Identification of Quorum Sensing Activators and Inhibitors in The Marine Sponge Sarcotragus spinosulus
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
1243/16
Israel Science Foundation
B61G18000470007
Regione Campania
2015-2018
Planning and Budgeting Committee of the Council for Higher Education of Israel
PubMed
32093216
PubMed Central
PMC7074164
DOI
10.3390/md18020127
PII: md18020127
Knihovny.cz E-resources
- Keywords
- 3-bromo-4-methoxyphenethylamine, 5,6-dibromo-N,N-dimethyltryptamine, N-acyl homoserine lactone, Sarcotragus spinosulus, quorum sensing, quorum sensing inhibition, sponge,
- MeSH
- Escherichia coli drug effects physiology MeSH
- Virulence Factors MeSH
- Phylogeny MeSH
- Luminescent Measurements MeSH
- Porifera genetics metabolism microbiology MeSH
- Peptide Hydrolases chemistry pharmacology MeSH
- Pyocyanine chemistry pharmacology MeSH
- Quorum Sensing drug effects MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Virulence Factors MeSH
- Peptide Hydrolases MeSH
- Pyocyanine MeSH
Marine sponges, a well-documented prolific source of natural products, harbor highly diverse microbial communities. Their extracts were previously shown to contain quorum sensing (QS) signal molecules of the N-acyl homoserine lactone (AHL) type, known to orchestrate bacterial gene regulation. Some bacteria and eukaryotic organisms are known to produce molecules that can interfere with QS signaling, thus affecting microbial genetic regulation and function. In the present study, we established the production of both QS signal molecules as well as QS inhibitory (QSI) molecules in the sponge species Sarcotragus spinosulus. A total of eighteen saturated acyl chain AHLs were identified along with six unsaturated acyl chain AHLs. Bioassay-guided purification led to the isolation of two brominated metabolites with QSI activity. The structures of these compounds were elucidated by comparative spectral analysis of 1HNMR and HR-MS data and were identified as 3-bromo-4-methoxyphenethylamine (1) and 5,6-dibromo-N,N-dimethyltryptamine (2). The QSI activity of compounds 1 and 2 was evaluated using reporter gene assays for long- and short-chain AHL signals (Escherichia coli pSB1075 and E. coli pSB401, respectively). QSI activity was further confirmed by measuring dose-dependent inhibition of proteolytic activity and pyocyanin production in Pseudomonas aeruginosa PAO1. The obtained results show the coexistence of QS and QSI in S. spinosulus, a complex signal network that may mediate the orchestrated function of the microbiome within the sponge holobiont.
See more in PubMed
Rasko D.A., Sperandio V. Anti-virulence strategies to combat bacteria-mediated disease. Nat. Rev. Drug Discov. 2010;9:117–128. doi: 10.1038/nrd3013. PubMed DOI
LaSarre B., Federle M.J. Exploiting Quorum Sensing to Confuse Bacterial Pathogens. Microbiol. Mol. Biol. Rev. MMBR. 2013;77:73–111. doi: 10.1128/MMBR.00046-12. PubMed DOI PMC
López D., Vlamakis H., Losick R., Kolter R. Paracrine signaling in a bacterium. Genes Dev. 2009;23:1631–1638. doi: 10.1101/gad.1813709. PubMed DOI PMC
Rutherford S.T., Bassler B.L. Bacterial Quorum Sensing: Its Role in Virulence and Possibilities for Its Control. Cold Spring Harb. Perspect. Med. 2012;2:a012427. doi: 10.1101/cshperspect.a012427. PubMed DOI PMC
Cegelski L., Marshall G.R., Eldridge G.R., Hultgren S.J. The biology and future prospects of antivirulence therapies. Nat. Rev. Microbiol. 2008;6:17–27. doi: 10.1038/nrmicro1818. PubMed DOI PMC
Dong Y.H., Wang L.H., Xu J.L., Zhang H.B., Zhang X.F., Zhang L.H. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature. 2001;411:813–817. doi: 10.1038/35081101. PubMed DOI
