloid beta soluble forms and plasminogen activation system in Alzheimer’s disease: Consequences on extracellular maturation of brain-derived neurotrophic factor and therapeutic implications. CNS Neurosci. Ther. 2019;25:303–313. doi: 10.1111/cns.13082. PubMed DOI PMC

Murer M.G., Raisman-Vozari R., Yan Q., Ruberg M., Agid Y., Michel P.P. Survival factors promote BDNF protein expression in mesencephalic dopaminergic neurons. Neuroreport. 1999;10:801–805. doi: 10.1097/00001756-199903170-00025. PubMed DOI

Egan M.F., Kojima M., Callicott J.H., Goldberg T.E., Kolachana B.S., Bertolino A., Zaitsev E., Gold B., Goldman D., Dean M. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112:257–269. doi: 10.1016/S0092-8674(03)00035-7. PubMed DOI

Chen Z.-Y., Patel P.D., Sant G., Meng C.-X., Teng K.K., Hempstead B.L., Lee F.S. Variant brain-derived neurotrophic factor (BDNF)(Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. J. Neurosci. 2004;24:4401–4411. doi: 10.1523/JNEUROSCI.0348-04.2004. PubMed DOI PMC

Chen Z., Bath K., McEwen B., Hempstead B., Lee F. Novartis Foundation Symposium. Novartis Foundation; Basel, Switzerland: 2008. Impact of genetic variant BDNF (Val66Met) on brain structure and function; p. 180. PubMed PMC

Chen Z.-Y., Jing D., Bath K.G., Ieraci A., Khan T., Siao C.-J., Herrera D.G., Toth M., Yang C., McEwen B.S. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science. 2006;314:140–143. doi: 10.1126/science.1129663. PubMed DOI PMC

Pattwell S.S., Bath K.G., Perez-Castro R., Lee F.S., Chao M.V., Ninan I. The BDNF Val66Met polymorphism impairs synaptic transmission and plasticity in the infralimbic medial prefrontal cortex. J. Neurosci. 2012;32:2410–2421. doi: 10.1523/JNEUROSCI.5205-11.2012. PubMed DOI PMC

Ninan I., Bath K.G., Dagar K., Perez-Castro R., Plummer M.R., Lee F.S., Chao M.V. The BDNF Val66Met polymorphism impairs NMDA receptor-dependent synaptic plasticity in the hippocampus. J. Neurosci. 2010;30:8866–8870. doi: 10.1523/JNEUROSCI.1405-10.2010. PubMed DOI PMC

Lin C.-H., Huang Y.-J., Lin C.-J., Lane H.-Y., Tsai G.E. NMDA neurotransmission dysfunction in mild cognitive impairment and Alzheimer’s disease. Curr. Pharm. Des. 2014;20:5169–5179. doi: 10.2174/1381612819666140110115603. PubMed DOI

Lin C.-H., Lane H.-Y. The Role of N-Methyl-D-Aspartate Receptor Neurotransmission and Precision Medicine in Behavioral and Psychological Symptoms of Dementia. Front. Pharmacol. 2019;10:540. doi: 10.3389/fphar.2019.00540. PubMed DOI PMC

Hariri A.R., Goldberg T.E., Mattay V.S., Kolachana B.S., Callicott J.H., Egan M.F., Weinberger D.R. Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J. Neurosci. 2003;23:6690–6694. doi: 10.1523/JNEUROSCI.23-17-06690.2003. PubMed DOI PMC

Kauppi K., Nilsson L.-G., Adolfsson R., Lundquist A., Eriksson E., Nyberg L. Decreased medial temporal lobe activation in BDNF 66Met allele carriers during memory encoding. Neuropsychologia. 2013;51:2462–2468. doi: 10.1016/j.neuropsychologia.2012.11.028. PubMed DOI

Soliman F., Glatt C.E., Bath K.G., Levita L., Jones R.M., Pattwell S.S., Jing D., Tottenham N., Amso D., Somerville L.H. A genetic variant BDNF polymorphism alters extinction learning in both mouse and human. Science. 2010;327:863–866. doi: 10.1126/science.1181886. PubMed DOI PMC

Montag C., Reuter M., Newport B., Elger C., Weber B. The BDNF Val66Met polymorphism affects amygdala activity in response to emotional stimuli: Evidence from a genetic imaging study. Neuroimage. 2008;42:1554–1559. doi: 10.1016/j.neuroimage.2008.06.008. PubMed DOI

Montag C., Weber B., Fliessbach K., Elger C., Reuter M. The BDNF Val66Met polymorphism impacts parahippocampal and amygdala volume in healthy humans: Incremental support for a genetic risk factor for depression. Psychol. Med. 2009;39:1831–1839. doi: 10.1017/S0033291709005509. PubMed DOI

