Antibacterial Activity and Chemical Composition of Popular Plant Essential Oils and Their Positive Interactions in Combination
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
40363671
PubMed Central
PMC12073528
DOI
10.3390/molecules30091864
PII: molecules30091864
Knihovny.cz E-zdroje
- Klíčová slova
- Escherichia coli, Staphylococcus aureus, essential oil/GC-MS/MS, fractional inhibitory concentration, minimal inhibition concentration,
- MeSH
- antibakteriální látky * farmakologie chemie MeSH
- Escherichia coli účinky léků MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- oleje prchavé * farmakologie chemie MeSH
- oleje rostlin * farmakologie chemie MeSH
- Staphylococcus aureus účinky léků MeSH
- synergismus léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky * MeSH
- oleje prchavé * MeSH
- oleje rostlin * MeSH
Bacterial diseases are a global problem that threatens human health and cause many deaths each year. The alarming rise in bacterial resistance to modern antimicrobials is particularly concerning. In practice, this necessitates increasing the dosage of antimicrobial agents, posing a potential risk of adverse effects on human health. Additionally, the development of antibiotic resistance is one of the main factors contributing to the ever-growing costs of the global healthcare system. For these reasons, natural and safe antimicrobial agents are increasingly sought after. In this study, the antibacterial activity of 31 different essential oils (EOs) was investigated against Escherichia coli and Staphylococcus aureus. The most effective EOs were further tested both individually and in dual combinations. Minimum inhibitory concentrations (MICs) and fractional inhibitory concentrations (FICs) were determined to reveal synergistic effects, suggesting potential practical applications. The main bioactive compounds of the EOs with the highest inhibitory activity were identified and quantified using GC-MS/MS analysis. Of the tested EOs, seven demonstrated a strong antimicrobial effect against E. coli, most notably oregano (MIC 128 µg/mL) and the thyme/oregano combination (MIC 64 µg/mL, FIC 0.75), while thirteen were effective against S. aureus, most notably oregano and garlic (MIC 128 µg/mL),and the pelargonium/garlic combination (MIC 32 µg/mL, FIC 0.375). The pharmaceutical, agricultural, and food industries are promising fields for the application of these safe and natural antimicrobial agents, offering a new range of solutions to combat serious bacterial pathogens.
1 Aromaterapeuticka KH a s Ksice 11 349 01 Tachov Czech Republic
Crop Research Institute Drnovska 507 161 06 Praha Czech Republic
Institute of Entomology Biology Centre CAS Branisovska 31 370 05 Ceske Budejovice Czech Republic
Zobrazit více v PubMed
Rees G., Barrett D.C., Sánchez-Vizcaíno F., Reyher K. Measuring Antimicrobial Use on Dairy Farms: A Method Comparison Cohort Study. J. Dairy Sci. 2021;104:4715–4726. doi: 10.3168/jds.2020-18690. PubMed DOI
Caniça M., Manageiro V., Abriouel H., Moran-Gilad J., Franz C.M. Antibiotic Resistance in Foodborne Bacteria. Trends Food Sci. Technol. 2019;84:41–44. doi: 10.1016/j.tifs.2018.08.001. DOI
Ghernaout D., Elboughdiri N. Antibiotics Resistance in Water Mediums: Background, Facts, and Trends. Appl. Eng. 2020;4:1–6.