Dong Y.H., Xu J.L., Li X.Z., Zhang L.H. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. USA. 2000;97:3526–3531. doi: 10.1073/pnas.97.7.3526. PubMed DOI PMC
Hoang T.T., Schweizer H.P. Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): A target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. J. Bacteriol. 1999;181:5489–5497. doi: 10.1128/JB.181.17.5489-5497.1999. PubMed DOI PMC
Ding X., Yin B., Qian L., Zeng Z., Yang Z., Li H., Lu Y., Zhou S. Screening for novel quorum-sensing inhibitors to interfere with the formation of Pseudomonas aeruginosa biofilm. J. Med. Microbiol. 2011;60:1827–1834. doi: 10.1099/jmm.0.024166-0. PubMed DOI
Yang L., Rybtke M.T., Jakobsen T.H., Hentzer M., Bjarnsholt T., Givskov M., Tolker-Nielsen T. Computer-aided identification of recognized drugs as Pseudomonas aeruginosa quorum-sensing inhibitors. Antimicrob. Agents Chemother. 2009;53:2432–2443. doi: 10.1128/AAC.01283-08. PubMed DOI PMC
Pawlik J.R. The Chemical Ecology of Sponges on Caribbean Reefs: Natural Products Shape Natural Systems. BioScience. 2011;61:888–898. doi: 10.1525/bio.2011.61.11.8. DOI
Carroll A.R., Copp B.R., Davis R.A., Keyzers R.A., Prinsep M.R. Marine natural products. Nat. Prod. Rep. 2019;36:122–173. PubMed
Martins M.L., Pinto U.M., Riedel K., Vanetti M.C., Mantovani H.C., de Araujo E.F. Lack of AHL-based quorum sensing in Pseudomonas fluorescens isolated from milk. Braz. J. Microbiol. 2014;45:1039–1046. PubMed PMC
Esteves A.I.S., Hardoim C.C.P., Xavier J.R., Gonçalves J.M.S., Costa R. Molecular richness and biotechnological potential of bacteria cultured from Irciniidae sponges in the north-east Atlantic. FEMS Microbiol. Ecol. 2013;85:519–536. doi: 10.1111/1574-6941.12140. PubMed DOI
Hentschel U., Piel J., Degnan S.M., Taylor M.W. Genomic insights into the marine sponge microbiome. Nat. Rev. Micro. 2012;10:641–654. doi: 10.1038/nrmicro2839. PubMed DOI
Piel J., Hui D., Wen G., Butzke D., Platzer M., Fusetani N., Matsunaga S. Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc. Natl. Acad. Sci. USA. 2004;101:16222–16227. doi: 10.1073/pnas.0405976101. PubMed DOI PMC
Wilson M.C., Mori T., Ruckert C., Uria A.R., Helf M.J., Takada K., Gernert C., Steffens U.A., Heycke N., Schmitt S., et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature. 2014;506:58–62. doi: 10.1038/nature12959. PubMed DOI
Zan J., Fuqua C., Hill R.T. Diversity and functional analysis of luxS genes in Vibrios from marine sponges Mycale laxissima and Ircinia strobilina. ISME J. 2011;5:1505–1516. doi: 10.1038/ismej.2011.31. PubMed DOI PMC
Esposito G., Teta R., Della Sala G., Pawlik J.R., Mangoni A., Costantino V. Isolation of Smenopyrone, a Bis-gamma-Pyrone Polypropionate from the Caribbean Sponge Smenospongia aurea. Mar. Drugs. 2018;16:285. doi: 10.3390/md16080285. PubMed DOI PMC
Saurav K., Burgsdorf I., Teta R., Esposito G., Bar-Shalom R., Costantino V., Steindler L. Isolation of Marine Paracoccus sp. Ss63 from the Sponge Sarcotragus sp. and Characterization of its Quorum-Sensing Chemical-Signaling Molecules by LC-MS/MS Analysis. Israel J. Chem. 2016;56:330–340. doi: 10.1002/ijch.201600003. DOI
González J.E., Keshavan N.D. Messing with Bacterial Quorum Sensing. Microbiol. Mol. Biol. Rev. 2006;70:859–875. doi: 10.1128/MMBR.00002-06. PubMed DOI PMC
Gardères J., Taupin L., Saïdin J., Dufour A., Le Pennec G. N-acyl homoserine lactone production by bacteria within the sponge Suberites domuncula (Olivi, 1792) (Porifera, Demospongiae) Mar. Biol. 2012;159:1685–1692.
