Screening of the Medicines for Malaria Venture Pandemic Response Box for Discovery of Antivirulent Drug against Pseudomonas aeruginosa
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
36301146
PubMed Central
PMC9769688
DOI
10.1128/spectrum.02232-22
Knihovny.cz E-resources
- Keywords
- Pandemic Response Box, Pseudomonas aeruginosa, antivirulence activity, biofilm inhibition, quorum sensing inhibition,
- MeSH
- Anti-Bacterial Agents pharmacology metabolism MeSH
- Biofilms * MeSH
- Virulence Factors metabolism MeSH
- Pandemics MeSH
- Pseudomonas aeruginosa * MeSH
- Quorum Sensing MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Virulence Factors MeSH
Resistance development and exhaustion of the arsenal of existing antibacterial agents urgently require an alternative approach toward drug discovery. Herein, we report the screening of Medicines for Malaria Venture (MMV) Pandemic Response Box (PRB) through a cascade developed to streamline the potential compounds with antivirulent properties to combat an opportunistic pathogen, Pseudomonas aeruginosa. To find an agent suppressing the production of P. aeruginosa virulence factors, we assessed the potential of the compounds in PRB with quorum sensing inhibitory activity. Our approach led us to identify four compounds with significant inhibition of extracellular virulence factor production and biofilm formation. This provides an opportunity to expand and redirect the application of these data sets toward the development of a drug with unexplored target-based activity. IMPORTANCE The rise of drug-resistant pathogens as well as overuse and misuse of antibiotics threatens modern medicine as the number of effective antimicrobial drugs steadily decreases. Given the nature of antimicrobial resistance development under intense selective pressure such as the one posed by pathogen-eliminating antibiotics, new treatment options which could slow down the emergence of resistance are urgently needed. Antivirulence therapy aims at suppressing a pathogen's ability to cause disease rather than eliminating it, generating significantly lower selective pressure. Quorum sensing inhibitors are thought to be able to downregulate the production of virulence factors, allowing for smaller amounts of antimicrobials to be used and thus preventing the emergence of resistance. The PRB constitutes an unprecedented opportunity to repurpose new as well as known compounds with cytotoxicity and in vitro absorption, distribution, metabolism and excretion (ADME) profile available, thus shortening the time between compound discovery and medicinal use.
See more in PubMed
Miethke M, Pieroni M, Weber T, Brönstrup M, Hammann P, Halby L, Arimondo PB, Glaser P, Aigle B, Bode HB, Moreira R, Li Y, Luzhetskyy A, Medema MH, Pernodet J-L, Stadler M, Tormo JR, Genilloud O, Truman AW, Weissman KJ, Takano E, Sabatini S, Stegmann E, Brötz-Oesterhelt H, Wohlleben W, Seemann M, Empting M, Hirsch AKH, Loretz B, Lehr C-M, Titz A, Herrmann J, Jaeger T, Alt S, Hesterkamp T, Winterhalter M, Schiefer A, Pfarr K, Hoerauf A, Graz H, Graz M, Lindvall M, Ramurthy S, Karlén A, van Dongen M, Petkovic H, Keller A, Peyrane F, Donadio S, Fraisse L, Piddock LJV, Gilbert IH, Moser HE, Müller R. 2021. Towards the sustainable discovery and development of new antibiotics. Nat Rev Chem 5:726–749. doi:10.1038/s41570-021-00313-1. PubMed DOI
Antimicrobial Resistance Collaborators. 2022. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399:629–655. doi:10.1016/S0140-6736(21)02724-0. PubMed DOI PMC
Castillo-Juarez I, Maeda T, Mandujano-Tinoco EA, Tomas M, Perez-Eretza B, Garcia-Contreras SJ, Wood TK, Garcia-Contreras R. 2015. Role of quorum sensing in bacterial infections. World J Clin Cases 3:575–598. doi:10.12998/wjcc.v3.i7.575. PubMed DOI PMC
Pachori P, Gothalwal R, Gandhi P. 2019. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis 6:109–119. doi:10.1016/j.gendis.2019.04.001. PubMed DOI PMC
Lee J, Zhang L. 2015. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6:26–41. doi:10.1007/s13238-014-0100-x. PubMed DOI PMC
Papenfort K, Bassler BL. 2016. Quorum sensing signal–response systems in Gram-negative bacteria. Nat Rev Microbiol 14:576–588. doi:10.1038/nrmicro.2016.89. PubMed DOI PMC
Deziel E, Lepine F, Milot S, He J, Mindrinos MN, Tompkins RG, Rahme LG. 2004. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci USA 101:1339–1344. doi:10.1073/pnas.0307694100. PubMed DOI PMC