Hiltunen T., Virta M., Laine A.-L. Antibiotic Resistance in the Wild: An Eco-Evolutionary Perspective. Philos. Trans. R. Soc. B Biol. Sci. 2017;372:20160039. doi: 10.1098/rstb.2016.0039. PubMed DOI PMC
García-Salinas S., Elizondo-Castillo H., Arruebo M., Mendoza G., Irusta S. Evaluation of the Antimicrobial Activity and Cytotoxicity of Different Components of Natural Origin Present in Essential Oils. Molecules. 2018;23:1399. doi: 10.3390/molecules23061399. PubMed DOI PMC
Dadgostar P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019;12:3903–3910. doi: 10.2147/IDR.S234610. PubMed DOI PMC
Burt S. Essential Oils: Their Antibacterial Properties and Potential Applications in Foods—A Review. Int. J. Food Microbiol. 2004;94:223–253. doi: 10.1016/j.ijfoodmicro.2004.03.022. PubMed DOI
Pavela R., Benelli G. Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints. Trends Plant Sci. 2016;21:1000–1007. doi: 10.1016/j.tplants.2016.10.005. PubMed DOI
Perricone M., Arace E., Corbo M.R., Sinigaglia M., Bevilacqua A. Bioactivity of Essential Oils: A Review on Their Interaction with Food Components. Front. Microbiol. 2015;6:76. doi: 10.3389/fmicb.2015.00076. PubMed DOI PMC
Bakkali F., Averbeck S., Averbeck D., Idaomar M. Biological Effects of Essential Oils–a Review. Food Chem. Toxicol. 2008;46:446–475. doi: 10.1016/j.fct.2007.09.106. PubMed DOI
Adrar N., Oukil N., Bedjou F. Antioxidant and Antibacterial Activities of Thymus Numidicus and Salvia Officinalis Essential Oils Alone or in Combination. Ind. Crops Prod. 2016;88:112–119. doi: 10.1016/j.indcrop.2015.12.007. DOI
Chantawannakul P., Puchanichanthranon T., Wongsiri S. Inhibitory Effects of Some Medicinal Plant Extracts on the Growth of Ascosphaera Apis; Proceedings of the III WOCMAP Congress on Medicinal and Aromatic Plants-Volume 4: Targeted Screening of Medicinal and Aromatic Plants Economics and Law; Chiang Mai, Thailand. 3–7 February 2003; pp. 183–189.
Lambert R., Skandamis P.N., Coote P.J., Nychas G. A Study of the Minimum Inhibitory Concentration and Mode of Action of Oregano Essential Oil, Thymol and Carvacrol. J. Appl. Microbiol. 2001;91:453–462. doi: 10.1046/j.1365-2672.2001.01428.x. PubMed DOI
Abdallah F.B., Lagha R., Gaber A. Biofilm Inhibition and Eradication Properties of Medicinal Plant Essential Oils against Methicillin-Resistant Staphylococcus Aureus Clinical Isolates. Pharmaceuticals. 2020;13:369. doi: 10.3390/ph13110369. PubMed DOI PMC
Oussalah M., Caillet S., Saucier L., Lacroix M. Inhibitory Effects of Selected Plant Essential Oils on the Growth of Four Pathogenic Bacteria: E. Coli O157: H7, Salmonella Typhimurium, Staphylococcus Aureus and Listeria Monocytogenes. Food Control. 2007;18:414–420. doi: 10.1016/j.foodcont.2005.11.009. DOI
Thielmann J., Muranyi P., Kazman P. Screening Essential Oils for Their Antimicrobial Activities against the Foodborne Pathogenic Bacteria Escherichia Coli and Staphylococcus Aureus. Heliyon. 2019;5:e01860. doi: 10.1016/j.heliyon.2019.e01860. PubMed DOI PMC
Hyldgaard M., Mygind T., Meyer R.L. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Front. Microbiol. 2012;3:12. doi: 10.3389/fmicb.2012.00012. PubMed DOI PMC
Mikulášová M., Chovanová R., Vaverková Š. Synergism between Antibiotics and Plant Extracts or Essential Oils with Efflux Pump Inhibitory Activity in Coping with Multidrug-Resistant Staphylococci. Phytochem. Rev. 2016;15:651–662. doi: 10.1007/s11101-016-9458-0. DOI
Apolónio J., Faleiro M.L., Miguel M.G., Neto L. No Induction of Antimicrobial Resistance in Staphylococcus Aureus and Listeria Monocytogenes during Continuous Exposure to Eugenol and Citral. FEMS Microbiol. Lett. 2014;354:92–101. doi: 10.1111/1574-6968.12440. PubMed DOI
Li X., He T., Wang X., Shen M., Yan X., Fan S., Wang L., Wang X., Xu X., Sui H., et al. Traditional Uses, Chemical Constituents and Biological Activities of Plants from the Genus Thymus. Chem. Biodivers. 2019;19:e1900254. doi: 10.1002/cbdv.201900254. PubMed DOI
Khwaza V., Aderibigbe B.A. Antibacterial Activity of Selected Essential Oil Components and Their Derivatives: A Review. Antibiotics. 2025;14:68. doi: 10.3390/antibiotics14010068. PubMed DOI PMC
Gutierrez J., Barry-Ryan C., Bourke P. The Antimicrobial Efficacy of Plant Essential Oil Combinations and Interactions with Food Ingredients. Int. J. Food Microbiol. 2008;124:91–97. doi: 10.1016/j.ijfoodmicro.2008.02.028. PubMed DOI
Mutlu-Ingok A., Tasir S., Seven A., Akgun N., Karbancioglu-Guler F. Evaluation of the Single and Combined Antibacterial Efficiency of Essential Oils for Controlling Campylobacter Coli, Campylobacter Jejuni, Escherichia Coli, Staphylococcus Aureus, and Mixed Cultures. Flavour Fragr. J. 2019;34:280–287. doi: 10.1002/ffj.3501. DOI
Brazel M., Desai A., Are A., Motaparthi K. Staphylococcal Scalded Skin Syndrome and Bullous Impetigo. Medicina. 2021;57:1157. doi: 10.3390/medicina57111157. PubMed DOI PMC
Greenwood D., Slack R.C., Barer M.R., Irving W.L. Medical Microbiology E-Book: A Guide to Microbial Infections: Pathogenesis, Immunity, Laboratory Diagnosis and Control. Elsevier Health Sciences; London, UK: 2012. with STUDENT CONSULT Online Access.
