The BDNF Val66Met Polymorphism Modulates Resilience of Neurological Functioning to Brain Ageing and Dementia: A Narrative Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
32218234
PubMed Central
PMC7226504
DOI
10.3390/brainsci10040195
PII: brainsci10040195
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, BDNF, BDNF Val66Met, ageing, brain-derived neurotrophic factor, cognitive function, dementia,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Brain-derived neurotropic factor (BDNF) is an abundant and multi-function neurotrophin in the brain. It is released following neuronal activity and is believed to be particularly important in strengthening neural networks. A common variation in the BDNF gene, a valine to methionine substitution at codon 66 (Val66Met), has been linked to differential expression of BDNF associated with experience-dependent plasticity. The Met allele has been associated with reduced production of BDNF following neuronal stimulation, which suggests a potential role of this variation with respect to how the nervous system may respond to challenges, such as brain ageing and related neurodegenerative conditions (e.g., dementia and Alzheimer's disease). The current review examines the potential of the BDNF Val66Met variation to modulate an individual's susceptibility and trajectory through cognitive changes associated with ageing and dementia. On balance, research to date indicates that the BDNF Met allele at this codon is potentially associated with a detrimental influence on the level of cognitive functioning in older adults and may also impart increased risk of progression to dementia. Furthermore, recent studies also show that this genetic variation may modulate an individual's response to interventions targeted at building cognitive resilience to conditions that cause dementia.
Division of Geriatric Medicine Department of Medicine Dalhousie University Halifax NS B3H 2E1 Canada
International Clinical Research Center St Anne's University Hospital Brno 65691 Brno Czech Republic
Zobrazit více v PubMed
Bath K.G., Lee F.S. Variant BDNF (Val66Met) impact on brain structure and function. Cogn. Affect. Behav. Neurosci. 2006;6:79–85. doi: 10.3758/CABN.6.1.79. PubMed DOI
Murer M., Yan Q., Raisman-Vozari R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog. Neurobiol. 2001;63:71–124. doi: 10.1016/S0301-0082(00)00014-9. PubMed DOI
Park H., Poo M.-M. Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci. 2013;14:7–23. doi: 10.1038/nrn3379. PubMed DOI
Hartmann M., Heumann R., Lessmann V. Synaptic secretion of BDNF after high-frequency stimulation of glutamatergic synapses. EMBO J. 2001;20:5887–5897. doi: 10.1093/emboj/20.21.5887. PubMed DOI PMC
Zagrebelsky M., Korte M. Form follows function: BDNF and its involvement in sculpting the function and structure of synapses. Neuropharmacology. 2014;76:628–638. doi: 10.1016/j.neuropharm.2013.05.029. PubMed DOI
Leal G., Afonso P.M., Salazar I.L., Duarte C.B. Regulation of hippocampal synaptic plasticity by BDNF. Brain Res. 2015;1621:82–101. doi: 10.1016/j.brainres.2014.10.019. PubMed DOI
Yang J., Harte-Hargrove L.C., Siao C.-J., Marinic T., Clarke R., Ma Q., Jing D., LaFrancois J.J., Bath K.G., Mark W. proBDNF negatively regulates neuronal remodeling, synaptic transmission, and synaptic plasticity in hippocampus. Cell Rep. 2014;7:796–806. doi: 10.1016/j.celrep.2014.03.040. PubMed DOI PMC
Angelucci F., Čechová K., Průša R., Hort J. Amyloid beta soluble forms and plasminogen activation system in Alzheimer’s disease: Consequences on extracellular maturation of brain-derived neurotrophic factor and therapeutic implications. CNS Neurosci. Ther. 2019;25:303–313. doi: 10.1111/cns.13082. PubMed DOI PMC
Murer M.G., Raisman-Vozari R., Yan Q., Ruberg M., Agid Y., Michel P.P. Survival factors promote BDNF protein expression in mesencephalic dopaminergic neurons. Neuroreport. 1999;10:801–805. doi: 10.1097/00001756-199903170-00025. PubMed DOI
Egan M.F., Kojima M., Callicott J.H., Goldberg T.E., Kolachana B.S., Bertolino A., Zaitsev E., Gold B., Goldman D., Dean M. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112:257–269. doi: 10.1016/S0092-8674(03)00035-7. PubMed DOI