Pezawas L., Verchinski B.A., Mattay V.S., Callicott J.H., Kolachana B.S., Straub R.E., Egan M.F., Meyer-Lindenberg A., Weinberger D.R. The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. J. Neurosci. 2004;24:10099–10102. doi: 10.1523/JNEUROSCI.2680-04.2004. PubMed DOI PMC

Hajek T., Kopecek M., Höschl C. Reduced hippocampal volumes in healthy carriers of brain-derived neurotrophic factor Val66Met polymorphism: Meta-analysis. World J. Biol. Psychiatry. 2012;13:178–187. doi: 10.3109/15622975.2011.580005. PubMed DOI PMC

Kambeitz J.P., Bhattacharyya S., Kambeitz-Ilankovic L.M., Valli I., Collier D.A., McGuire P. Effect of BDNF val66met polymorphism on declarative memory and its neural substrate: A meta-analysis. Neurosci. Biobehav. Rev. 2012;36:2165–2177. doi: 10.1016/j.neubiorev.2012.07.002. PubMed DOI

Harrisberger F., Spalek K., Smieskova R., Schmidt A., Coynel D., Milnik A., Fastenrath M., Freytag V., Gschwind L., Walter A. The association of the BDNF Val66Met polymorphism and the hippocampal volumes in healthy humans: A joint meta-analysis of published and new data. Neurosci. Biobehav. Rev. 2014;42:267–278. doi: 10.1016/j.neubiorev.2014.03.011. PubMed DOI

Hashimoto T., Fukui K., Takeuchi H., Yokota S., Kikuchi Y., Tomita H., Taki Y., Kawashima R. Effects of the BDNF Val66Met polymorphism on gray matter volume in typically developing children and adolescents. Cereb. Cortex. 2016;26:1795–1803. doi: 10.1093/cercor/bhw020. PubMed DOI PMC

Chiang M.-C., Barysheva M., Toga A.W., Medland S.E., Hansell N.K., James M.R., McMahon K.L., De Zubicaray G.I., Martin N.G., Wright M.J. BDNF gene effects on brain circuitry replicated in 455 twins. Neuroimage. 2011;55:448–454. doi: 10.1016/j.neuroimage.2010.12.053. PubMed DOI PMC

Tost H., Alam T., Geramita M., Rebsch C., Kolachana B., Dickinson D., Verchinski B.A., Lemaitre H., Barnett A.S., Trampush J.W. Effects of the BDNF val 66 met polymorphism on white matter microstructure in healthy adults. Neuropsychopharmacology. 2013;38:525–532. doi: 10.1038/npp.2012.214. PubMed DOI PMC

Montag C., Schoene-Bake J.C., Faber J., Reuter M., Weber B. Genetic variation on the BDNF gene is not associated with differences in white matter tracts in healthy humans measured by tract-based spatial statistics. Genes Brain Behav. 2010;9:886–891. doi: 10.1111/j.1601-183X.2010.00626.x. PubMed DOI

Park C.-H., Kim J., Namgung E., Lee D.-W., Kim G.H., Kim M., Kim N., Kim T.D., Kim S., Lyoo I.K. The BDNF Val66Met polymorphism affects the vulnerability of the brain structural network. Front. Hum. Neurosci. 2017;11:400. doi: 10.3389/fnhum.2017.00400. PubMed DOI PMC

Ho B.-C., Milev P., O’Leary D.S., Librant A., Andreasen N.C., Wassink T.H. Cognitive and magnetic resonance imaging brain morphometric correlates of brain-derived neurotrophic factor Val66Met gene polymorphism in patients with schizophrenia and healthy volunteers. Arch. Gen. Psychiatry. 2006;63:731–740. doi: 10.1001/archpsyc.63.7.731. PubMed DOI PMC

Schofield P.R., Williams L.M., Paul R.H., Gatt J.M., Brown K., Luty A., Cooper N., Grieve S., Dobson-Stone C., Morris C. Disturbances in selective information processing associated with the BDNF Val66Met polymorphism: Evidence from cognition, the P300 and fronto-hippocampal systems. Biol. Psychol. 2009;80:176–188. doi: 10.1016/j.biopsycho.2008.09.001. PubMed DOI

Karnik M.S., Wang L., Barch D.M., Morris J.C., Csernansky J.G. BDNF polymorphism rs6265 and hippocampal structure and memory performance in healthy control subjects. Psychiatry Res. 2010;178:425–429. doi: 10.1016/j.psychres.2009.09.008. PubMed DOI PMC

Strauss J., Barr C., George C., Ryan C., King N., Shaikh S., Kovacs M., Kennedy J. BDNF and COMT polymorphisms. Neuromol. Med. 2004;5:181–192. doi: 10.1385/NMM:5:3:181. PubMed DOI

Kennedy K.M., Reese E.D., Horn M.M., Sizemore A.N., Unni A.K., Meerbrey M.E., Kalich A.G., Jr., Rodrigue K.M. BDNF val66met polymorphism affects aging of multiple types of memory. Brain Res. 2015;1612:104–117. doi: 10.1016/j.brainres.2014.09.044. PubMed DOI PMC