Johnson J.R., Russo T.A. Extraintestinal Pathogenic Escherichia Coli:“The Other Bad E Coli”. J. Lab. Clin. Med. 2002;139:155–162. doi: 10.1067/mlc.2002.121550. PubMed DOI
Penha C.B., Bonin E., da Silva A.F., Hioka N., Zanqueta É.B., Nakamura T.U., de Abreu Filho B.A., Campanerut-Sá P.A.Z., Mikcha J.M.G. Photodynamic Inactivation of Foodborne and Food Spoilage Bacteria by Curcumin. LWT-Food Sci. Technol. 2017;76:198–202. doi: 10.1016/j.lwt.2016.07.037. DOI
Darbre P.D., Harvey P.W. Parabens Can Enable Hallmarks and Characteristics of Cancer in Human Breast Epithelial Cells: A Review of the Literature with Reference to New Exposure Data and Regulatory Status. J. Appl. Toxicol. 2014;34:925–938. doi: 10.1002/jat.3027. PubMed DOI
Mei J., Ma X., Xie J. Review on Natural Preservatives for Extending Fish Shelf Life. Foods. 2019;8:490. doi: 10.3390/foods8100490. PubMed DOI PMC
Song P., Wu L., Guan W. Dietary Nitrates, Nitrites, and Nitrosamines Intake and the Risk of Gastric Cancer: A Meta-Analysis. Nutrients. 2015;7:9872–9895. doi: 10.3390/nu7125505. PubMed DOI PMC
El Atki Y., Aouam I., El Kamari F., Taroq A., Nayme K., Timinouni M., Lyoussi B., Abdellaoui A. Antibacterial Activity of Cinnamon Essential Oils and Their Synergistic Potential with Antibiotics. J. Adv. Pharm. Technol. Res. 2019;10:63. doi: 10.4103/japtr.JAPTR_366_18. PubMed DOI PMC
Yap P.S.X., Lim S.H.E., Hu C.P., Yiap B.C. Combination of Essential Oils and Antibiotics Reduce Antibiotic Resistance in Plasmid-Conferred Multidrug Resistant Bacteria. Phytomedicine. 2013;20:710–713. doi: 10.1016/j.phymed.2013.02.013. PubMed DOI
Sales J.A., Pashazadeh M. Study of Chemical Composition and Antimicrobial Properties of Rosemary (Rosmarinus Officinalis) Essential Oil on Staphylococcus Aureus and Escherichia Coli in Vitro. Int. J. Life Sci. Biotechnol. 2020;3:62–69. doi: 10.38001/ijlsb.693371. DOI
Nazzaro F., Fratianni F., De Martino L., Coppola R., De Feo V. Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals. 2013;6:1451–1474. doi: 10.3390/ph6121451. PubMed DOI PMC
Langeveld W.T., Veldhuizen E.J., Burt S.A. Synergy between Essential Oil Components and Antibiotics: A Review. Crit. Rev. Microbiol. 2014;40:76–94. doi: 10.3109/1040841X.2013.763219. PubMed DOI
Raikwar G., Kumar D., Mohan S., Dahiya P. Synergistic Potential of Essential Oils with Antibiotics for Antimicrobial Resistance with Emphasis on Mechanism of Action: A Review. Biocatal. Agric. Biotechnol. 2024;61:103384. doi: 10.1016/j.bcab.2024.103384. DOI
Zhang L., Virgous C., Si H. Synergistic Anti-Inflammatory Effects and Mechanisms of Combined Phytochemicals. J. Nutr. Biochem. 2019;69:19–30. doi: 10.1016/j.jnutbio.2019.03.009. PubMed DOI
Ayari S., Shankar S., Follett P., Hossain F., Lacroix M. Potential Synergistic Antimicrobial Efficiency of Binary Combinations of Essential Oils against Bacillus Cereus and Paenibacillus Amylolyticus-Part A. Microb. Pathog. 2020;141:104008. doi: 10.1016/j.micpath.2020.104008. PubMed DOI
Sakkas H., Papadopoulou C. Antimicrobial Activity of Basil, Oregano, and Thyme Essential Oils. J. Microbiol. Biotechnol. 2017;27:429–438. doi: 10.4014/jmb.1608.08024. PubMed DOI
Cáceres M., Hidalgo W., Stashenko E., Torres R., Ortiz C. Essential Oils of Aromatic Plants with Antibacterial, Anti-Biofilm and Anti-Quorum Sensing Activities against Pathogenic Bacteria. Antibiotics. 2020;9:147. doi: 10.3390/antibiotics9040147. PubMed DOI PMC
Sharopov F.S., Zhang H., Setzer W.N. Composition of Geranium (Pelargonium Graveolens) Essential Oil from Tajikistan. Am. J. Essent. Oils Nat. Prod. 2014;2:13–16.
