brain-derived neurotrophic factor
Dotaz
Zobrazit nápovědu
Multiple sclerosis (MS) is the most common cause of nontraumatic neurological disability in Europe and North America. Growth factor expression could participate in the repair process of the demyelinating disease. Among growth factors, brain derived neurotrophic factors (BDNF) has been demonstrated to play an important role in neuronal and axonal survival. In the central nervous system (CNS ), neurons are the main source of BDNF. Another potential source are activated astrocytes, which are present in inflamed areas in the CNS as shown in MS. In this study, total protein concentration (TPC) and BDNF levels in the cerebrospinal fluid (CS F) samples from the patients with MS (n = 48) and control subjects (n = 53) were measured using a Bio-Rad protein assay and enzyme linked immunosorbent assay (ELISA). No significant change in the CS F TPC of patients with MS was seen as compared to normal CS F. The presence of BDNF in the CS F samples was shown by Western blot. Using ELISA , it was shown that the level of BDNF in the MS CS F is higher than in normal CS F. It is concluded that BDNF is a constant component of human CS F. Moreover, it could be implicated in the pathophysiology of MS.
The aim of the study was to investigate the circulating levels of ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) in maternal serum and umbilical cord blood from respective pregnancies in pre-eclampsia (PE) cases and a control cohort. A total of 12 pre-eclampsia cases and 34 healthy controls were enrolled and the maternal peripheral blood - umbilical cord blood duos, were examined for BDNF and CNTF levels. BNDF levels were significantly higher in umbilical cord blood from pre-eclamptic pregnancies; there was also significant difference between maternal plasma and umbilical cord blood levels of BDNF (p < 0.001) in the controls. The CNTF levels in umbilical cord blood (CNTF-UCB) were significantly higher in PE cases than in the controls (p = 0.03). Significant differences were observed in expression of BDNF and CNTF proteins in maternal peripheral blood and umbilical cord blood between pre-eclampsia cases and healthy controls.
- MeSH
- biologické markery krev MeSH
- ciliární neurotrofický faktor krev MeSH
- dospělí MeSH
- fetální krev chemie MeSH
- gestační stáří MeSH
- lidé MeSH
- mladý dospělý MeSH
- mozkový neurotrofický faktor krev MeSH
- preeklampsie krev MeSH
- studie případů a kontrol MeSH
- těhotenství MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
AIMS: To investigate the therapeutic potential of visual stimulation (VS) and BDNF in murine experimental autoimmune uveoretinitis (EAU). MAIN METHODS: Mice were immunized by subcutaneous injection of interphotoreceptor retinoid-binding protein in Freund's complete adjuvant and intravenous injection of pertussis toxin, and were then exposed to high-contrast VS 12 h/day (days 1-14 post-immunization). EAU severity was assessed by examining clinical score, visual acuity, inflammatory markers, and immune cells in the retina. The transcriptome of activated retinal cells was determined by RNA-seq using RNA immunoprecipitated in complex with phosphorylated ribosomal protein S6. The retinal levels of protein products of relevant upregulated genes were quantified. The effect of BDNF on EAU was tested in unstimulated mice by its daily topical ocular administration (days 8-14 post-immunization). KEY FINDINGS: VS attenuated EAU development and decreased the expression of pro-inflammatory cytokines/chemokines and numbers of immune cells in the retina (n = 10-20 eyes/group for each analysis). In activated retinal cells of control mice (n = 30 eyes/group), VS upregulated genes encoding immunomodulatory neuropeptides, of which BDNF and vasoactive intestinal peptide (VIP) also showed increased mRNA and protein levels in the retina of VS-treated EAU mice (n = 6-10 eyes/group for each analysis). In unstimulated EAU mice, BDNF treatment mimicked the protective effects of VS by modulating the inflammatory and stem cell properties of Müller cells (n = 5 eyes/group for each analysis). SIGNIFICANCE: VS effectively suppresses EAU, at least through enhancing retinal levels of anti-inflammatory and neuroprotective factors, VIP and BDNF. Our findings also suggest BDNF as a promising therapeutic agent for uveitis treatment.
