Discovery of Unusual Cyanobacterial Tryptophan-Containing Anabaenopeptins by MS/MS-Based Molecular Networking
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-17868Y
Grantová Agentura České Republiky
CZ.02.2.69/0.0/0.0/18_070/0010493
Ministerstvo Školství, Mládeže a Tělovýchovy
Campania Oncoterapie No. B61G18000470007.
Regione Campania
PubMed
32825321
PubMed Central
PMC7503407
DOI
10.3390/molecules25173786
PII: molecules25173786
Knihovny.cz E-zdroje
- Klíčová slova
- Brasilonema, anabaenopeptins, antiproliferative activity, hexapeptides, molecular networking, tryptophan-containing peptides,
- MeSH
- cyklické peptidy * chemie genetika izolace a purifikace farmakologie MeSH
- HeLa buňky MeSH
- hmotnostní spektrometrie MeSH
- lidé MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- proliferace buněk účinky léků MeSH
- sinice * chemie genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cyklické peptidy * MeSH
Heterocytous cyanobacteria are among the most prolific sources of bioactive secondary metabolites, including anabaenopeptins (APTs). A terrestrial filamentous Brasilonema sp. CT11 collected in Costa Rica bamboo forest as a black mat, was studied using a multidisciplinary approach: genome mining and HPLC-HRMS/MS coupled with bioinformatic analyses. Herein, we report the nearly complete genome consisting of 8.79 Mbp with a GC content of 42.4%. Moreover, we report on three novel tryptophan-containing APTs; anabaenopeptin 788 (1), anabaenopeptin 802 (2), and anabaenopeptin 816 (3). Furthermore, the structure of two homologues, i.e., anabaenopeptin 802 (2a) and anabaenopeptin 802 (2b), was determined by spectroscopic analysis (NMR and MS). Both compounds were shown to exert weak to moderate antiproliferative activity against HeLa cell lines. This study also provides the unique and diverse potential of biosynthetic gene clusters and an assessment of the predicted chemical space yet to be discovered from this genus.
Institute of Botany of the Czech Academy of Sciences 252 43 Průhonice Czech Republic
Task Force Big Fed2 The Blue Chemistry lab Università degli Studi di Napoli 80131 Napoli Italy
Zobrazit více v PubMed
Mazard S., Penesyan A., Ostrowski M., Paulsen I.T., Egan S. Tiny Microbes with a Big Impact: The Role of Cyanobacteria and Their Metabolites in Shaping Our Future. Mar. Drugs. 2016;14:97. doi: 10.3390/md14050097. PubMed DOI PMC
Schirrmeister B.E., Antonelli A., Bagheri H.C. The origin of multicellularity in cyanobacteria. BMC Evol. Biol. 2011;11:45. doi: 10.1186/1471-2148-11-45. PubMed DOI PMC
Demay J., Bernard C., Reinhardt A., Marie B. Natural Products from Cyanobacteria: Focus on Beneficial Activities. Mar. Drugs. 2019;17:320. doi: 10.3390/md17060320. PubMed DOI PMC
Dittmann E., Gugger M., Sivonen K., Fewer D.P. Natural Product Biosynthetic Diversity and Comparative Genomics of the Cyanobacteria. Trends Microbiol. 2015;23:642–652. doi: 10.1016/j.tim.2015.07.008. PubMed DOI
Saurav K., Macho M., Kust A., Delawska K., Hajek J., Hrouzek P. Antimicrobial activity and bioactive profiling of heterocytous cyanobacterial strains using MS/MS-based molecular networking. Folia Microbiol. (Praha) 2019;64:645–654. doi: 10.1007/s12223-019-00737-9. PubMed DOI