Rosato A., Vitali C., De Laurentis N., Armenise D., Milillo M.A. Antibacterial Effect of Some Essential Oils Administered Alone or in Combination with Norfloxacin. Phytomedicine. 2007;14:727–732. doi: 10.1016/j.phymed.2007.01.005. PubMed DOI
Bigos M., Wasiela M., Kalemba D., Sienkiewicz M. Antimicrobial Activity of Geranium Oil against Clinical Strains of Staphylococcus Aureus. Molecules. 2012;17:10276–10291. doi: 10.3390/molecules170910276. PubMed DOI PMC
Essid R., Hammami M., Gharbi D., Karkouch I., Hamouda T.B., Elkahoui S., Limam F., Tabbene O. Antifungal Mechanism of the Combination of Cinnamomum Verum and Pelargonium Graveolens Essential Oils with Fluconazole against Pathogenic Candida Strains. Appl. Microbiol. Biotechnol. 2017;101:6993–7006. doi: 10.1007/s00253-017-8442-y. PubMed DOI
Jeon J., Lee C., Lee H. Food Protective Effect of Geraniol and Its Congeners against Stored Food Mites. J. Food Prot. 2009;72:1468–1471. doi: 10.4315/0362-028X-72.7.1468. PubMed DOI
Prabuseenivasan S., Jayakumar M., Ignacimuthu S. In Vitro Antibacterial Activity of Some Plant Essential Oils. BMC Complement. Altern. Med. 2006;6:39. doi: 10.1186/1472-6882-6-39. PubMed DOI PMC
Kloucek P., Smid J., Flesar J., Havlik J., Titera D., Rada V., Drabek O., Kokoska L. In Vitro Inhibitory Activity of Essential Oil Vapors against Ascosphaera Apis. Nat. Prod. Commun. 2012;7:1934578X1200700237. doi: 10.1177/1934578X1200700237. PubMed DOI
Hýbl M., Bohatá A., Rádsetoulalová I., Kopecký M., Hoštičková I., Vaníčková A., Mráz P. Evaluating the Efficacy of 30 Different Essential Oils against Varroa Destructor and Honey Bee Workers (Apis mellifera) Insects. 2021;12:1045. doi: 10.3390/insects12111045. PubMed DOI PMC
Radünz M., da Trindade M.L.M., Camargo T.M., Radünz A.L., Borges C.D., Gandra E.A., Helbig E. Antimicrobial and Antioxidant Activity of Unencapsulated and Encapsulated Clove (Syzygium aromaticum, L.) Essential Oil. Food Chem. 2019;276:180–186. doi: 10.1016/j.foodchem.2018.09.173. PubMed DOI
Marchese A., Barbieri R., Coppo E., Orhan I.E., Daglia M., Nabavi S.F., Izadi M., Abdollahi M., Nabavi S.M., Ajami M. Antimicrobial Activity of Eugenol and Essential Oils Containing Eugenol: A Mechanistic Viewpoint. Crit. Rev. Microbiol. 2017;43:668–689. doi: 10.1080/1040841X.2017.1295225. PubMed DOI
Mraz P., Bohata A., Hostickova I., Kopecky M., Zabka M., Hybl M., Curn V. Inhibitory Effect of Selected Botanical Compounds on the Honey Bee Fungal Pathogen Ascosphaera Apis; Proceedings of the MendelNet; Brno, Czech Republic. 6–7 November 2019; pp. 6–7.