Chen Z.-Y., Patel P.D., Sant G., Meng C.-X., Teng K.K., Hempstead B.L., Lee F.S. Variant brain-derived neurotrophic factor (BDNF)(Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. J. Neurosci. 2004;24:4401–4411. doi: 10.1523/JNEUROSCI.0348-04.2004. PubMed DOI PMC
Chen Z., Bath K., McEwen B., Hempstead B., Lee F. Novartis Foundation Symposium. Novartis Foundation; Basel, Switzerland: 2008. Impact of genetic variant BDNF (Val66Met) on brain structure and function; p. 180. PubMed PMC
Chen Z.-Y., Jing D., Bath K.G., Ieraci A., Khan T., Siao C.-J., Herrera D.G., Toth M., Yang C., McEwen B.S. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science. 2006;314:140–143. doi: 10.1126/science.1129663. PubMed DOI PMC
Pattwell S.S., Bath K.G., Perez-Castro R., Lee F.S., Chao M.V., Ninan I. The BDNF Val66Met polymorphism impairs synaptic transmission and plasticity in the infralimbic medial prefrontal cortex. J. Neurosci. 2012;32:2410–2421. doi: 10.1523/JNEUROSCI.5205-11.2012. PubMed DOI PMC
Ninan I., Bath K.G., Dagar K., Perez-Castro R., Plummer M.R., Lee F.S., Chao M.V. The BDNF Val66Met polymorphism impairs NMDA receptor-dependent synaptic plasticity in the hippocampus. J. Neurosci. 2010;30:8866–8870. doi: 10.1523/JNEUROSCI.1405-10.2010. PubMed DOI PMC
Lin C.-H., Huang Y.-J., Lin C.-J., Lane H.-Y., Tsai G.E. NMDA neurotransmission dysfunction in mild cognitive impairment and Alzheimer’s disease. Curr. Pharm. Des. 2014;20:5169–5179. doi: 10.2174/1381612819666140110115603. PubMed DOI
Lin C.-H., Lane H.-Y. The Role of N-Methyl-D-Aspartate Receptor Neurotransmission and Precision Medicine in Behavioral and Psychological Symptoms of Dementia. Front. Pharmacol. 2019;10:540. doi: 10.3389/fphar.2019.00540. PubMed DOI PMC
Hariri A.R., Goldberg T.E., Mattay V.S., Kolachana B.S., Callicott J.H., Egan M.F., Weinberger D.R. Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J. Neurosci. 2003;23:6690–6694. doi: 10.1523/JNEUROSCI.23-17-06690.2003. PubMed DOI PMC
Kauppi K., Nilsson L.-G., Adolfsson R., Lundquist A., Eriksson E., Nyberg L. Decreased medial temporal lobe activation in BDNF 66Met allele carriers during memory encoding. Neuropsychologia. 2013;51:2462–2468. doi: 10.1016/j.neuropsychologia.2012.11.028. PubMed DOI
Soliman F., Glatt C.E., Bath K.G., Levita L., Jones R.M., Pattwell S.S., Jing D., Tottenham N., Amso D., Somerville L.H. A genetic variant BDNF polymorphism alters extinction learning in both mouse and human. Science. 2010;327:863–866. doi: 10.1126/science.1181886. PubMed DOI PMC
Montag C., Reuter M., Newport B., Elger C., Weber B. The BDNF Val66Met polymorphism affects amygdala activity in response to emotional stimuli: Evidence from a genetic imaging study. Neuroimage. 2008;42:1554–1559. doi: 10.1016/j.neuroimage.2008.06.008. PubMed DOI
Montag C., Weber B., Fliessbach K., Elger C., Reuter M. The BDNF Val66Met polymorphism impacts parahippocampal and amygdala volume in healthy humans: Incremental support for a genetic risk factor for depression. Psychol. Med. 2009;39:1831–1839. doi: 10.1017/S0033291709005509. PubMed DOI
Pezawas L., Verchinski B.A., Mattay V.S., Callicott J.H., Kolachana B.S., Straub R.E., Egan M.F., Meyer-Lindenberg A., Weinberger D.R. The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. J. Neurosci. 2004;24:10099–10102. doi: 10.1523/JNEUROSCI.2680-04.2004. PubMed DOI PMC
Hajek T., Kopecek M., Höschl C. Reduced hippocampal volumes in healthy carriers of brain-derived neurotrophic factor Val66Met polymorphism: Meta-analysis. World J. Biol. Psychiatry. 2012;13:178–187. doi: 10.3109/15622975.2011.580005. PubMed DOI PMC
Kambeitz J.P., Bhattacharyya S., Kambeitz-Ilankovic L.M., Valli I., Collier D.A., McGuire P. Effect of BDNF val66met polymorphism on declarative memory and its neural substrate: A meta-analysis. Neurosci. Biobehav. Rev. 2012;36:2165–2177. doi: 10.1016/j.neubiorev.2012.07.002. PubMed DOI
Harrisberger F., Spalek K., Smieskova R., Schmidt A., Coynel D., Milnik A., Fastenrath M., Freytag V., Gschwind L., Walter A. The association of the BDNF Val66Met polymorphism and the hippocampal volumes in healthy humans: A joint meta-analysis of published and new data. Neurosci. Biobehav. Rev. 2014;42:267–278. doi: 10.1016/j.neubiorev.2014.03.011. PubMed DOI
Hashimoto T., Fukui K., Takeuchi H., Yokota S., Kikuchi Y., Tomita H., Taki Y., Kawashima R. Effects of the BDNF Val66Met polymorphism on gray matter volume in typically developing children and adolescents. Cereb. Cortex. 2016;26:1795–1803. doi: 10.1093/cercor/bhw020. PubMed DOI PMC