Mohamed N.M., Cicirelli E.M., Kan J., Chen F., Fuqua C., Hill R.T. Diversity and quorum-sensing signal production of Proteobacteria associated with marine sponges. Environ. Microbiol. 2008;10:75–86. doi: 10.1111/j.1462-2920.2007.01431.x. PubMed DOI
Britstein M., Saurav K., Teta R., Sala G.D., Bar-Shalom R., Stoppelli N., Zoccarato L., Costantino V., Steindler L. Identification and chemical characterization of N-acyl-homoserine lactone quorum sensing signals across sponge species and time. FEMS Microbiol. Ecol. 2018;94:fix182. PubMed
Saurav K., Bar-Shalom R., Haber M., Burgsdorf I., Oliviero G., Costantino V., Morgenstern D., Steindler L. In Search of Alternative Antibiotic Drugs: Quorum-Quenching Activity in Sponges and their Bacterial Isolates. Front. Microbiol. 2016;7:416. doi: 10.3389/fmicb.2016.00416. PubMed DOI PMC
Skindersoe M.E., Ettinger-Epstein P., Rasmussen T.B., Bjarnsholt T., de Nys R., Givskov M. Quorum Sensing Antagonism from Marine Organisms. Mar. Biotechnol. 2008;10:56–63. PubMed
Mai T., Tintillier F., Lucasson A., Moriou C., Bonno E., Petek S., Magre K., Al Mourabit A., Saulnier D., Debitus C. Quorum sensing inhibitors from Leucetta chagosensis Dendy, 1863. Lett. Appl. Microbiol. 2015;61:311–317. PubMed
Dobretsov S., Teplitski M., Bayer M., Gunasekera S., Proksch P., Paul V.J. Inhibition of marine biofouling by bacterial quorum sensing inhibitors. Biofouling. 2011;27:893–905. doi: 10.1080/08927014.2011.609616. PubMed DOI PMC
Ong J.F.M., Goh H.C., Lim S.C., Pang L.M., Chin J.S.F., Tan K.S., Liang Z.-X., Yang L., Glukhov E., Gerwick W.H., et al. Integrated Genomic and Metabolomic Approach to the Discovery of Potential Anti-Quorum Sensing Natural Products from Microbes Associated with Marine Samples from Singapore. Mar. Drugs. 2019;17:72. PubMed PMC
Teplitski M., Robinson J.B., Bauer W.D. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol. Plant Microbe Interact. 2000;13:637–648. doi: 10.1094/MPMI.2000.13.6.637. PubMed DOI
Manefield M., de Nys R., Kumar N., Read R., Givskov M., Steinberg P., Kjelleberg S. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology. 1999;145:283–291. doi: 10.1099/13500872-145-2-283. PubMed DOI
Keshavan N.D., Chowdhary P.K., Haines D.C., Gonzalez J.E. L-Canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti. J. Bacteriol. 2005;187:8427–8436. doi: 10.1128/JB.187.24.8427-8436.2005. PubMed DOI PMC
Igarashi Y., Yamamoto K., Fukuda T., Shojima A., Nakayama J., Carro L., Trujillo M.E. Arthroamide, a Cyclic Depsipeptide with Quorum Sensing Inhibitory Activity from Arthrobacter sp. J. Nat. Prod. 2015;78:2827–2831. doi: 10.1021/acs.jnatprod.5b00540. PubMed DOI
Abed R.M., Dobretsov S., Al-Fori M., Gunasekera S.P., Sudesh K., Paul V.J. Quorum-sensing inhibitory compounds from extremophilic microorganisms isolated from a hypersaline cyanobacterial mat. J. Ind. Microbiol. Biotechnol. 2013;40:759–772. doi: 10.1007/s10295-013-1276-4. PubMed DOI
Gross H., Goeger D.E., Hills P., Mooberry S.L., Ballantine D.L., Murray T.F., Valeriote F.A., Gerwick W.H. Lophocladines, Bioactive Alkaloids from the Red Alga Lophocladia sp. J. Nat. Prod. 2006;69:640–644. doi: 10.1021/np050519e. PubMed DOI PMC
Costantino V., Della Sala G., Saurav K., Teta R., Bar-Shalom R., Mangoni A., Steindler L. Plakofuranolactone as a Quorum Quenching Agent from the Indonesian Sponge Plakortis cf. lita. Mar. Drugs. 2017;15:59. doi: 10.3390/md15030059. PubMed DOI PMC
Tello E., Castellanos L., Arévalo-Ferro C., Duque C. Disruption in Quorum-Sensing Systems and Bacterial Biofilm Inhibition by Cembranoid Diterpenes Isolated from the Octocoral Eunicea knighti. J. Nat. Prod. 2012;75:1637–1642. doi: 10.1021/np300313k. PubMed DOI
Gilabert M., Ramos A.N., Schiavone M.M., Arena M.E., Bardón A. Bioactive Sesqui- and Diterpenoids from the Argentine Liverwort Porella chilensis. J. Nat. Prod. 2011;74:574–579. doi: 10.1021/np100472d. PubMed DOI
Kawamura A., Iacovidou M., Hirokawa E., Soll C.E., Trujillo M. 17-Hydroxycyclooctatin, a Fused 5−8−5 Ring Diterpene, from Streptomyces sp. MTE4a. J. Nat. Prod. 2011;74:492–495. doi: 10.1021/np100921m. PubMed DOI PMC
Bojko B., Onat B., Boyaci E., Psillakis E., Dailianis T., Pawliszyn J. Application of in situ Solid-Phase Microextraction on Mediterranean Sponges for Untargeted Exometabolome Screening and Environmental Monitoring. Front. Mar. Sci. 2019;6:632. doi: 10.3389/fmars.2019.00632. DOI
Doberva M., Stien D., Sorres J., Hue N., Sanchez-Ferandin S., Eparvier V., Ferandin Y., Lebaron P., Lami R. Large Diversity and Original Structures of Acyl-Homoserine Lactones in Strain MOLA 401, a Marine Rhodobacteraceae Bacterium. Front. Microbiol. 2017;8:1152. doi: 10.3389/fmicb.2017.01152. PubMed DOI PMC
Cataldi T.R.I., Bianco G., Abate S., Losito I. Identification of unsaturated N-acylhomoserine lactones in bacterial isolates of Rhodobacter sphaeroides by liquid chromatography coupled to electrospray ionization-hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 2011;25:1817–1826. doi: 10.1002/rcm.5054. PubMed DOI
Della Sala G., Teta R., Esposito G., Costantino V. Chapter 1—The Chemical Language of Gram-Negative Bacteria. In: Tommonaro G., editor. Quorum Sensing. Academic Press; London, UK: 2019. pp. 3–28.