Mráz P., Žabka M., Hoštičková I., Kopecký M., Bohatá A., Tomčala A., Hýbl M. Effect of Selected Botanical Compounds on Ascosphaera Apis and Apis Mellifera. Ind. Crops Prod. 2023;197:116649. doi: 10.1016/j.indcrop.2023.116649. DOI
Choi Y., Woo S., Hong I., Han S., Byoun G., Thapa R., Lee M. Effects of Limonene Composition for Controlling of the Varroa Destructor and Tropilaelaps Clareae in Apis Mellifera Hives. Korean J. Apic. 2012;27:137–142.
Leite A.M., Lima E.d.O., Souza E.L.d., Diniz M.d.F.F.M., Trajano V.N., Medeiros I.A.d. Inhibitory Effect of Beta-Pinene, Alpha-Pinene and Eugenol on the Growth of Potential Infectious Endocarditis Causing Gram-Positive Bacteria. Rev. Bras. Ciências Farm. 2007;43:121–126. doi: 10.1590/S1516-93322007000100015. DOI
Hu W., Li C., Dai J., Cui H., Lin L. Antibacterial Activity and Mechanism of Litsea Cubeba Essential Oil against Methicillin-Resistant Staphylococcus Aureus (MRSA) Ind. Crops Prod. 2019;130:34–41. doi: 10.1016/j.indcrop.2018.12.078. DOI
Liu T.-T., Yang T.-S. Antimicrobial Impact of the Components of Essential Oil of Litsea Cubeba from Taiwan and Antimicrobial Activity of the Oil in Food Systems. Int. J. Food Microbiol. 2012;156:68–75. doi: 10.1016/j.ijfoodmicro.2012.03.005. PubMed DOI
Azevedo M., Chaves F., Almeida C.A., Bizzo H.R., Duarte R.S., Campos-Takaki G.M., Alviano C.S., Alviano D.S. Antioxidant and Antimicrobial Activities of 7-Hydroxy-Calamenene-Rich Essential Oils from Croton Cajucara Benth. Molecules. 2013;18:1128–1137. doi: 10.3390/molecules18011128. PubMed DOI PMC
Teixeira B., Marques A., Ramos C., Neng N.R., Nogueira J.M., Saraiva J.A., Nunes M.L. Chemical Composition and Antibacterial and Antioxidant Properties of Commercial Essential Oils. Ind. Crops Prod. 2013;43:587–595. doi: 10.1016/j.indcrop.2012.07.069. DOI
Wanner J., Schmidt E., Bail S., Jirovetz L., Buchbauer G., Gochev V., Girova T., Atanasova T., Stoyanova A. Chemical Composition, Olfactory Evaluation and Antimicrobial Activity of Selected Essential Oils and Absolutes from Morocco. Nat. Prod. Commun. 2010;5:1934578X1000500903. doi: 10.1177/1934578X1000500903. PubMed DOI
Bhatwalkar S.B., Mondal R., Krishna S.B.N., Adam J.K., Govender P., Anupam R. Antibacterial Properties of Organosulfur Compounds of Garlic (Allium Sativum) Front. Microbiol. 2021;12:613077. doi: 10.3389/fmicb.2021.613077. PubMed DOI PMC
Seydim A., Sarikus G. Antimicrobial Activity of Whey Protein Based Edible Films Incorporated with Oregano, Rosemary and Garlic Essential Oils. Food Res. Int. 2006;39:639–644. doi: 10.1016/j.foodres.2006.01.013. DOI
García-Díez J., Alheiro J., Pinto A.L., Soares L., Falco V., Fraqueza M.J., Patarata L. Influence of Food Characteristics and Food Additives on the Antimicrobial Effect of Garlic and Oregano Essential Oils. Foods. 2017;6:44. doi: 10.3390/foods6060044. PubMed DOI PMC
Kubec R., Svobodová M., Velíšek J. Gas Chromatographic Determination of S-Alk (En) Ylcysteine Sulfoxides. J. Chromatogr. A. 1999;862:85–94. doi: 10.1016/S0021-9673(99)00902-4. PubMed DOI
Malik T., Singh P., Pant S., Chauhan N., Lohani H. Potentiation of Antimicrobial Activity of Ciprofloxacin by Pelargonium Graveolens Essential Oil against Selected Uropathogens. Phytother. Res. 2011;25:1225–1228. doi: 10.1002/ptr.3479. PubMed DOI