Zhang X.Y., Xiu M.H., Haile C.N., Luo X., Xu K., Zhang H.P., Zuo L., Zhang Z., Zhang X., Kosten T.A. Cognitive and serum BDNF correlates of BDNF Val66Met gene polymorphism in patients with schizophrenia and normal controls. Hum. Genet. 2012;131:1187–1195. doi: 10.1007/s00439-012-1150-x. PubMed DOI PMC

Nagel I.E., Chicherio C., Li S.-C., Von Oertzen T., Sander T., Villringer A., Heekeren H.R., Bäckman L., Lindenberger U. Human aging magnifies genetic effects on executive functioning and working memory. Front. Hum. Neurosci. 2008;2:1. doi: 10.3389/neuro.09.001.2008. PubMed DOI PMC

Mandelman S.D., Grigorenko E.L. BDNF Val66Met and cognition: All, none, or some? A meta-analysis of the genetic association. Genes Brain Behav. 2012;11:127–136. doi: 10.1111/j.1601-183X.2011.00738.x. PubMed DOI PMC

Getzmann S., Gajewski P.D., Hengstler J.G., Falkenstein M., Beste C. BDNF Val66Met polymorphism and goal-directed behavior in healthy elderly—Evidence from auditory distraction. Neuroimage. 2013;64:290–298. doi: 10.1016/j.neuroimage.2012.08.079. PubMed DOI

Toh Y.L., Ng T., Tan M., Tan A., Chan A. Impact of brain-derived neurotrophic factor genetic polymorphism on cognition: A systematic review. Brain Behav. 2018;8:e01009. doi: 10.1002/brb3.1009. PubMed DOI PMC

Papenberg G., Salami A., Persson J., Lindenberger U., Bäckman L. Genetics and functional imaging: Effects of APOE, BDNF, COMT, and KIBRA in aging. Neuropsychol. Rev. 2015;25:47–62. doi: 10.1007/s11065-015-9279-8. PubMed DOI

Ghisletta P., Bäckman L., Bertram L., Brandmaier A.M., Gerstorf D., Liu T., Lindenberger U. The Val/Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene predicts decline in perceptual speed in older adults. Psychol. Aging. 2014;29:384. doi: 10.1037/a0035201. PubMed DOI

Laing K.R., Mitchell D., Wersching H., Czira M.E., Berger K., Baune B.T. Brain-derived neurotrophic factor (BDNF) gene: A gender-specific role in cognitive function during normal cognitive aging of the MEMO-Study? Age. 2012;34:1011–1022. doi: 10.1007/s11357-011-9275-8. PubMed DOI PMC

Miyajima F., Ollier W., Mayes A., Jackson A., Thacker N., Rabbitt P., Pendleton N., Horan M., Payton A. Brain-derived neurotrophic factor polymorphism Val66Met influences cognitive abilities in the elderly. Genes Brain Behav. 2008;7:411–417. doi: 10.1111/j.1601-183X.2007.00363.x. PubMed DOI

Sambataro F., Murty V., Lemaitre H., Reed J., Das S., Goldberg T., Callicott J., Weinberger D., Mattay V. BNDF modulates normal human hippocampal ageing. Mol. Psychiatry. 2010;15:116–118. doi: 10.1038/mp.2009.64. PubMed DOI PMC

Kennedy K.M., Rodrigue K.M., Land S.J., Raz N. BDNF Val66Met polymorphism influences age differences in microstructure of the Corpus Callosum. Front. Hum. Neurosci. 2009;3:19. doi: 10.3389/neuro.09.019.2009. PubMed DOI PMC

Mattson M.P., Maudsley S., Martin B. A neural signaling triumvirate that influences ageing and age-related disease: Insulin/IGF-1, BDNF and serotonin. Ageing Res. Rev. 2004;3:445–464. doi: 10.1016/j.arr.2004.08.001. PubMed DOI

Tsai S.-J., Gau Y.-T.A., Liu M.-E., Hsieh C.-H., Liou Y.-J., Hong C.-J. Association study of brain-derived neurotrophic factor and apolipoprotein E polymorphisms and cognitive function in aged males without dementia. Neurosci. Lett. 2008;433:158–162. doi: 10.1016/j.neulet.2007.12.057. PubMed DOI

Erickson K.I., Kim J.S., Suever B.L., Voss M.W., Francis B.M., Kramer A.F. Genetic contributions to age-related decline in executive function: A 10-year longitudinal study of COMT and BDNF polymorphisms. Front. Hum. Neurosci. 2008;2:11. doi: 10.3389/neuro.09.011.2008. PubMed DOI PMC