Chiang M.-C., Barysheva M., Toga A.W., Medland S.E., Hansell N.K., James M.R., McMahon K.L., De Zubicaray G.I., Martin N.G., Wright M.J. BDNF gene effects on brain circuitry replicated in 455 twins. Neuroimage. 2011;55:448–454. doi: 10.1016/j.neuroimage.2010.12.053. PubMed DOI PMC
Tost H., Alam T., Geramita M., Rebsch C., Kolachana B., Dickinson D., Verchinski B.A., Lemaitre H., Barnett A.S., Trampush J.W. Effects of the BDNF val 66 met polymorphism on white matter microstructure in healthy adults. Neuropsychopharmacology. 2013;38:525–532. doi: 10.1038/npp.2012.214. PubMed DOI PMC
Montag C., Schoene-Bake J.C., Faber J., Reuter M., Weber B. Genetic variation on the BDNF gene is not associated with differences in white matter tracts in healthy humans measured by tract-based spatial statistics. Genes Brain Behav. 2010;9:886–891. doi: 10.1111/j.1601-183X.2010.00626.x. PubMed DOI
Park C.-H., Kim J., Namgung E., Lee D.-W., Kim G.H., Kim M., Kim N., Kim T.D., Kim S., Lyoo I.K. The BDNF Val66Met polymorphism affects the vulnerability of the brain structural network. Front. Hum. Neurosci. 2017;11:400. doi: 10.3389/fnhum.2017.00400. PubMed DOI PMC
Ho B.-C., Milev P., O’Leary D.S., Librant A., Andreasen N.C., Wassink T.H. Cognitive and magnetic resonance imaging brain morphometric correlates of brain-derived neurotrophic factor Val66Met gene polymorphism in patients with schizophrenia and healthy volunteers. Arch. Gen. Psychiatry. 2006;63:731–740. doi: 10.1001/archpsyc.63.7.731. PubMed DOI PMC
Schofield P.R., Williams L.M., Paul R.H., Gatt J.M., Brown K., Luty A., Cooper N., Grieve S., Dobson-Stone C., Morris C. Disturbances in selective information processing associated with the BDNF Val66Met polymorphism: Evidence from cognition, the P300 and fronto-hippocampal systems. Biol. Psychol. 2009;80:176–188. doi: 10.1016/j.biopsycho.2008.09.001. PubMed DOI
Karnik M.S., Wang L., Barch D.M., Morris J.C., Csernansky J.G. BDNF polymorphism rs6265 and hippocampal structure and memory performance in healthy control subjects. Psychiatry Res. 2010;178:425–429. doi: 10.1016/j.psychres.2009.09.008. PubMed DOI PMC
Strauss J., Barr C., George C., Ryan C., King N., Shaikh S., Kovacs M., Kennedy J. BDNF and COMT polymorphisms. Neuromol. Med. 2004;5:181–192. doi: 10.1385/NMM:5:3:181. PubMed DOI
Kennedy K.M., Reese E.D., Horn M.M., Sizemore A.N., Unni A.K., Meerbrey M.E., Kalich A.G., Jr., Rodrigue K.M. BDNF val66met polymorphism affects aging of multiple types of memory. Brain Res. 2015;1612:104–117. doi: 10.1016/j.brainres.2014.09.044. PubMed DOI PMC
Zhang X.Y., Xiu M.H., Haile C.N., Luo X., Xu K., Zhang H.P., Zuo L., Zhang Z., Zhang X., Kosten T.A. Cognitive and serum BDNF correlates of BDNF Val66Met gene polymorphism in patients with schizophrenia and normal controls. Hum. Genet. 2012;131:1187–1195. doi: 10.1007/s00439-012-1150-x. PubMed DOI PMC
Nagel I.E., Chicherio C., Li S.-C., Von Oertzen T., Sander T., Villringer A., Heekeren H.R., Bäckman L., Lindenberger U. Human aging magnifies genetic effects on executive functioning and working memory. Front. Hum. Neurosci. 2008;2:1. doi: 10.3389/neuro.09.001.2008. PubMed DOI PMC
Mandelman S.D., Grigorenko E.L. BDNF Val66Met and cognition: All, none, or some? A meta-analysis of the genetic association. Genes Brain Behav. 2012;11:127–136. doi: 10.1111/j.1601-183X.2011.00738.x. PubMed DOI PMC
Getzmann S., Gajewski P.D., Hengstler J.G., Falkenstein M., Beste C. BDNF Val66Met polymorphism and goal-directed behavior in healthy elderly—Evidence from auditory distraction. Neuroimage. 2013;64:290–298. doi: 10.1016/j.neuroimage.2012.08.079. PubMed DOI
Toh Y.L., Ng T., Tan M., Tan A., Chan A. Impact of brain-derived neurotrophic factor genetic polymorphism on cognition: A systematic review. Brain Behav. 2018;8:e01009. doi: 10.1002/brb3.1009. PubMed DOI PMC
Papenberg G., Salami A., Persson J., Lindenberger U., Bäckman L. Genetics and functional imaging: Effects of APOE, BDNF, COMT, and KIBRA in aging. Neuropsychol. Rev. 2015;25:47–62. doi: 10.1007/s11065-015-9279-8. PubMed DOI