Diggle SP, Cornelis P, Williams P, Cámara M. 2006. 4-Quinolone signalling in Pseudomonas aeruginosa: old molecules, new perspectives. Int J Med Microbiol 296:83–91. doi:10.1016/j.ijmm.2006.01.038. PubMed DOI
Zhao X, Yu Z, Ding T. 2020. Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms 8:425. doi:10.3390/microorganisms8030425. PubMed DOI PMC
Sikdar R, Elias MH. 2022. Evidence for complex interplay between quorum sensing and antibiotic resistance in Pseudomonas aeruginosa. bioRxiv. https://www.biorxiv.org/content/10.1101/2022.04.05.487235v1. PubMed DOI PMC
Wagner S, Sommer R, Hinsberger S, Lu C, Hartmann RW, Empting M, Titz A. 2016. Novel strategies for the treatment of Pseudomonas aeruginosa infections. J Med Chem 59:5929–5969. doi:10.1021/acs.jmedchem.5b01698. PubMed DOI
Dickey SW, Cheung GYC, Otto M. 2017. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov 16:457–471. doi:10.1038/nrd.2017.23. PubMed DOI PMC
van Delden C, Köhler T, Brunner-Ferber F, François B, Carlet J, Pechère J-C. 2012. Azithromycin to prevent Pseudomonas aeruginosa ventilator-associated pneumonia by inhibition of quorum sensing: a randomized controlled trial. Intensive Care Med 38:1118–1125. doi:10.1007/s00134-012-2559-3. PubMed DOI
Köhler T, Perron GG, Buckling A, van Delden C. 2010. Quorum sensing inhibition selects for virulence and cooperation in Pseudomonas aeruginosa. PLoS Pathog 6:e1000883. doi:10.1371/journal.ppat.1000883. PubMed DOI PMC
Zhou L, Zhang Y, Ge Y, Zhu X, Pan J. 2020. Regulatory mechanisms and promising applications of quorum sensing-inhibiting agents in control of bacterial biofilm formation. Front Microbiol 11:589640. doi:10.3389/fmicb.2020.589640. PubMed DOI PMC
Winson MK, Swift S, Fish L, Throup JP, Jorgensen F, Chhabra SR, Bycroft BW, Williams P, Stewart GS. 1998. Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol Lett 163:185–192. doi:10.1111/j.1574-6968.1998.tb13044.x. PubMed DOI
Saurav K, Borbone N, Burgsdorf I, Teta R, Caso A, Bar-Shalom R, Esposito G, Britstein M, Steindler L, Costantino V. 2020. Identification of quorum sensing activators and inhibitors in the marine sponge Sarcotragus spinosulus. Mar Drugs 18:127. doi:10.3390/md18020127. PubMed DOI PMC
Samby K, Besson D, Dutta A, Patra B, Doy A, Glossop P, Mills J, Whitlock G, Hooft van Huijsduijnen R, Monaco A, Bilbe G, Mowbray C, Perry B, Adam A, Wells TNC, Willis PA. 2022. The Pandemic Response Box—accelerating drug discovery efforts after disease outbreaks. ACS Infect Dis 8:713–720. doi:10.1021/acsinfecdis.1c00527. PubMed DOI PMC
Reader J, van der Watt ME, Taylor D, Le Manach C, Mittal N, Ottilie S, Theron A, Moyo P, Erlank E, Nardini L, Venter N, Lauterbach S, Bezuidenhout B, Horatscheck A, van Heerden A, Spillman NJ, Cowell AN, Connacher J, Opperman D, Orchard LM, Llinas M, Istvan ES, Goldberg DE, Boyle GA, Calvo D, Mancama D, Coetzer TL, Winzeler EA, Duffy J, Koekemoer LL, Basarab G, Chibale K, Birkholtz LM. 2021. Multistage and transmission-blocking targeted antimalarials discovered from the open-source MMV Pandemic Response Box. Nat Commun 12:269. doi:10.1038/s41467-020-20629-8. PubMed DOI PMC
Soukarieh F, Williams P, Stocks MJ, Cámara M. 2018. Pseudomonas aeruginosa quorum sensing systems as drug discovery targets: current position and future perspectives. J Med Chem 61:10385–10402. doi:10.1021/acs.jmedchem.8b00540. PubMed DOI
Loukanov A, Zhelyazkov V, Hihara Y, Nakabayashi S. 2016. Intracellular imaging of Qdots-labeled DNA in cyanobacteria. Microsc Res Tech 79:447–452. doi:10.1002/jemt.22651. PubMed DOI
Anonymous. 2012. Sulfonamides. In LiverTox: clinical and research information on drug-induced liver injury. National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD. PubMed
Lim W, Nyuykonge B, Eadie K, Konings M, Smeets J, Fahal A, Bonifaz A, Todd M, Perry B, Samby K, Burrows J, Verbon A, van de Sande W. 2022. Screening the Pandemic Response Box identified benzimidazole carbamates, olorofim and ravuconazole as promising drug candidates for the treatment of eumycetoma. PLoS Negl Trop Dis 16:e0010159. doi:10.1371/journal.pntd.0010159. PubMed DOI PMC
de Oliveira HC, Castelli RF, Reis FCG, Samby K, Nosanchuk JD, Alves LR, Rodrigues ML. 2022. Screening of the Pandemic Response Box reveals an association between antifungal effects of MMV1593537 and the cell wall of Cryptococcus neoformans, Cryptococcus deuterogattii, and Candida auris. Microbiol Spectr 10:e00601-22. doi:10.1128/spectrum.00601-22. PubMed DOI PMC