Gajewski P.D., Hengstler J.G., Golka K., Falkenstein M., Beste C. The Met-genotype of the BDNF Val66Met polymorphism is associated with reduced Stroop interference in elderly. Neuropsychologia. 2012;50:3554–3563. doi: 10.1016/j.neuropsychologia.2012.09.042. PubMed DOI

Gajewski P.D., Hengstler J.G., Golka K., Falkenstein M., Beste C. The Met-allele of the BDNF Val66Met polymorphism enhances task switching in elderly. Neurobiol. Aging. 2011;32:2327. doi: 10.1016/j.neurobiolaging.2011.06.010. PubMed DOI

Harris S., Fox H., Wright A., Hayward C., Starr J., Whalley L.J., Deary I. The brain-derived neurotrophic factor Val66Met polymorphism is associated with age-related change in reasoning skills. Mol. Psychiatry. 2006;11:505–513. doi: 10.1038/sj.mp.4001799. PubMed DOI

Vickers J.C., Mitew S., Woodhouse A., Fernandez-Martos C.M., Kirkcaldie M.T., Canty A.J., McCormack G.H., King A.E. Defining the earliest pathological changes of Alzheimer’s disease. Curr. Alzheimer Res. 2016;13:281–287. doi: 10.2174/1567205013666151218150322. PubMed DOI PMC

Allen S.J., Watson J.J., Dawbarn D. The neurotrophins and their role in Alzheimer’s disease. Curr. Neuropharmacol. 2011;9:559–573. doi: 10.2174/157015911798376190. PubMed DOI PMC

Hock C., Heese K., Hulette C., Rosenberg C., Otten U. Region-specific neurotrophin imbalances in Alzheimer disease: Decreased levels of brain-derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas. Arch. Neurol. 2000;57:846–851. doi: 10.1001/archneur.57.6.846. PubMed DOI

Buckley P.F., Pillai A., Howell K.R. Brain-derived neurotrophic factor: Findings in schizophrenia. Curr. Opin. Psychiatry. 2011;24:122–127. doi: 10.1097/YCO.0b013e3283436eb7. PubMed DOI

Li G., Peskind E.R., Millard S.P., Chi P., Sokal I., Yu C.-E., Bekris L.M., Raskind M.A., Galasko D.R., Montine T.J. Cerebrospinal fluid concentration of brain-derived neurotrophic factor and cognitive function in non-demented subjects. PLoS ONE. 2009;4:e5424. doi: 10.1371/journal.pone.0005424. PubMed DOI PMC

Faria M.C., Gonçalves G.S., Rocha N.P., Moraes E.N., Bicalho M.A., Cintra M.T.G., de Paula J.J., de Miranda L.F.J.R., de Souza Ferreira A.C., Teixeira A.L. Increased plasma levels of BDNF and inflammatory markers in Alzheimer’s disease. J. Psychiatr. Res. 2014;53:166–172. doi: 10.1016/j.jpsychires.2014.01.019. PubMed DOI

Pláteník J., Fišar Z., Buchal R., Jirák R., Kitzlerová E., Zvěřová M., Raboch J. GSK3β, CREB, and BDNF in peripheral blood of patients with Alzheimer’s disease and depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2014;50:83–93. doi: 10.1016/j.pnpbp.2013.12.001. PubMed DOI

Woolley J.D., Strobl E.V., Shelly W.B., Karydas A.M., Robin Ketelle R.N., Wolkowitz O.M., Miller B.L., Rankin K.P. BDNF serum concentrations show no relationship with diagnostic group or medication status in neurodegenerative disease. Curr. Alzheimer Res. 2012;9:815–821. doi: 10.2174/156720512802455395. PubMed DOI PMC

O’Bryant S.E., Hobson V.L., Hall J.R., Barber R.C., Zhang S., Johnson L., Diaz-Arrastia R. Serum brain-derived neurotrophic factor levels are specifically associated with memory performance among Alzheimer’s disease cases. Dement. Geriatr. Cogn. Disord. 2011;31:31–36. doi: 10.1159/000321980. PubMed DOI PMC

Álvarez A., Aleixandre M., Linares C., Masliah E., Moessler H. Apathy and APOE4 are associated with reduced BDNF levels in Alzheimer’s disease. J. Alzheimer’s Dis. 2014;42:1347–1355. doi: 10.3233/JAD-140849. PubMed DOI PMC

Weinstein G., Beiser A.S., Choi S.H., Preis S.R., Chen T.C., Vorgas D., Au R., Pikula A., Wolf P.A., DeStefano A.L. Serum brain-derived neurotrophic factor and the risk for dementia: The Framingham Heart Study. JAMA Neurol. 2014;71:55–61. doi: 10.1001/jamaneurol.2013.4781. PubMed DOI PMC