Esposito G., Bourguet-Kondracki M.-L., Mai L.H., Longeon A., Teta R., Meijer L., Van Soest R., Mangoni A., Costantino V. Chloromethylhalicyclamine B, a Marine-Derived Protein Kinase CK1δ/ε Inhibitor. J. Nat.Prod. 2016;79:2953–2960. doi: 10.1021/acs.jnatprod.6b00939. PubMed DOI
Longeon A., Copp B.R., Quevrain E., Roue M., Kientz B., Cresteil T., Petek S., Debitus C., Bourguet-Kondracki M.L. Bioactive indole derivatives from the South Pacific marine sponges Rhopaloeides odorabile and Hyrtios sp. Mar. Drugs. 2011;9:879–888. doi: 10.3390/md9050879. PubMed DOI PMC
Mollica A., Locatelli M., Stefanucci A., Pinnen F. Synthesis and bioactivity of secondary metabolites from marine sponges containing dibrominated indolic systems. Molecules. 2012;17:6083–6099. doi: 10.3390/molecules17056083. PubMed DOI PMC
Smith T.A. Phenethylamine and related compounds in plants. Phytochemistry. 1977;16:9–18. doi: 10.1016/0031-9422(77)83004-5. DOI
Berry M.D. Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. J. Neurochem. 2004;90:257–271. doi: 10.1111/j.1471-4159.2004.02501.x. PubMed DOI
Lynnes T., Horne S.M., Prüß B.M. ß-Phenylethylamine as a novel nutrient treatment to reduce bacterial contamination due to Escherichia coli O157:H7 on beef meat. Meat Sci. 2014;96:165–171. doi: 10.1016/j.meatsci.2013.06.030. PubMed DOI
Hooper J.N.A., van Soest R.W.M. In: Systema Porifera, A Guide to the Classification of the Sponges. Hooper J.N.A., Van Soest R.W.M., Willenz P., editors. Volume 2. Springer; New York, NY, USA: 2002. p. 1706.
Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994;3:294–299. PubMed
Rot C., Goldfarb I., Ilan M., Huchon D. Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria. BMC Evol. Biol. 2006;6:71. doi: 10.1186/1471-2148-6-71. PubMed DOI PMC
Loytynoja A., Vilella A.J., Goldman N. Accurate extension of multiple sequence alignments using a phylogeny-aware graph algorithm. Bioinformatics. 2012;28:1684–1691. doi: 10.1093/bioinformatics/bts198. PubMed DOI PMC
Hasegawa M., Kishino H., Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 1985;22:160–174. doi: 10.1007/BF02101694. PubMed DOI
Felsenstein J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution. 1985;39:783–791. doi: 10.1111/j.1558-5646.1985.tb00420.x. PubMed DOI
Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC
Burgsdorf I., Slaby B.M., Handley K.M., Haber M., Blom J., Marshall C.W., Gilbert J.A., Hentschel U., Steindler L. Lifestyle evolution in cyanobacterial symbionts of sponges. MBio. 2015;6:e00391-15. doi: 10.1128/mBio.00391-15. PubMed DOI PMC
McClean K.H., Winson M.K., Fish L., Taylor A., Chhabra S.R., Camara M., Daykin M., Lamb J.H., Swift S., Bycroft B.W., et al. Quorum sensing and Chromobacterium violaceum: Exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology. 1997;143:3703–3711. doi: 10.1099/00221287-143-12-3703. PubMed DOI
Saurav K., Costantino V., Venturi V., Steindler L. Quorum Sensing Inhibitors from the Sea Discovered Using Bacterial N-acyl-homoserine Lactone-Based Biosensors. Mar. Drugs. 2017;15:53. doi: 10.3390/md15030053. PubMed DOI PMC
Winson M.K., Swift S., Fish L., Throup J.P., Jorgensen F., Chhabra S.R., Bycroft B.W., Williams P., Stewart G.S. Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol. Lett. 1998;163:185–192. doi: 10.1111/j.1574-6968.1998.tb13044.x. PubMed DOI