Ghisletta P., Bäckman L., Bertram L., Brandmaier A.M., Gerstorf D., Liu T., Lindenberger U. The Val/Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene predicts decline in perceptual speed in older adults. Psychol. Aging. 2014;29:384. doi: 10.1037/a0035201. PubMed DOI
Laing K.R., Mitchell D., Wersching H., Czira M.E., Berger K., Baune B.T. Brain-derived neurotrophic factor (BDNF) gene: A gender-specific role in cognitive function during normal cognitive aging of the MEMO-Study? Age. 2012;34:1011–1022. doi: 10.1007/s11357-011-9275-8. PubMed DOI PMC
Miyajima F., Ollier W., Mayes A., Jackson A., Thacker N., Rabbitt P., Pendleton N., Horan M., Payton A. Brain-derived neurotrophic factor polymorphism Val66Met influences cognitive abilities in the elderly. Genes Brain Behav. 2008;7:411–417. doi: 10.1111/j.1601-183X.2007.00363.x. PubMed DOI
Sambataro F., Murty V., Lemaitre H., Reed J., Das S., Goldberg T., Callicott J., Weinberger D., Mattay V. BNDF modulates normal human hippocampal ageing. Mol. Psychiatry. 2010;15:116–118. doi: 10.1038/mp.2009.64. PubMed DOI PMC
Kennedy K.M., Rodrigue K.M., Land S.J., Raz N. BDNF Val66Met polymorphism influences age differences in microstructure of the Corpus Callosum. Front. Hum. Neurosci. 2009;3:19. doi: 10.3389/neuro.09.019.2009. PubMed DOI PMC
Mattson M.P., Maudsley S., Martin B. A neural signaling triumvirate that influences ageing and age-related disease: Insulin/IGF-1, BDNF and serotonin. Ageing Res. Rev. 2004;3:445–464. doi: 10.1016/j.arr.2004.08.001. PubMed DOI
Tsai S.-J., Gau Y.-T.A., Liu M.-E., Hsieh C.-H., Liou Y.-J., Hong C.-J. Association study of brain-derived neurotrophic factor and apolipoprotein E polymorphisms and cognitive function in aged males without dementia. Neurosci. Lett. 2008;433:158–162. doi: 10.1016/j.neulet.2007.12.057. PubMed DOI
Erickson K.I., Kim J.S., Suever B.L., Voss M.W., Francis B.M., Kramer A.F. Genetic contributions to age-related decline in executive function: A 10-year longitudinal study of COMT and BDNF polymorphisms. Front. Hum. Neurosci. 2008;2:11. doi: 10.3389/neuro.09.011.2008. PubMed DOI PMC
Gajewski P.D., Hengstler J.G., Golka K., Falkenstein M., Beste C. The Met-genotype of the BDNF Val66Met polymorphism is associated with reduced Stroop interference in elderly. Neuropsychologia. 2012;50:3554–3563. doi: 10.1016/j.neuropsychologia.2012.09.042. PubMed DOI
Gajewski P.D., Hengstler J.G., Golka K., Falkenstein M., Beste C. The Met-allele of the BDNF Val66Met polymorphism enhances task switching in elderly. Neurobiol. Aging. 2011;32:2327. doi: 10.1016/j.neurobiolaging.2011.06.010. PubMed DOI
Harris S., Fox H., Wright A., Hayward C., Starr J., Whalley L.J., Deary I. The brain-derived neurotrophic factor Val66Met polymorphism is associated with age-related change in reasoning skills. Mol. Psychiatry. 2006;11:505–513. doi: 10.1038/sj.mp.4001799. PubMed DOI
Vickers J.C., Mitew S., Woodhouse A., Fernandez-Martos C.M., Kirkcaldie M.T., Canty A.J., McCormack G.H., King A.E. Defining the earliest pathological changes of Alzheimer’s disease. Curr. Alzheimer Res. 2016;13:281–287. doi: 10.2174/1567205013666151218150322. PubMed DOI PMC
Allen S.J., Watson J.J., Dawbarn D. The neurotrophins and their role in Alzheimer’s disease. Curr. Neuropharmacol. 2011;9:559–573. doi: 10.2174/157015911798376190. PubMed DOI PMC
Hock C., Heese K., Hulette C., Rosenberg C., Otten U. Region-specific neurotrophin imbalances in Alzheimer disease: Decreased levels of brain-derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas. Arch. Neurol. 2000;57:846–851. doi: 10.1001/archneur.57.6.846. PubMed DOI
Buckley P.F., Pillai A., Howell K.R. Brain-derived neurotrophic factor: Findings in schizophrenia. Curr. Opin. Psychiatry. 2011;24:122–127. doi: 10.1097/YCO.0b013e3283436eb7. PubMed DOI
Li G., Peskind E.R., Millard S.P., Chi P., Sokal I., Yu C.-E., Bekris L.M., Raskind M.A., Galasko D.R., Montine T.J. Cerebrospinal fluid concentration of brain-derived neurotrophic factor and cognitive function in non-demented subjects. PLoS ONE. 2009;4:e5424. doi: 10.1371/journal.pone.0005424. PubMed DOI PMC
Faria M.C., Gonçalves G.S., Rocha N.P., Moraes E.N., Bicalho M.A., Cintra M.T.G., de Paula J.J., de Miranda L.F.J.R., de Souza Ferreira A.C., Teixeira A.L. Increased plasma levels of BDNF and inflammatory markers in Alzheimer’s disease. J. Psychiatr. Res. 2014;53:166–172. doi: 10.1016/j.jpsychires.2014.01.019. PubMed DOI