Lim Y.Y., Villemagne V.L., Laws S.M., Ames D., Pietrzak R.H., Ellis K.A., Harrington K.D., Bourgeat P., Salvado O., Darby D. BDNF Val66Met, Aβ amyloid, and cognitive decline in preclinical Alzheimer’s disease. Neurobiol. Aging. 2013;34:2457–2464. doi: 10.1016/j.neurobiolaging.2013.05.006. PubMed DOI

Boots E.A., Schultz S.A., Clark L.R., Racine A.M., Darst B.F., Koscik R.L., Carlsson C.M., Gallagher C.L., Hogan K.J., Bendlin B.B. BDNF Val66Met predicts cognitive decline in the Wisconsin Registry for Alzheimer’s Prevention. Neurology. 2017;88:2098–2106. doi: 10.1212/WNL.0000000000003980. PubMed DOI PMC

Xia H., Wang M., Li J.-Q., Tan C.-C., Cao X.-P., Tan L., Yu J.-T., Initiative A.s.D.N. The Influence of BDNF Val66Met Polymorphism on Cognition, Cerebrospinal Fluid, and Neuroimaging Markers in Non-Demented Elderly. J. Alzheimer’s Dis. 2019;68:405–414. doi: 10.3233/JAD-180971. PubMed DOI

Lim Y.Y., Hassenstab J., Cruchaga C., Goate A., Fagan A.M., Benzinger T.L., Maruff P., Snyder P.J., Masters C.L., Allegri R. BDNF Val66Met moderates memory impairment, hippocampal function and tau in preclinical autosomal dominant Alzheimer’s disease. Brain. 2016;139:2766–2777. doi: 10.1093/brain/aww200. PubMed DOI PMC

Forlenza O.V., Diniz B.S., Teixeira A.L., Ojopi E.B., Talib L.L., Mendonça V.A., Izzo G., Gattaz W.F. Effect of brain-derived neurotrophic factor Val66Met polymorphism and serum levels on the progression of mild cognitive impairment. World J. Biol. Psychiatry. 2010;11:774–780. doi: 10.3109/15622971003797241. PubMed DOI

Franzmeier N., Ren J., Damm A., Monté-Rubio G., Boada M., Ruiz A., Ramirez A., Jessen F., Düzel E., Gómez O.R. The BDNF Val66Met SNP modulates the association between beta-amyloid and hippocampal disconnection in Alzheimer’s disease. Mol. Psychiatry. 2019 doi: 10.1038/s41380-019-0404-6. PubMed DOI PMC

Lim Y.Y., Hassenstab J., Goate A., Fagan A.M., Benzinger T.L., Cruchaga C., McDade E., Chhatwal J., Levin J., Farlow M.R. Effect of BDNFVal66Met on disease markers in dominantly inherited Alzheimer’s disease. Ann. Neurol. 2018;84:424–435. doi: 10.1002/ana.25299. PubMed DOI PMC

Matsushita S., Arai H., Matsui T., Yuzuriha T., Urakami K., Masaki T., Higuchi S. Brain-derived neurotrophic factor gene polymorphisms and Alzheimer’s disease. J. Neural Transm. 2005;112:703–771. doi: 10.1007/s00702-004-0210-3. PubMed DOI

Ventriglia M., Chiavetto L.B., Benussi L., Binetti G., Zanetti O., Riva M., Gennarelli M. Association between the BDNF 196 A/G polymorphism and sporadic Alzheimer’s disease. Mol. Psychiatry. 2002;7:136–137. doi: 10.1038/sj.mp.4000952. PubMed DOI

Fehér Á., Juhász A., Rimanóczy Á., Kálmán J., Janka Z. Association between BDNF Val66Met polymorphism and Alzheimer disease, dementia with Lewy bodies, and Pick disease. Alzheimer Dis. Assoc. Disord. 2009;23:224–228. doi: 10.1097/WAD.0b013e318199dd7d. PubMed DOI

Corder E.H., Saunders A.M., Strittmatter W.J., Schmechel D.E., Gaskell P.C., Small G., Roses A., Haines J., Pericak-Vance M.A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261:921–923. doi: 10.1126/science.8346443. PubMed DOI

Neu S.C., Pa J., Kukull W., Beekly D., Kuzma A., Gangadharan P., Wang L.-S., Romero K., Arneric S.P., Redolfi A. Apolipoprotein E genotype and sex risk factors for Alzheimer disease: A meta-analysis. JAMA Neurol. 2017;74:1178–1189. doi: 10.1001/jamaneurol.2017.2188. PubMed DOI PMC

Kauppi K., Nilsson L.-G., Persson J., Nyberg L. Additive genetic effect of APOE and BDNF on hippocampus activity. Neuroimage. 2014;89:306–313. doi: 10.1016/j.neuroimage.2013.11.049. PubMed DOI

Gomar J.J., Conejero-Goldberg C., Huey E.D., Davies P., Goldberg T.E., Initiative A.s.D.N. Lack of neural compensatory mechanisms of BDNF val66met met carriers and APOE E4 carriers in healthy aging, mild cognitive impairment, and Alzheimer’s disease. Neurobiol. Aging. 2016;39:165–173. doi: 10.1016/j.neurobiolaging.2015.12.004. PubMed DOI PMC