Mares J., Hajek J., Urajova P., Kust A., Jokela J., Saurav K., Galica T., Capkova K., Mattila A., Haapaniemi E., et al. Alternative Biosynthetic Starter Units Enhance the Structural Diversity of Cyanobacterial Lipopeptides. Appl. Env. Microbiol. 2019;85 doi: 10.1128/AEM.02675-18. PubMed DOI PMC
Kust A., Mares J., Jokela J., Urajova P., Hajek J., Saurav K., Voracova K., Fewer D.P., Haapaniemi E., Permi P., et al. Discovery of a Pederin Family Compound in a Nonsymbiotic Bloom-Forming Cyanobacterium. Acs Chem. Biol. 2018;13:1123–1129. doi: 10.1021/acschembio.7b01048. PubMed DOI
Teta R., Romano V., Sala G.D., Picchio S., Sterlich C.D., Mangoni A., Tullio G.D., Costantino V., Lega M. Cyanobacteria as indicators of water quality in Campania coasts, Italy: A monitoring strategy combining remote/proximal sensing and in situ data. Environ. Res. Lett. 2017;12:024001. doi: 10.1088/1748-9326/aa5649. DOI
Esposito G., Teta R., Marrone R., De Sterlich C., Casazza M., Anastasio A., Lega M., Costantino V. A Fast Detection Strategy for Cyanobacterial blooms and associated cyanotoxins (FDSCC) reveals the occurrence of lyngbyatoxin A in campania (South Italy) Chemosphere. 2019;225:342–351. doi: 10.1016/j.chemosphere.2019.02.201. PubMed DOI
Rezanka T., Dembitsky V.M. Metabolites produced by cyanobacteria belonging to several species of the family Nostocaceae. Folia Microbiol. (Praha) 2006;51:159–182. doi: 10.1007/BF02932119. PubMed DOI
Tan L.T. Filamentous tropical marine cyanobacteria: A rich source of natural products for anticancer drug discovery. J. Appl. Phycol. 2010;22:659–676. doi: 10.1007/s10811-010-9506-x. DOI
Jones A.C., Monroe E.A., Podell S., Hess W.R., Klages S., Esquenazi E., Niessen S., Hoover H., Rothmann M., Lasken R.S., et al. Genomic insights into the physiology and ecology of the marine filamentous cyanobacterium Lyngbya majuscula. Proc. Natl. Acad. Sci. USA. 2011;108:8815–8820. doi: 10.1073/pnas.1101137108. PubMed DOI PMC
Nunnery J.K., Mevers E., Gerwick W.H. Biologically active secondary metabolites from marine cyanobacteria. Curr. Opin. Biotechnol. 2010;21:787–793. doi: 10.1016/j.copbio.2010.09.019. PubMed DOI PMC
Zanchett G., Oliveira-Filho E.C. Cyanobacteria and cyanotoxins: From impacts on aquatic ecosystems and human health to anticarcinogenic effects. Toxins (Basel) 2013;5:1896–1917. doi: 10.3390/toxins5101896. PubMed DOI PMC
Caso A., Esposito G., Della Sala G., Pawlik J.R., Teta R., Mangoni A., Costantino V. Fast Detection of Two Smenamide Family Members Using Molecular Networking. Mar. Drugs. 2019;17:618. doi: 10.3390/md17110618. PubMed DOI PMC
Mohimani H., Gurevich A., Mikheenko A., Garg N., Nothias L.F., Ninomiya A., Takada K., Dorrestein P.C., Pevzner P.A. Dereplication of peptidic natural products through database search of mass spectra. Nat. Chem. Biol. 2017;13:30–37. doi: 10.1038/nchembio.2219. PubMed DOI PMC
Mohimani H., Gurevich A., Shlemov A., Mikheenko A., Korobeynikov A., Cao L., Shcherbin E., Nothias L.F., Dorrestein P.C., Pevzner P.A. Dereplication of microbial metabolites through database search of mass spectra. Nat. Commun. 2018;9:4035. doi: 10.1038/s41467-018-06082-8. PubMed DOI PMC
Quinn R.A., Nothias L.F., Vining O., Meehan M., Esquenazi E., Dorrestein P.C. Molecular Networking As a Drug Discovery, Drug Metabolism, and Precision Medicine Strategy. Trends Pharm. Sci. 2017;38:143–154. doi: 10.1016/j.tips.2016.10.011. PubMed DOI