Pláteník J., Fišar Z., Buchal R., Jirák R., Kitzlerová E., Zvěřová M., Raboch J. GSK3β, CREB, and BDNF in peripheral blood of patients with Alzheimer’s disease and depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2014;50:83–93. doi: 10.1016/j.pnpbp.2013.12.001. PubMed DOI
Woolley J.D., Strobl E.V., Shelly W.B., Karydas A.M., Robin Ketelle R.N., Wolkowitz O.M., Miller B.L., Rankin K.P. BDNF serum concentrations show no relationship with diagnostic group or medication status in neurodegenerative disease. Curr. Alzheimer Res. 2012;9:815–821. doi: 10.2174/156720512802455395. PubMed DOI PMC
O’Bryant S.E., Hobson V.L., Hall J.R., Barber R.C., Zhang S., Johnson L., Diaz-Arrastia R. Serum brain-derived neurotrophic factor levels are specifically associated with memory performance among Alzheimer’s disease cases. Dement. Geriatr. Cogn. Disord. 2011;31:31–36. doi: 10.1159/000321980. PubMed DOI PMC
Álvarez A., Aleixandre M., Linares C., Masliah E., Moessler H. Apathy and APOE4 are associated with reduced BDNF levels in Alzheimer’s disease. J. Alzheimer’s Dis. 2014;42:1347–1355. doi: 10.3233/JAD-140849. PubMed DOI PMC
Weinstein G., Beiser A.S., Choi S.H., Preis S.R., Chen T.C., Vorgas D., Au R., Pikula A., Wolf P.A., DeStefano A.L. Serum brain-derived neurotrophic factor and the risk for dementia: The Framingham Heart Study. JAMA Neurol. 2014;71:55–61. doi: 10.1001/jamaneurol.2013.4781. PubMed DOI PMC
Lim Y.Y., Villemagne V.L., Laws S.M., Ames D., Pietrzak R.H., Ellis K.A., Harrington K.D., Bourgeat P., Salvado O., Darby D. BDNF Val66Met, Aβ amyloid, and cognitive decline in preclinical Alzheimer’s disease. Neurobiol. Aging. 2013;34:2457–2464. doi: 10.1016/j.neurobiolaging.2013.05.006. PubMed DOI
Boots E.A., Schultz S.A., Clark L.R., Racine A.M., Darst B.F., Koscik R.L., Carlsson C.M., Gallagher C.L., Hogan K.J., Bendlin B.B. BDNF Val66Met predicts cognitive decline in the Wisconsin Registry for Alzheimer’s Prevention. Neurology. 2017;88:2098–2106. doi: 10.1212/WNL.0000000000003980. PubMed DOI PMC
Xia H., Wang M., Li J.-Q., Tan C.-C., Cao X.-P., Tan L., Yu J.-T., Initiative A.s.D.N. The Influence of BDNF Val66Met Polymorphism on Cognition, Cerebrospinal Fluid, and Neuroimaging Markers in Non-Demented Elderly. J. Alzheimer’s Dis. 2019;68:405–414. doi: 10.3233/JAD-180971. PubMed DOI
Lim Y.Y., Hassenstab J., Cruchaga C., Goate A., Fagan A.M., Benzinger T.L., Maruff P., Snyder P.J., Masters C.L., Allegri R. BDNF Val66Met moderates memory impairment, hippocampal function and tau in preclinical autosomal dominant Alzheimer’s disease. Brain. 2016;139:2766–2777. doi: 10.1093/brain/aww200. PubMed DOI PMC
Forlenza O.V., Diniz B.S., Teixeira A.L., Ojopi E.B., Talib L.L., Mendonça V.A., Izzo G., Gattaz W.F. Effect of brain-derived neurotrophic factor Val66Met polymorphism and serum levels on the progression of mild cognitive impairment. World J. Biol. Psychiatry. 2010;11:774–780. doi: 10.3109/15622971003797241. PubMed DOI
Franzmeier N., Ren J., Damm A., Monté-Rubio G., Boada M., Ruiz A., Ramirez A., Jessen F., Düzel E., Gómez O.R. The BDNF Val66Met SNP modulates the association between beta-amyloid and hippocampal disconnection in Alzheimer’s disease. Mol. Psychiatry. 2019 doi: 10.1038/s41380-019-0404-6. PubMed DOI PMC
Lim Y.Y., Hassenstab J., Goate A., Fagan A.M., Benzinger T.L., Cruchaga C., McDade E., Chhatwal J., Levin J., Farlow M.R. Effect of BDNFVal66Met on disease markers in dominantly inherited Alzheimer’s disease. Ann. Neurol. 2018;84:424–435. doi: 10.1002/ana.25299. PubMed DOI PMC
Matsushita S., Arai H., Matsui T., Yuzuriha T., Urakami K., Masaki T., Higuchi S. Brain-derived neurotrophic factor gene polymorphisms and Alzheimer’s disease. J. Neural Transm. 2005;112:703–771. doi: 10.1007/s00702-004-0210-3. PubMed DOI
Ventriglia M., Chiavetto L.B., Benussi L., Binetti G., Zanetti O., Riva M., Gennarelli M. Association between the BDNF 196 A/G polymorphism and sporadic Alzheimer’s disease. Mol. Psychiatry. 2002;7:136–137. doi: 10.1038/sj.mp.4000952. PubMed DOI
Fehér Á., Juhász A., Rimanóczy Á., Kálmán J., Janka Z. Association between BDNF Val66Met polymorphism and Alzheimer disease, dementia with Lewy bodies, and Pick disease. Alzheimer Dis. Assoc. Disord. 2009;23:224–228. doi: 10.1097/WAD.0b013e318199dd7d. PubMed DOI