Lim Y.Y., Villemagne V.L., Laws S.M., Pietrzak R., Snyder P., Ames D., Ellis K.A., Harrington K., Rembach A., Martins R.N. APOE and BDNF polymorphisms moderate amyloid β-related cognitive decline in preclinical Alzheimer’s disease. Mol. Psychiatry. 2015;20:1322–1328. doi: 10.1038/mp.2014.123. PubMed DOI PMC

Ward D.D., Summers M.J., Saunders N.L., Janssen P., Stuart K.E., Vickers J.C. APOE and BDNF Val66Met polymorphisms combine to influence episodic memory function in older adults. Behav. Brain Res. 2014;271:309–315. doi: 10.1016/j.bbr.2014.06.022. PubMed DOI

Cechova K., Andel R., Angelucci F., Chmatalova Z., Markova H., Laczó J., Vyhnalek M., Matoska V., Kaplan V., Nedelska Z. Impact of APOE and BDNF Val66Met Gene Polymorphisms on Cognitive Functions in Patients with Amnestic Mild Cognitive Impairment. J. Alzheimer’s Dis. 2020;73:247–257. doi: 10.3233/JAD-190464. PubMed DOI

Pietzuch M., King A.E., Ward D.D., Vickers J.C. The influence of genetic factors and cognitive reserve on structural and functional resting-state brain networks in aging and Alzheimer’s disease. Front. Aging Neurosci. 2019;11:30. doi: 10.3389/fnagi.2019.00030. PubMed DOI PMC

Livingston G., Sommerlad A., Orgeta V., Costafreda S.G., Huntley J., Ames D., Ballard C., Banerjee S., Burns A., Cohen-Mansfield J. Dementia prevention, intervention, and care. Lancet. 2017;390:2673–2734. doi: 10.1016/S0140-6736(17)31363-6. PubMed DOI

Norton S., Matthews F.E., Barnes D.E., Yaffe K., Brayne C. Potential for primary prevention of Alzheimer’s disease: An analysis of population-based data. Lancet Neurol. 2014;13:788–794. doi: 10.1016/S1474-4422(14)70136-X. PubMed DOI

Barnes D.E., Yaffe K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 2011;10:819–828. doi: 10.1016/S1474-4422(11)70072-2. PubMed DOI PMC

Pedersen B.K., Saltin B. Evidence for prescribing exercise as therapy in chronic disease. Scand. J. Med. Sci. Sports. 2006;16:3–63. doi: 10.1111/j.1600-0838.2006.00520.x. PubMed DOI

Alty J., Farrow M., Lawler K. Exercise and dementia prevention. Pract. Neurol. 2020 doi: 10.1136/practneurol-2019-002335. PubMed DOI

Neeper S.A., Gómez-Pinilla F., Choi J., Cotman C.W. Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res. 1996;726:49–56. doi: 10.1016/0006-8993(96)00273-9. PubMed DOI

Ickes B.R., Pham T.M., Sanders L.A., Albeck D.S., Mohammed A.H., Granholm A.-C. Long-term environmental enrichment leads to regional increases in neurotrophin levels in rat brain. Exp. Neurol. 2000;164:45–52. doi: 10.1006/exnr.2000.7415. PubMed DOI

Novkovic T., Mittmann T., Manahan-Vaughan D. BDNF contributes to the facilitation of hippocampal synaptic plasticity and learning enabled by environmental enrichment. Hippocampus. 2015;25:1–15. doi: 10.1002/hipo.22342. PubMed DOI

Stuart K.E., King A.E., Fernandez-Martos C.M., Dittmann J., Summers M.J., Vickers J.C. Mid-life environmental enrichment increases synaptic density in CA1 in a mouse model of Aβ-associated pathology and positively influences synaptic and cognitive health in healthy ageing. J. Comp. Neurol. 2017;525:1797–1810. doi: 10.1002/cne.24156. PubMed DOI

Vaynman S.S., Ying Z., Yin D., Gomez-Pinilla F. Exercise differentially regulates synaptic proteins associated to the function of BDNF. Brain Res. 2006;1070:124–130. doi: 10.1016/j.brainres.2005.11.062. PubMed DOI

Russo-Neustadt A., Ha T., Ramirez R., Kesslak J.P. Physical activity–antidepressant treatment combination: Impact on brain-derived neurotrophic factor and behavior in an animal model. Behav. Brain Res. 2001;120:87–95. doi: 10.1016/S0166-4328(00)00364-8. PubMed DOI

Szuhany K.L., Bugatti M., Otto M.W. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J. Psychiatr. Res. 2015;60:56–64. doi: 10.1016/j.jpsychires.2014.10.003. PubMed DOI PMC