- MeSH
- autoimunitní nemoci * imunologie metabolismus MeSH
- cytokiny metabolismus MeSH
- modely nemocí na zvířatech MeSH
- mozkový neurotrofický faktor * metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- retina metabolismus účinky léků MeSH
- retinitida * farmakoterapie prevence a kontrola imunologie MeSH
- uveitida * metabolismus farmakoterapie imunologie MeSH
- vazoaktivní intestinální peptid farmakologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Soluble oligomeric forms of amyloid beta (Aβ) play an important role in causing the cognitive deficits in Alzheimer's disease (AD) by targeting and disrupting synaptic pathways. Thus, the present research is directed toward identifying the neuronal pathways targeted by soluble forms and, accordingly, develops alternative therapeutic strategies. The neurotrophin brain-derived neurotrophic factor (BDNF) is synthesized as a precursor (pro-BDNF) which is cleaved extracellularly by plasmin to release the mature form. The conversion from pro-BDNF to BDNF is an important process that regulates neuronal activity and memory processes. Plasmin-dependent maturation of BDNF in the brain is regulated by plasminogen activator inhibitor-1 (PAI-1), the natural inhibitor of tissue-type plasminogen activator (tPA). Therefore, tPA/PAI-1 system represents an important regulator of extracellular BDNF/pro-BDNF ratio. In this review, we summarize the data on the components of the plasminogen activation system and on BDNF in AD. Moreover, we will hypothesize a possible pathogenic mechanism caused by soluble Aβ forms based on the effects on tPA/PAI-1 system and on the consequence of an altered conversion from pro-BDNF to the mature BDNF in the brain of AD patients. Translation into clinic may include a better characterization of the disease stage and future direction on therapeutic targets.
- MeSH
- Alzheimerova nemoc diagnóza farmakoterapie metabolismus MeSH
- amyloidní beta-protein metabolismus MeSH
- extracelulární prostor účinky léků metabolismus MeSH
- lidé MeSH
- mozkový neurotrofický faktor metabolismus MeSH
- plazminogen metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
It is unknown whether the longer duration of vibration training (VT) has a beneficial effect on Parkinson's disease (PD). And also, the mechanisms underlying the reported sensorimotor-improvement in PD induced by short-duration of VT has not been determined. Here, we investigated the effects of longer duration (4 weeks) of low amplitude vibration (LAV) training on the numbers of dopaminergic neurons in the substantia nigra by immunostaining and the levels of dopamine (DA) and brain-derived neurotrophic factor (BDNF) in the striatum by HPLC and ELISA in the chronic MPTP lesion mouse. We demonstrated for the first time that the longer duration of VT could significantly increase the numbers of nigrostriatal DA neurons and the contents of striatal DA and BDNF in the MPTP mice. Our findings implied that longer duration of VT could protect dopaminergic neurons from the MPTP-induced damage probably by upregulating BDNF and also provided evidence for the beneficial effect of longer duration of VT on PD at the cellular and molecular level.
- MeSH
- 1-methyl-4-fenyl-1,2,3,6-tetrahydropyridin * MeSH
- časové faktory MeSH
- dopamin metabolismus MeSH
- dopaminergní neurony metabolismus MeSH
- mozkový neurotrofický faktor metabolismus MeSH
- myši inbrední C57BL MeSH
- parkinsonské poruchy chemicky indukované metabolismus patofyziologie terapie MeSH
- substantia nigra metabolismus patofyziologie MeSH
- upregulace MeSH
- vibrace * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We aimed to investigate the effects of brain-derived neurotrophic factor (BDNF) on apoptosis of intestinal epithelial cells (IECs) and alterations of intestinal barrier integrity using BDNF knock-out mice model. Colonic tissues from BDNF(+/+) mice and BDNF(+/-) mice were prepared for this study. The integrity of colonic mucosa was evaluated by measuring trans-mucosa electrical resistance and tissue conductance in Ussing chamber. The colonic epithelial structure was analyzed by transmission electron microscopy. Apoptosis involvement was determined with TUNEL staining, active caspase-3 immunostaining and Western blotting for the protein expression of active caspase-3, Bax and Bcl-2. The expression levels and distribution of tight junction proteins were evaluated by immunohistochemistry or Western blots. Compared with BDNF(+/+) mice, BDNF(+/-) mice displayed impaired integrity and ultrastructure alterations in their colonic mucosa, which was characterized by diminished microvilli, mitochondrial swelling and epithelial cells apoptosis. Altered intestinal barrier function was linked to excessive apoptosis of IECs demonstrated by the higher proportion of TUNEL-positive apoptotic cells and enhanced caspase activities in BDNF(+/-) mice. Increased expression of Bax and claudin-2 proteins and reduced Bcl-2 and tight junction proteins (occludin, ZO-1 and claudin-1) expression were also detected in the colonic mucosa of BDNF(+/-) mice. BDNF may play a role in the maintenance of intestinal barrier integrity via its anti-apoptotic properties.
- MeSH
- apoptóza * MeSH
- epitelové buňky fyziologie MeSH
- kaspasa 3 metabolismus MeSH
- mozkový neurotrofický faktor fyziologie MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- proteiny těsného spoje metabolismus MeSH
- střevní sliznice metabolismus ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The purpose of the present study was to investigate whether peripheral brain-derived neurotrophic factor (BDNF) treatment induced metabolic adaptations in mouse skeletal muscle. BDNF (20 mg/kg/day) was injected subcutaneously for successive 14 days. BDNF treatment significantly reduced the total food intake and inhibited the weight gain in comparison to the control group. The glucose transporter 4 (GLUT4) protein expression in the gastrocnemius muscle was significantly increased by BDNF treatment in comparison to the control and pair-fed groups. Neither the oxidative nor the glycolytic enzyme activities in the gastrocnemius muscle changed after the BDNF treatment. These results suggest that the peripheral BDNF treatment promotes the skeletal muscle GLUT4 protein expression as well as hypophagia.