Corder E.H., Saunders A.M., Strittmatter W.J., Schmechel D.E., Gaskell P.C., Small G., Roses A., Haines J., Pericak-Vance M.A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261:921–923. doi: 10.1126/science.8346443. PubMed DOI
Neu S.C., Pa J., Kukull W., Beekly D., Kuzma A., Gangadharan P., Wang L.-S., Romero K., Arneric S.P., Redolfi A. Apolipoprotein E genotype and sex risk factors for Alzheimer disease: A meta-analysis. JAMA Neurol. 2017;74:1178–1189. doi: 10.1001/jamaneurol.2017.2188. PubMed DOI PMC
Kauppi K., Nilsson L.-G., Persson J., Nyberg L. Additive genetic effect of APOE and BDNF on hippocampus activity. Neuroimage. 2014;89:306–313. doi: 10.1016/j.neuroimage.2013.11.049. PubMed DOI
Gomar J.J., Conejero-Goldberg C., Huey E.D., Davies P., Goldberg T.E., Initiative A.s.D.N. Lack of neural compensatory mechanisms of BDNF val66met met carriers and APOE E4 carriers in healthy aging, mild cognitive impairment, and Alzheimer’s disease. Neurobiol. Aging. 2016;39:165–173. doi: 10.1016/j.neurobiolaging.2015.12.004. PubMed DOI PMC
Lim Y.Y., Villemagne V.L., Laws S.M., Pietrzak R., Snyder P., Ames D., Ellis K.A., Harrington K., Rembach A., Martins R.N. APOE and BDNF polymorphisms moderate amyloid β-related cognitive decline in preclinical Alzheimer’s disease. Mol. Psychiatry. 2015;20:1322–1328. doi: 10.1038/mp.2014.123. PubMed DOI PMC
Ward D.D., Summers M.J., Saunders N.L., Janssen P., Stuart K.E., Vickers J.C. APOE and BDNF Val66Met polymorphisms combine to influence episodic memory function in older adults. Behav. Brain Res. 2014;271:309–315. doi: 10.1016/j.bbr.2014.06.022. PubMed DOI
Cechova K., Andel R., Angelucci F., Chmatalova Z., Markova H., Laczó J., Vyhnalek M., Matoska V., Kaplan V., Nedelska Z. Impact of APOE and BDNF Val66Met Gene Polymorphisms on Cognitive Functions in Patients with Amnestic Mild Cognitive Impairment. J. Alzheimer’s Dis. 2020;73:247–257. doi: 10.3233/JAD-190464. PubMed DOI
Pietzuch M., King A.E., Ward D.D., Vickers J.C. The influence of genetic factors and cognitive reserve on structural and functional resting-state brain networks in aging and Alzheimer’s disease. Front. Aging Neurosci. 2019;11:30. doi: 10.3389/fnagi.2019.00030. PubMed DOI PMC
Livingston G., Sommerlad A., Orgeta V., Costafreda S.G., Huntley J., Ames D., Ballard C., Banerjee S., Burns A., Cohen-Mansfield J. Dementia prevention, intervention, and care. Lancet. 2017;390:2673–2734. doi: 10.1016/S0140-6736(17)31363-6. PubMed DOI
Norton S., Matthews F.E., Barnes D.E., Yaffe K., Brayne C. Potential for primary prevention of Alzheimer’s disease: An analysis of population-based data. Lancet Neurol. 2014;13:788–794. doi: 10.1016/S1474-4422(14)70136-X. PubMed DOI
Barnes D.E., Yaffe K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 2011;10:819–828. doi: 10.1016/S1474-4422(11)70072-2. PubMed DOI PMC
Pedersen B.K., Saltin B. Evidence for prescribing exercise as therapy in chronic disease. Scand. J. Med. Sci. Sports. 2006;16:3–63. doi: 10.1111/j.1600-0838.2006.00520.x. PubMed DOI
Alty J., Farrow M., Lawler K. Exercise and dementia prevention. Pract. Neurol. 2020 doi: 10.1136/practneurol-2019-002335. PubMed DOI
Neeper S.A., Gómez-Pinilla F., Choi J., Cotman C.W. Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res. 1996;726:49–56. doi: 10.1016/0006-8993(96)00273-9. PubMed DOI
Ickes B.R., Pham T.M., Sanders L.A., Albeck D.S., Mohammed A.H., Granholm A.-C. Long-term environmental enrichment leads to regional increases in neurotrophin levels in rat brain. Exp. Neurol. 2000;164:45–52. doi: 10.1006/exnr.2000.7415. PubMed DOI
Novkovic T., Mittmann T., Manahan-Vaughan D. BDNF contributes to the facilitation of hippocampal synaptic plasticity and learning enabled by environmental enrichment. Hippocampus. 2015;25:1–15. doi: 10.1002/hipo.22342. PubMed DOI
Stuart K.E., King A.E., Fernandez-Martos C.M., Dittmann J., Summers M.J., Vickers J.C. Mid-life environmental enrichment increases synaptic density in CA1 in a mouse model of Aβ-associated pathology and positively influences synaptic and cognitive health in healthy ageing. J. Comp. Neurol. 2017;525:1797–1810. doi: 10.1002/cne.24156. PubMed DOI
Vaynman S.S., Ying Z., Yin D., Gomez-Pinilla F. Exercise differentially regulates synaptic proteins associated to the function of BDNF. Brain Res. 2006;1070:124–130. doi: 10.1016/j.brainres.2005.11.062. PubMed DOI