Adlard P.A., Perreau V.M., Cotman C.W. The exercise-induced expression of BDNF within the hippocampus varies across life-span. Neurobiol. Aging. 2005;26:511–520. doi: 10.1016/j.neurobiolaging.2004.05.006. PubMed DOI

Tsai C.-L., Ukropec J., Ukropcová B., Pai M.-C. An acute bout of aerobic or strength exercise specifically modifies circulating exerkine levels and neurocognitive functions in elderly individuals with mild cognitive impairment. NeuroImage Clin. 2018;17:272–284. doi: 10.1016/j.nicl.2017.10.028. PubMed DOI PMC

Tsai C.-L., Pai M.-C., Ukropec J., Ukropcová B. Distinctive effects of aerobic and resistance exercise modes on neurocognitive and biochemical changes in individuals with mild cognitive impairment. Curr. Alzheimer Res. 2019;16:316–332. doi: 10.2174/1567205016666190228125429. PubMed DOI

Manuela Crispim Nascimento C., Rodrigues Pereira J., Pires de Andrade L., Garuffi M., Leme Talib L., Vicente Forlenza O., Maria Cancela J., Regina Cominetti M., Stella F. Physical exercise in MCI elderly promotes reduction of pro-inflammatory cytokines and improvements on cognition and BDNF peripheral levels. Curr. Alzheimer Res. 2014;11:799–805. doi: 10.2174/156720501108140910122849. PubMed DOI

Kim J.-M., Stewart R., Bae K.-Y., Kim S.-W., Yang S.-J., Park K.-H., Shin I.-S., Yoon J.-S. Role of BDNF val66met polymorphism on the association between physical activity and incident dementia. Neurobiol. Aging. 2011;32:551. doi: 10.1016/j.neurobiolaging.2010.01.018. PubMed DOI

Watts A., Andrews S.J., Anstey K.J. Sex differences in the impact of BDNF genotype on the longitudinal relationship between physical activity and cognitive performance. Gerontology. 2018;64:361–372. doi: 10.1159/000486369. PubMed DOI

Thibeau S., McFall G.P., Wiebe S.A., Anstey K.J., Dixon R.A. Genetic factors moderate everyday physical activity effects on executive functions in aging: Evidence from the Victoria Longitudinal Study. Neuropsychology. 2016;30:6. doi: 10.1037/neu0000217. PubMed DOI PMC

Brown B.M., Bourgeat P., Peiffer J.J., Burnham S., Laws S.M., Rainey-Smith S.R., Bartrés-Faz D., Villemagne V.L., Taddei K., Rembach A. Influence of BDNF Val66Met on the relationship between physical activity and brain volume. Neurology. 2014;83:1345–1352. doi: 10.1212/WNL.0000000000000867. PubMed DOI

Canivet A., Albinet C.T., André N., Pylouster J., Rodríguez-Ballesteros M., Kitzis A., Audiffren M. Effects of BDNF polymorphism and physical activity on episodic memory in the elderly: A cross sectional study. Eur. Rev. Aging Phys. Act. 2015;12:15. doi: 10.1186/s11556-015-0159-2. PubMed DOI PMC

Nascimento C.M.C., Pereira J.R., Pires de Andrade L., Garuffi M., Ayan C., Kerr D.S., Talib L.L., Cominetti M.R., Stella F. Physical exercise improves peripheral BDNF levels and cognitive functions in mild cognitive impairment elderly with different bdnf Val66Met genotypes. J. Alzheimer’s Dis. 2015;43:81–91. doi: 10.3233/JAD-140576. PubMed DOI

Erickson K.I., Banducci S.E., Weinstein A.M., MacDonald III A.W., Ferrell R.E., Halder I., Flory J.D., Manuck S.B. The brain-derived neurotrophic factor Val66Met polymorphism moderates an effect of physical activity on working memory performance. Psychol. Sci. 2013;24:1770–1779. doi: 10.1177/0956797613480367. PubMed DOI PMC

Helm E.E., Matt K.S., Kirschner K.F., Pohlig R.T., Kohl D., Reisman D.S. The influence of high intensity exercise and the Val66Met polymorphism on circulating BDNF and locomotor learning. Neurobiol. Learn. Mem. 2017;144:77–85. doi: 10.1016/j.nlm.2017.06.003. PubMed DOI PMC

Lindenberger U., Nagel I.E., Chicherio C., Li S.-C., Heekeren H.R., Bäckman L. Age-related decline in brain resources modulates genetic effects on cognitive functioning. Front. Neurosci. 2008;2:39. doi: 10.3389/neuro.01.039.2008. PubMed DOI PMC

Bozzali M., Dowling C., Serra L., Spanò B., Torso M., Marra C., Castelli D., Dowell N.G., Koch G., Caltagirone C. The impact of cognitive reserve on brain functional connectivity in Alzheimer’s disease. J. Alzheimer’s Dis. 2015;44:243–250. doi: 10.3233/JAD-141824. PubMed DOI