Harada K.-i., Fujii K., Shimada T., Suzuki M., Sano H., Adachi K., Carmichael W.W. Two cyclic peptides, anabaenopeptins, a third group of bioactive compounds from the cyanobacterium Anabaena flos-aquae NRC 525-17. Tetrahedron Lett. 1995;36:1511–1514. doi: 10.1016/0040-4039(95)00073-L. DOI
Welker M., von Dohren H. Cyanobacterial peptides - nature’s own combinatorial biosynthesis. Fems. Microbiol. Rev. 2006;30:530–563. doi: 10.1111/j.1574-6976.2006.00022.x. PubMed DOI
Rounge T.B., Rohrlack T., Nederbragt A.J., Kristensen T., Jakobsen K.S. A genome-wide analysis of nonribosomal peptide synthetase gene clusters and their peptides in a Planktothrix rubescens strain. BMC Genom. 2009;10:396. doi: 10.1186/1471-2164-10-396. PubMed DOI PMC
Christiansen G., Philmus B., Hemscheidt T., Kurmayer R. Genetic Variation of Adenylation Domains of the Anabaenopeptin Synthesis Operon and Evolution of Substrate Promiscuity. J. Bacteriol. 2011;193:3822. doi: 10.1128/JB.00360-11. PubMed DOI PMC
Rouhiainen L., Jokela J., Fewer D.P., Urmann M., Sivonen K. Two alternative starter modules for the non-ribosomal biosynthesis of specific anabaenopeptin variants in Anabaena (Cyanobacteria) Chem. Biol. 2010;17:265–273. doi: 10.1016/j.chembiol.2010.01.017. PubMed DOI
Koketsu K., Mitsuhashi S., Tabata K. Identification of homophenylalanine biosynthetic genes from the cyanobacterium Nostoc punctiforme PCC73102 and application to its microbial production by Escherichia coli. Appl. Env. Microbiol. 2013;79:2201–2208. doi: 10.1128/AEM.03596-12. PubMed DOI PMC
Lima S., Alvarenga D., Etchegaray A., Fewer D., Jokela J., Varani A., Sanz M., Dörr F., Pinto E., Sivonen K., et al. Genetic Organization of Anabaenopeptin and Spumigin Biosynthetic Gene Clusters in the Cyanobacterium Sphaerospermopsis torques-reginae ITEP-024. Acs Chem. Biol. 2017;12:769–778. doi: 10.1021/acschembio.6b00948. PubMed DOI
Alvarenga D.O., Franco M.W., Sivonen K., Fiore M.F., Varani A.M. Evaluating Eucalyptus leaf colonization by Brasilonema octagenarum (Cyanobacteria, Scytonemataceae) using in planta experiments and genomics. PeerJ. 2020;8:e9158. doi: 10.7717/peerj.9158. PubMed DOI PMC
Fiore M.F., Sant’Anna C.L., Azevedo M.T.d.P., Komárek J., Kaštovský J., Sulek J., Lorenzi A.S. The cyanobacterial genus Brasilonema, gen. Nov., a molecular and phenotypic evaluation. J. Phycol. 2007;43:789–798. doi: 10.1111/j.1529-8817.2007.00376.x. DOI
Vaccarino M.A., Johansen J.R. Brasilonema angustatum sp. Nov. (nostocales), a new filamentous cyanobacterial species from the hawaiian islands. J. Phycol. 2012;48:1178–1186. doi: 10.1111/j.1529-8817.2012.01203.x. PubMed DOI
Villanueva C.D., Hašler P., Dvořák P., Poulíčková A., Casamatta D.A. Brasilonema lichenoides sp. nov. and Chroococcidiopsis lichenoides sp. nov. (Cyanobacteria): Two novel cyanobacterial constituents isolated from a tripartite lichen of headstones. J. Phycol. 2018;54:224–233. doi: 10.1111/jpy.12621. PubMed DOI
Sanz M., Andreote A.P., Fiore M.F., Dorr F.A., Pinto E. Structural Characterization of New Peptide Variants Produced by Cyanobacteria from the Brazilian Atlantic Coastal Forest Using Liquid Chromatography Coupled to Quadrupole Time-of-Flight Tandem Mass Spectrometry. Mar. Drugs. 2015;13:3892–3919. doi: 10.3390/md13063892. PubMed DOI PMC