Russo-Neustadt A., Ha T., Ramirez R., Kesslak J.P. Physical activity–antidepressant treatment combination: Impact on brain-derived neurotrophic factor and behavior in an animal model. Behav. Brain Res. 2001;120:87–95. doi: 10.1016/S0166-4328(00)00364-8. PubMed DOI
Szuhany K.L., Bugatti M., Otto M.W. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J. Psychiatr. Res. 2015;60:56–64. doi: 10.1016/j.jpsychires.2014.10.003. PubMed DOI PMC
Adlard P.A., Perreau V.M., Cotman C.W. The exercise-induced expression of BDNF within the hippocampus varies across life-span. Neurobiol. Aging. 2005;26:511–520. doi: 10.1016/j.neurobiolaging.2004.05.006. PubMed DOI
Tsai C.-L., Ukropec J., Ukropcová B., Pai M.-C. An acute bout of aerobic or strength exercise specifically modifies circulating exerkine levels and neurocognitive functions in elderly individuals with mild cognitive impairment. NeuroImage Clin. 2018;17:272–284. doi: 10.1016/j.nicl.2017.10.028. PubMed DOI PMC
Tsai C.-L., Pai M.-C., Ukropec J., Ukropcová B. Distinctive effects of aerobic and resistance exercise modes on neurocognitive and biochemical changes in individuals with mild cognitive impairment. Curr. Alzheimer Res. 2019;16:316–332. doi: 10.2174/1567205016666190228125429. PubMed DOI
Manuela Crispim Nascimento C., Rodrigues Pereira J., Pires de Andrade L., Garuffi M., Leme Talib L., Vicente Forlenza O., Maria Cancela J., Regina Cominetti M., Stella F. Physical exercise in MCI elderly promotes reduction of pro-inflammatory cytokines and improvements on cognition and BDNF peripheral levels. Curr. Alzheimer Res. 2014;11:799–805. doi: 10.2174/156720501108140910122849. PubMed DOI
Kim J.-M., Stewart R., Bae K.-Y., Kim S.-W., Yang S.-J., Park K.-H., Shin I.-S., Yoon J.-S. Role of BDNF val66met polymorphism on the association between physical activity and incident dementia. Neurobiol. Aging. 2011;32:551. doi: 10.1016/j.neurobiolaging.2010.01.018. PubMed DOI
Watts A., Andrews S.J., Anstey K.J. Sex differences in the impact of BDNF genotype on the longitudinal relationship between physical activity and cognitive performance. Gerontology. 2018;64:361–372. doi: 10.1159/000486369. PubMed DOI
Thibeau S., McFall G.P., Wiebe S.A., Anstey K.J., Dixon R.A. Genetic factors moderate everyday physical activity effects on executive functions in aging: Evidence from the Victoria Longitudinal Study. Neuropsychology. 2016;30:6. doi: 10.1037/neu0000217. PubMed DOI PMC
Brown B.M., Bourgeat P., Peiffer J.J., Burnham S., Laws S.M., Rainey-Smith S.R., Bartrés-Faz D., Villemagne V.L., Taddei K., Rembach A. Influence of BDNF Val66Met on the relationship between physical activity and brain volume. Neurology. 2014;83:1345–1352. doi: 10.1212/WNL.0000000000000867. PubMed DOI
Canivet A., Albinet C.T., André N., Pylouster J., Rodríguez-Ballesteros M., Kitzis A., Audiffren M. Effects of BDNF polymorphism and physical activity on episodic memory in the elderly: A cross sectional study. Eur. Rev. Aging Phys. Act. 2015;12:15. doi: 10.1186/s11556-015-0159-2. PubMed DOI PMC
Nascimento C.M.C., Pereira J.R., Pires de Andrade L., Garuffi M., Ayan C., Kerr D.S., Talib L.L., Cominetti M.R., Stella F. Physical exercise improves peripheral BDNF levels and cognitive functions in mild cognitive impairment elderly with different bdnf Val66Met genotypes. J. Alzheimer’s Dis. 2015;43:81–91. doi: 10.3233/JAD-140576. PubMed DOI
Erickson K.I., Banducci S.E., Weinstein A.M., MacDonald III A.W., Ferrell R.E., Halder I., Flory J.D., Manuck S.B. The brain-derived neurotrophic factor Val66Met polymorphism moderates an effect of physical activity on working memory performance. Psychol. Sci. 2013;24:1770–1779. doi: 10.1177/0956797613480367. PubMed DOI PMC
Helm E.E., Matt K.S., Kirschner K.F., Pohlig R.T., Kohl D., Reisman D.S. The influence of high intensity exercise and the Val66Met polymorphism on circulating BDNF and locomotor learning. Neurobiol. Learn. Mem. 2017;144:77–85. doi: 10.1016/j.nlm.2017.06.003. PubMed DOI PMC
Lindenberger U., Nagel I.E., Chicherio C., Li S.-C., Heekeren H.R., Bäckman L. Age-related decline in brain resources modulates genetic effects on cognitive functioning. Front. Neurosci. 2008;2:39. doi: 10.3389/neuro.01.039.2008. PubMed DOI PMC