Liu Y., Julkunen V., Paajanen T., Westman E., Wahlund L.-O., Aitken A., Sobow T., Mecocci P., Tsolaki M., Vellas B. Education increases reserve against Alzheimer’s disease—Evidence from structural MRI analysis. Neuroradiology. 2012;54:929–938. doi: 10.1007/s00234-012-1005-0. PubMed DOI PMC

Stern Y. What is cognitive reserve? Theory and research application of the reserve concept. J. Int. Neuropsychol. Soc. 2002;8:448–460. doi: 10.1017/S1355617702813248. PubMed DOI

Stern Y. Cognitive reserve. Neuropsychologia. 2009;47:2015–2028. doi: 10.1016/j.neuropsychologia.2009.03.004. PubMed DOI PMC

Franzmeier N., Duering M., Weiner M., Dichgans M., Ewers M., Initiative A.s.D.N. Left frontal cortex connectivity underlies cognitive reserve in prodromal Alzheimer disease. Neurology. 2017;88:1054–1061. doi: 10.1212/WNL.0000000000003711. PubMed DOI PMC

Solé-Padullés C., Bartrés-Faz D., Junqué C., Vendrell P., Rami L., Clemente I.C., Bosch B., Villar A., Bargalló N., Jurado M.A. Brain structure and function related to cognitive reserve variables in normal aging, mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging. 2009;30:1114–1124. doi: 10.1016/j.neurobiolaging.2007.10.008. PubMed DOI

Ward D.D., Summers M.J., Saunders N., Ritchie K., Summers J., Vickers J. The BDNF Val66Met polymorphism moderates the relationship between cognitive reserve and executive function. Transl. Psychiatry. 2015;5:e590. doi: 10.1038/tp.2015.82. PubMed DOI PMC

Ward D.D., Andel R., Saunders N.L., Thow M.E., Klekociuk S.Z., Bindoff A.D., Vickers J.C. The BDNF Val66Met polymorphism moderates the effect of cognitive reserve on 36-month cognitive change in healthy older adults. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2017;3:323–331. doi: 10.1016/j.trci.2017.04.006. PubMed DOI PMC

Damirchi A., Hosseini F., Babaei P. Mental training enhances cognitive function and BDNF more than either physical or combined training in elderly women with MCI: A small-scale study. Am. J. Alzheimer’s Dis. Other Dement. 2018;33:20–29. doi: 10.1177/1533317517727068. PubMed DOI PMC

Pressler S.J., Titler M., Koelling T.M., Riley P.L., Jung M., Hoyland-Domenico L., Ronis D.L., Smith D.G., Bleske B.E., Dorsey S.G. Nurse-enhanced computerized cognitive training increases serum brain-derived neurotropic factor levels and improves working memory in heart failure. J. Card. Fail. 2015;21:630–641. doi: 10.1016/j.cardfail.2015.05.004. PubMed DOI

Thow M.E., Summers M.J., Saunders N.L., Summers J.J., Ritchie K., Vickers J.C. Further education improves cognitive reserve and triggers improvement in selective cognitive functions in older adults: The Tasmanian Healthy Brain Project. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2018;10:22–30. doi: 10.1016/j.dadm.2017.08.004. PubMed DOI PMC

Ward D.D., Summers M.J., Valenzuela M., Srikanth V., Summers J., King A., Ritchie K., Robinson A., Vickers J. Associations of Later-Life Education, the BDNF Val66Met Polymorphism and Cognitive Change in Older Adults. J. Prev. Alzheimer’s Dis. 2020;7:37–42. PubMed

Notaras M., van den Buuse M. Brain-derived neurotrophic factor (BDNF): Novel insights into regulation and genetic variation. Neuroscientist. 2019;25:434–454. doi: 10.1177/1073858418810142. PubMed DOI

Stuart K.E., King A.E., Fernandez-Martos C.M., Summers M.J., Vickers J.C. Environmental novelty exacerbates stress hormones and Aβ pathology in an Alzheimer’s model. Sci. Rep. 2017;7:2764. doi: 10.1038/s41598-017-03016-0. PubMed DOI PMC

Lin Y., Cheng S., Xie Z., Zhang D. Association of rs6265 and rs2030324 polymorphisms in brain-derived neurotrophic factor gene with Alzheimer’s disease: A meta-analysis. PLoS ONE. 2014;9:e94961. doi: 10.1371/journal.pone.0094961. PubMed DOI PMC

Petryshen T.L., Sabeti P.C., Aldinger K.A., Fry B., Fan J.B., Schaffner S., Waggoner S.G., Tahl A.R., Sklar P. Population genetic study of the brain-derived neurotrophic factor (BDNF) gene. Mol. Psychiatry. 2010;15:810–815. doi: 10.1038/mp.2009.24. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...