Schmidt E.W., Harper M.K., Faulkner D.J. Mozamides A and B, Cyclic Peptides from a Theonellid Sponge from Mozambique. J. Nat. Prod. 1997;60:779–782. doi: 10.1021/np970195x. DOI
Blin K., Shaw S., Steinke K., Villebro R., Ziemert N., Lee S.Y., Medema M.H., Weber T. antiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47:W81–W87. doi: 10.1093/nar/gkz310. PubMed DOI PMC
Luesch H., Hoffmann D., Hevel J.M., Becker J.E., Golakoti T., Moore R.E. Biosynthesis of 4-methylproline in cyanobacteria: Cloning of nosE and nosF genes and biochemical characterization of the encoded dehydrogenase and reductase activities. J. Org. Chem. 2003;68:83–91. doi: 10.1021/jo026479q. PubMed DOI
Hoffmann D., Hevel J.M., Moore R.E., Moore B.S. Sequence analysis and biochemical characterization of the nostopeptolide A biosynthetic gene cluster from Nostoc sp. GSV224. Gene. 2003;311:171–180. doi: 10.1016/S0378-1119(03)00587-0. PubMed DOI
D’Agostino P.M., Gulder T.A.M. Direct Pathway Cloning Combined with Sequence- and Ligation-Independent Cloning for Fast Biosynthetic Gene Cluster Refactoring and Heterologous Expression. Acs Synth. Biol. 2018;7:1702–1708. doi: 10.1021/acssynbio.8b00151. PubMed DOI
May D.S., Chen W.L., Lantvit D.D., Zhang X., Krunic A., Burdette J.E., Eustaquio A., Orjala J. Merocyclophanes C and D from the Cultured Freshwater Cyanobacterium Nostoc sp. (UIC 10110) J. Nat. Prod. 2017;80:1073–1080. doi: 10.1021/acs.jnatprod.6b01175. PubMed DOI PMC
Gesner-Apter S., Carmeli S. Protease inhibitors from a water bloom of the cyanobacterium Microcystis aeruginosa. J. Nat. Prod. 2009;72:1429–1436. doi: 10.1021/np900340t. PubMed DOI
Spoof L., Blaszczyk A., Meriluoto J., Ceglowska M., Mazur-Marzec H. Structures and Activity of New Anabaenopeptins Produced by Baltic Sea Cyanobacteria. Mar. Drugs. 2015;14:8. doi: 10.3390/md14010008. PubMed DOI PMC
Mares J., Hajek J., Urajova P., Kopecky J., Hrouzek P. A hybrid non-ribosomal peptide/polyketide synthetase containing fatty-acyl ligase (FAAL) synthesizes the beta-amino fatty acid lipopeptides puwainaphycins in the Cyanobacterium Cylindrospermum alatosporum. PLoS ONE. 2014;9:e111904. doi: 10.1371/journal.pone.0111904. PubMed DOI PMC
Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D., et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC
Parks D.H., Imelfort M., Skennerton C.T., Hugenholtz P., Tyson G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–1055. doi: 10.1101/gr.186072.114. PubMed DOI PMC
Kessner D., Chambers M., Burke R., Agus D., Mallick P. ProteoWizard: Open source software for rapid proteomics tools development. Bioinformatics. 2008;24:2534–2536. doi: 10.1093/bioinformatics/btn323. PubMed DOI PMC
Wang M., Carver J.J., Phelan V.V., Sanchez L.M., Garg N., Peng Y., Nguyen D.D., Watrous J., Kapono C.A., Luzzatto-Knaan T., et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016;34:828–837. doi: 10.1038/nbt.3597. PubMed DOI PMC
Saurav K., Borbone N., Burgsdorf I., Teta R., Caso A., Bar-Shalom R., Esposito G., Britstein M., Steindler L., Costantino V. Identification of Quorum Sensing Activators and Inhibitors in The Marine Sponge Sarcotragus spinosulus. Mar. Drugs. 2020;18:127. doi: 10.3390/md18020127. PubMed DOI PMC
Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. PubMed DOI