Bozzali M., Dowling C., Serra L., Spanò B., Torso M., Marra C., Castelli D., Dowell N.G., Koch G., Caltagirone C. The impact of cognitive reserve on brain functional connectivity in Alzheimer’s disease. J. Alzheimer’s Dis. 2015;44:243–250. doi: 10.3233/JAD-141824. PubMed DOI
Liu Y., Julkunen V., Paajanen T., Westman E., Wahlund L.-O., Aitken A., Sobow T., Mecocci P., Tsolaki M., Vellas B. Education increases reserve against Alzheimer’s disease—Evidence from structural MRI analysis. Neuroradiology. 2012;54:929–938. doi: 10.1007/s00234-012-1005-0. PubMed DOI PMC
Stern Y. What is cognitive reserve? Theory and research application of the reserve concept. J. Int. Neuropsychol. Soc. 2002;8:448–460. doi: 10.1017/S1355617702813248. PubMed DOI
Stern Y. Cognitive reserve. Neuropsychologia. 2009;47:2015–2028. doi: 10.1016/j.neuropsychologia.2009.03.004. PubMed DOI PMC
Franzmeier N., Duering M., Weiner M., Dichgans M., Ewers M., Initiative A.s.D.N. Left frontal cortex connectivity underlies cognitive reserve in prodromal Alzheimer disease. Neurology. 2017;88:1054–1061. doi: 10.1212/WNL.0000000000003711. PubMed DOI PMC
Solé-Padullés C., Bartrés-Faz D., Junqué C., Vendrell P., Rami L., Clemente I.C., Bosch B., Villar A., Bargalló N., Jurado M.A. Brain structure and function related to cognitive reserve variables in normal aging, mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging. 2009;30:1114–1124. doi: 10.1016/j.neurobiolaging.2007.10.008. PubMed DOI
Ward D.D., Summers M.J., Saunders N., Ritchie K., Summers J., Vickers J. The BDNF Val66Met polymorphism moderates the relationship between cognitive reserve and executive function. Transl. Psychiatry. 2015;5:e590. doi: 10.1038/tp.2015.82. PubMed DOI PMC
Ward D.D., Andel R., Saunders N.L., Thow M.E., Klekociuk S.Z., Bindoff A.D., Vickers J.C. The BDNF Val66Met polymorphism moderates the effect of cognitive reserve on 36-month cognitive change in healthy older adults. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2017;3:323–331. doi: 10.1016/j.trci.2017.04.006. PubMed DOI PMC
Damirchi A., Hosseini F., Babaei P. Mental training enhances cognitive function and BDNF more than either physical or combined training in elderly women with MCI: A small-scale study. Am. J. Alzheimer’s Dis. Other Dement. 2018;33:20–29. doi: 10.1177/1533317517727068. PubMed DOI PMC
Pressler S.J., Titler M., Koelling T.M., Riley P.L., Jung M., Hoyland-Domenico L., Ronis D.L., Smith D.G., Bleske B.E., Dorsey S.G. Nurse-enhanced computerized cognitive training increases serum brain-derived neurotropic factor levels and improves working memory in heart failure. J. Card. Fail. 2015;21:630–641. doi: 10.1016/j.cardfail.2015.05.004. PubMed DOI
Thow M.E., Summers M.J., Saunders N.L., Summers J.J., Ritchie K., Vickers J.C. Further education improves cognitive reserve and triggers improvement in selective cognitive functions in older adults: The Tasmanian Healthy Brain Project. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2018;10:22–30. doi: 10.1016/j.dadm.2017.08.004. PubMed DOI PMC
Ward D.D., Summers M.J., Valenzuela M., Srikanth V., Summers J., King A., Ritchie K., Robinson A., Vickers J. Associations of Later-Life Education, the BDNF Val66Met Polymorphism and Cognitive Change in Older Adults. J. Prev. Alzheimer’s Dis. 2020;7:37–42. PubMed
Notaras M., van den Buuse M. Brain-derived neurotrophic factor (BDNF): Novel insights into regulation and genetic variation. Neuroscientist. 2019;25:434–454. doi: 10.1177/1073858418810142. PubMed DOI
Stuart K.E., King A.E., Fernandez-Martos C.M., Summers M.J., Vickers J.C. Environmental novelty exacerbates stress hormones and Aβ pathology in an Alzheimer’s model. Sci. Rep. 2017;7:2764. doi: 10.1038/s41598-017-03016-0. PubMed DOI PMC
Lin Y., Cheng S., Xie Z., Zhang D. Association of rs6265 and rs2030324 polymorphisms in brain-derived neurotrophic factor gene with Alzheimer’s disease: A meta-analysis. PLoS ONE. 2014;9:e94961. doi: 10.1371/journal.pone.0094961. PubMed DOI PMC
Petryshen T.L., Sabeti P.C., Aldinger K.A., Fry B., Fan J.B., Schaffner S., Waggoner S.G., Tahl A.R., Sklar P. Population genetic study of the brain-derived neurotrophic factor (BDNF) gene. Mol. Psychiatry. 2010;15:810–815. doi: 10.1038/mp.2009.24. PubMed DOI PMC
The Combined Effect of APOE and BDNF Val66Met Polymorphisms on Spatial Navigation in Older Adults