Zhang H., Wang J. Constituents of the Essential Oils of Garlic and Citronella and Their Vapor-Phase Inhibition Mechanism against S. Aureus. Food Sci. Technol. Res. 2019;25:65–74. doi: 10.3136/fstr.25.65. DOI
Ji H., Kim H., Beuchat L.R., Ryu J.-H. Synergistic Antimicrobial Activities of Essential Oil Vapours against Penicillium Corylophilum on a Laboratory Medium and Beef Jerky. Int. J. Food Microbiol. 2019;291:104–110. doi: 10.1016/j.ijfoodmicro.2018.11.023. PubMed DOI
Ben Akacha B., Michalak M., Generalić Mekinić I., Kačániová M., Chaari M., Brini F., Ben Saad R., Mnif W., Garzoli S., Ben Hsouna A. Mixture Design of A-pinene, A-terpineol, and 1, 8-cineole: A Multiobjective Response Followed by Chemometric Approaches to Optimize the Antibacterial Effect against Various Bacteria and Antioxidant Activity. Food Sci. Nutr. 2024;12:574–589. doi: 10.1002/fsn3.3780. PubMed DOI PMC
Dorman H., Deans S.G. Antimicrobial Agents from Plants: Antibacterial Activity of Plant Volatile Oils. J. Appl. Microbiol. 2000;88:308–316. doi: 10.1046/j.1365-2672.2000.00969.x. PubMed DOI
Tang Y., Li F., Gu D., Wang W., Huang J., Jiao X. Antimicrobial Effect and the Mechanism of Diallyl Trisulfide against Campylobacter Jejuni. Antibiotics. 2021;10:246. doi: 10.3390/antibiotics10030246. PubMed DOI PMC
Liu Q., Niu H., Zhang W., Mu H., Sun C., Duan J. Synergy among Thymol, Eugenol, Berberine, Cinnamaldehyde and Streptomycin against Planktonic and Biofilm-associated Food-borne Pathogens. Lett. Appl. Microbiol. 2015;60:421–430. doi: 10.1111/lam.12401. PubMed DOI
Zhou F., Ji B., Zhang H., Jiang H., Yang Z., Li J., Li J., Yan W. The Antibacterial Effect of Cinnamaldehyde, Thymol, Carvacrol and Their Combinations against the Foodborne Pathogen Salmonella Typhimurium. J. Food Saf. 2007;27:124–133. doi: 10.1111/j.1745-4565.2007.00064.x. DOI
Cheng H., Khan M.A., Xie Z., Tao S., Li Y., Liang L. A Peppermint Oil Emulsion Stabilized by Resveratrol-Zein-Pectin Complex Particles: Enhancing the Chemical Stability and Antimicrobial Activity in Combination with the Synergistic Effect. Food Hydrocoll. 2020;103:105675. doi: 10.1016/j.foodhyd.2020.105675. DOI
Yang S.-K., Yap P.S.-X., Krishnan T., Yusoff K., Kok-Gan C., Yap W.-S., Kok-Song L., Swee-Hua E.L. Mode of Action: Synergistic Interaction of Peppermint (Mentha × Piperita L. Carl) Essential Oil and Meropenem Against Plasmid-Mediated Resistant E. Col Shun-Kai Yang, Polly Soo-Xi Yap, Thiba Krishnan, Khatijah Yusoff, Kok-Gan Chan, Wai-Sum Yap, Kok-Song Lai and Swee-Hua Erin Lim. Rec. Nat. Prod. 2018;12:582.
Basavegowda N., Baek K.-H. Combination Strategies of Different Antimicrobials: An Efficient and Alternative Tool for Pathogen Inactivation. Biomedicines. 2022;10:2219. doi: 10.3390/biomedicines10092219. PubMed DOI PMC
Kosakowska O., Węglarz Z., Styczyńska S., Synowiec A., Gniewosz M., Bączek K. Activity of Common Thyme (Thymus vulgaris L.), Greek Oregano (Origanum vulgare L. ssp. Hirtum), and Common Oregano (Origanum vulgare L. ssp. Vulgare) Essential Oils against Selected Phytopathogens. Molecules. 2024;29:4617. doi: 10.3390/molecules29194617. PubMed DOI PMC