- MeSH
- časové faktory MeSH
- financování organizované MeSH
- hmotnostní přírůstek účinky léků MeSH
- injekce subkutánní MeSH
- kosterní svaly enzymologie metabolismus účinky léků MeSH
- mozkový neurotrofický faktor aplikace a dávkování MeSH
- myši inbrední ICR MeSH
- myši MeSH
- přenašeč glukosy typ 4 metabolismus MeSH
- přijímání potravy účinky léků MeSH
- upregulace MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
Throughout development, neuronal progenitors undergo complex transformation into polarized nerve cells, warranting the directional flow of information in the neural grid. The majority of neuronal polarization studies have been carried out on rodent-derived precursor cells, programmed to develop into neurons. Unlike rodent neuronal cells, SH-SY5Y cells derived from human bone marrow present a sub-clone of neuroblastoma line, with their transformation into neuron-like cells showing a range of highly instructive neurobiological characteristics. We applied two-step retinoic acid (RA) and brain-derived neurotrophic factor (BDNF) protocol to monitor the conversion of undifferentiated SH-SY5Y into neuron-like cells with distinctly polarized axon-dendritic morphology and formation of bona fide synaptic connections. We show that BDNF is a key driver and regulator of the expression of axonal marker tau and dendritic microtubule-associated protein-2 (MAP2), with their sorting to distinct cellular compartments. Using selective kinase inhibitors downregulating BDNF-TrkB signaling, we demonstrate that constitutive activation of TrkB receptor is essential for the maintenance of established polarization morphology. Importantly, the proximity ligation assay applied in our preparation demonstrates that differentiating neuron-like cells develop elaborate synaptic connections enriched with hallmark pre- and postsynaptic proteins. Described herein findings highlight several fundamental processes related to neuronal polarization and synaptogenesis in human-derived cells, which are of major relevance to neurobiology and translational neuroscience.
- MeSH
- biologické markery MeSH
- buněčná diferenciace genetika MeSH
- lidé MeSH
- mozkový neurotrofický faktor genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- neuroblastom genetika metabolismus patologie MeSH
- neurogeneze genetika MeSH
- neurony cytologie metabolismus MeSH
- reaktivní formy kyslíku MeSH
- signální transdukce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
CONTEXT: Human NR5A1/SF-1 mutations cause 46,XY disorder of sex development (DSD) with broad phenotypic variability, and rarely cause adrenal insufficiency although SF-1 is an important transcription factor for many genes involved in steroidogenesis. In addition, the Sf-1 knockout mouse develops obesity with age. Obesity might be mediated through Sf-1 regulating activity of brain-derived neurotrophic factor (BDNF), an important regulator of energy balance in the ventromedial hypothalamus. OBJECTIVE: To characterize novel SF-1 gene variants in 4 families, clinical, genetic and functional studies were performed with respect to steroidogenesis and energy balance. PATIENTS: 5 patients with 46,XY DSD were found to harbor NR5A1/SF-1 mutations including 2 novel variations. One patient harboring a novel mutation also suffered from adrenal insufficiency. METHODS: SF-1 mutations were studied in cell systems (HEK293, JEG3) for impact on transcription of genes involved in steroidogenesis (CYP11A1, CYP17A1, HSD3B2) and in energy balance (BDNF). BDNF regulation by SF-1 was studied by promoter assays (JEG3). RESULTS: Two novel NR5A1/SF-1 mutations (Glu7Stop, His408Profs*159) were confirmed. Glu7Stop is the 4th reported SF-1 mutation causing DSD and adrenal insufficiency. In vitro studies revealed that transcription of the BDNF gene is regulated by SF-1, and that mutant SF-1 decreased BDNF promoter activation (similar to steroid enzyme promoters). However, clinical data from 16 subjects carrying SF-1 mutations showed normal birth weight and BMI. CONCLUSIONS: Glu7Stop and His408Profs*159 are novel SF-1 mutations identified in patients with 46,XY DSD and adrenal insufficiency (Glu7Stop). In vitro, SF-1 mutations affect not only steroidogenesis but also transcription of BDNF which is involved in energy balance. However, in contrast to mice, consequences on weight were not found in humans with SF-1 mutations.
- MeSH
- energetický metabolismus fyziologie MeSH
- HEK293 buňky MeSH
- lidé MeSH
- mozkový neurotrofický faktor fyziologie MeSH
- mutace * MeSH
- nádorové buněčné linie MeSH
- rodokmen MeSH
- steroidogenní faktor 1 genetika MeSH
- steroidy biosyntéza MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH