Insight into Unprecedented Diversity of Cyanopeptides in Eutrophic Ponds Using an MS/MS Networking Approach
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
19-17868Y
Grantová Agentura České Republiky - International
17-09310S
Grantová Agentura České Republiky - International
CZ.02.2.69/0.0/0.0/18_070/0010493
Ministerstvo Školství, Mládeže a Tělovýchovy - International
PubMed
32878042
PubMed Central
PMC7551678
DOI
10.3390/toxins12090561
PII: toxins12090561
Knihovny.cz E-zdroje
- Klíčová slova
- cyanobacteria, cyanopeptides, dereplication strategy, global natural product social networking (GNPS), harmful bloom, liquid chromatography-tandem mass spectrometry,
- MeSH
- bakteriální toxiny analýza toxicita MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací * MeSH
- hodnocení rizik MeSH
- metabolomika MeSH
- mikrobiologie vody MeSH
- mikrobiota MeSH
- monitorování životního prostředí * MeSH
- mořské toxiny analýza toxicita MeSH
- online sociální sítě * MeSH
- populační dynamika MeSH
- roční období MeSH
- rybníky mikrobiologie MeSH
- sinice klasifikace růst a vývoj metabolismus MeSH
- škodlivý vodní květ * MeSH
- tandemová hmotnostní spektrometrie * MeSH
- vysokoúčinná kapalinová chromatografie * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- bakteriální toxiny MeSH
- mořské toxiny MeSH
Man-made shallow fishponds in the Czech Republic have been facing high eutrophication since the 1950s. Anthropogenic eutrophication and feeding of fish have strongly affected the physicochemical properties of water and its aquatic community composition, leading to harmful algal bloom formation. In our current study, we characterized the phytoplankton community across three eutrophic ponds to assess the phytoplankton dynamics during the vegetation season. We microscopically identified and quantified 29 cyanobacterial taxa comprising non-toxigenic and toxigenic species. Further, a detailed cyanopeptides (CNPs) profiling was performed using molecular networking analysis of liquid chromatography-tandem mass spectrometry (LC-MS/MS) data coupled with a dereplication strategy. This MS networking approach, coupled with dereplication, on the online global natural product social networking (GNPS) web platform led us to putatively identify forty CNPs: fourteen anabaenopeptins, ten microcystins, five cyanopeptolins, six microginins, two cyanobactins, a dipeptide radiosumin, a cyclooctapeptide planktocyclin, and epidolastatin 12. We applied the binary logistic regression to estimate the CNPs producers by correlating the GNPS data with the species abundance. The usage of the GNPS web platform proved a valuable approach for the rapid and simultaneous detection of a large number of peptides and rapid risk assessments for harmful blooms.
ENKI o p s Třeboň Dukelská 145 37901 Třeboň Czech Republic
Faculty of Science University of South Bohemia 37005 České Budějovice Czech Republic
Institute of Botany of the Czech Academy of Sciences 37901 Třeboň Czech Republic
Nicholas School of the Environment Duke University Durham NC 27710 USA
Zobrazit více v PubMed
Gantar M., Svirčev Z. Microalgae and cyanobacteria: Food for thought. J. Phycol. 2008;44:260–268. doi: 10.1111/j.1529-8817.2008.00469.x. PubMed DOI
Schindler D.W. Recent advances in the understanding and management of eutrophication. Limnol. Oceanogr. 2006;51:356–363. doi: 10.4319/lo.2006.51.1_part_2.0356. DOI
Weisse T. Limnoecology: The ecology of lakes and streams. J. Plankton Res. 2008;30:489–490. doi: 10.1093/plankt/fbn013. DOI
Buratti F.M., Manganelli M., Vichi S., Stefanelli M., Scardala S., Testai E., Funari E. Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch. Toxicol. 2017;91:1049–1130. doi: 10.1007/s00204-016-1913-6. PubMed DOI
Whitton B.A. Ecology of Cyanobacteria ii: Their Diversity in Time and Space. Springer; Dordrecht, The Netherlands: 2012. p. 760.
Corbel S., Mougin C., Bouaïcha N. Cyanobacterial toxins: Modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops. Chemosphere. 2014;96:1–15. doi: 10.1016/j.chemosphere.2013.07.056. PubMed DOI
Chorus I., Bartram J. In: Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management. Ingrid C., Jamie B., editors. World Health Organization; Geneva, Switzerland: 1999.
Runnegar M., Berndt N., Kong S.M., Lee E.Y., Zhang L. In Vivo and In Vitro binding of microcystin to protein phosphatases 1 and 2A. Biochem. Biophys. Res. Commun. 1995;216:162–169. doi: 10.1006/bbrc.1995.2605. PubMed DOI
Bernard C., Ballot A., Thomazeau S., Maloufi S., Furey A., Mankiewicz-Boczek J., Pawlik-Skowrońska B., Capelli C., Salmaso N. Appendix 2: Cyanobacteria associated with the production of cyanotoxins. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis. John Wiley & Sons; Hoboken, NJ, USA: 2017. pp. 501–525.
Carmichael W.W. Health effects of toxin-producing cyanobacteria: “The CyanoHABs”. Hum. Ecol. Risk Assess. HERA. 2001;7:1393–1407. doi: 10.1080/20018091095087. DOI
Welker M., Von Döhren H. Cyanobacterial peptides–Nature’s own combinatorial biosynthesis. FEMS Microbiol. Rev. 2006;30:530–563. doi: 10.1111/j.1574-6976.2006.00022.x. PubMed DOI
Beversdorf L.J., Weirich C.A., Bartlett S.L., Miller T.R. Variable cyanobacterial toxin and metabolite profiles across six eutrophic lakes of differing physiochemical characteristics. Toxins. 2017;9:62. doi: 10.3390/toxins9020062. DOI
Fastner J., Erhard M. Determination of oligopeptide diversity within a natural population of Microcystis spp. (cyanobacteria) by typing single colonies by matrix-assisted laser desorption ionization–time of flight mass spectrometry. Appl. Environ. Microbiol. 2001;67:5069–5076. doi: 10.1128/AEM.67.11.5069-5076.2001. PubMed DOI PMC
Janssen E.M.L. Cyanobacterial peptides beyond microcystins–A review on co-occurrence, toxicity, and challenges for risk assessment. Water Res. 2019;151:488–499. doi: 10.1016/j.watres.2018.12.048. PubMed DOI
Roy-Lachapelle A., Vo Duy S., Munoz G., Dinh Q.T., Bahl E., Simon D.F., Sauvé S. Analysis of multiclass cyanotoxins (microcystins, anabaenopeptins, cylindrospermopsin and anatoxins) in lake waters using on-line SPE liquid chromatography high-resolution Orbitrap mass spectrometry. Anal. Methods. 2019;11:5289–5300. doi: 10.1039/C9AY01132C. DOI
Mazur-Marzec H., Bertos-Fortis M., Toruńska-Sitarz A., Fidor A., Legrand C. Chemical and genetic diversity of Nodularia spumigena from the Baltic sea. Mar. Drugs. 2016;14:209. doi: 10.3390/md14110209. PubMed DOI PMC
Namikoshi M., Rinehart K.L. Bioactive compounds produced by cyanobacteria. J. Ind. Microbiol. Biotechnol. 1996;17:373–384. doi: 10.1007/BF01574768. DOI
Welker M., Maršálek B., Šejnohová L., von Döhren H. Detection and identification of oligopeptides in Microcystis (cyanobacteria) colonies: Toward an understanding of metabolic diversity. Peptides. 2006;27:2090–2103. doi: 10.1016/j.peptides.2006.03.014. PubMed DOI
Palíková M., Krejčí R., Hilscherová K., Babica P., Navrátil S., Kopp R., Bláha L. Effect of different cyanobacterial biomasses and their fractions with variable microcystin content on embryonal development of carp (Cyprinus carpio L.) Aquat. Toxicol. 2007;81:312–318. doi: 10.1016/j.aquatox.2007.01.001. PubMed DOI
Pawlik-Skowrońska B., Toporowska M., Mazur-Marzec H. Effects of secondary metabolites produced by different cyanobacterial populations on the freshwater zooplankters Brachionus calyciflorus and Daphnia pulex. Environ. Sci. Pollut. Res. 2019;26:11793–11804. doi: 10.1007/s11356-019-04543-1. PubMed DOI PMC
Wejnerowski L., Falfushynska H., Horyn O., Osypenko I., Kokocinski M., Meriluoto J., Jurczak T., Poniedzialek B., Pniewski F., Rzymski P. In Vitro Toxicological screening of stable and senescing cultures of Aphanizomenon, Planktothrix, and Raphidiopsis. Toxins (Basel) 2020;12:400. doi: 10.3390/toxins12060400. PubMed DOI PMC
Carmichael W.W., Biggs D.F., Gorham P.R. Toxicology and pharmacological action of Anabaena flos-aquae toxin. Science. 1975;187:542–544. doi: 10.1126/science.803708. PubMed DOI
Sivonen K., Kononen K., Esala A.L., Niemelä S.I. Toxicity and isolation of the cyanobacterium Nodularia spumigena from the southern Baltic Sea in 1986. Hydrobiologia. 1989;185:3–8. doi: 10.1007/BF00006062. DOI
Devlin J.P., Edwards O.E., Gorham P.R., Hunter N.R., Pike R.K., Stavric B. Anatoxin-a, a toxic alkaloid from Anabaena flos-aquae NRC-44h. Can. J. Chem. 1977;55:1367–1371. doi: 10.1139/v77-189. DOI
Nothias L.F., Nothias-Esposito M., Da Silva R., Wang M., Protsyuk I., Zhang Z., Sarvepalli A., Leyssen P., Touboul D., Costa J., et al. Bioactivity-based molecular networking for the discovery of drug leads in natural product bioassay-guided fractionation. J. Nat. Prod. 2018;81:758–767. doi: 10.1021/acs.jnatprod.7b00737. PubMed DOI
Wang M., Carver J.J., Phelan V.V., Sanchez L.M., Garg N., Peng Y., Nguyen D.D., Watrous J., Kapono C.A., Luzzatto-Knaan T., et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016;34:828–837. doi: 10.1038/nbt.3597. PubMed DOI PMC
Ding C.Y.G., Pang L.M., Liang Z.X., Goh K.K.K., Glukhov E., Gerwick W.H., Tan L.T. MS/MS-Based molecular networking approach for the detection of aplysiatoxin-Related compounds in environmental marine cyanobacteria. Mar. Drugs. 2018;16:505. doi: 10.3390/md16120505. PubMed DOI PMC
Teta R., Sala G.D., Glukhov E., Gerwick L., Gerwick W.H., Mangoni A., Costantino V. A combined LC-MS/MS and molecular networking approach reveals new cyanotoxins from the 2014 cyanobacterial bloom in Green Lake, Seattle. Environ. Sci. Technol. 2017;176:139–148. doi: 10.1021/acs.est.5b04415. PubMed DOI PMC
Via C.W., Glukhov E., Costa S., Zimba P.V., Moeller P.D.R., Gerwick W.H., Bertin M.J. The metabolome of a cyanobacterial bloom visualized by MS/MS-Based molecular networking reveals new neurotoxic smenamide analogs (C, D, and E) Front. Chem. 2018;6:316. doi: 10.3389/fchem.2018.00316. PubMed DOI PMC
Fox Ramos A.E., Evanno L., Poupon E., Champy P., Beniddir M.A. Natural products targeting strategies involving molecular networking: Different manners, one goal. Nat. Prod. Rep. 2019;36:960–980. doi: 10.1039/C9NP00006B. PubMed DOI
Pechar L. Impacts of long-term changes in fishery management on the trophic level water quality in Czech fish ponds. Fish. Manag. Ecol. 2000;7:23–31. doi: 10.1046/j.1365-2400.2000.00193.x. DOI
Šimek K., Grujčić V., Nedoma J., Jezberová J., Šorf M., Matoušů A., Pechar L., Posch T., Bruni E.P., Vrba J. Microbial food webs in hypertrophic fishponds: Omnivorous ciliate taxa are major protistan bacterivores. Limnol. Oceanogr. 2019;64:2295–2309. doi: 10.1002/lno.11260. DOI
Graham J.L., Loftin K.A. Book review: Handbook of cyanobacterial monitoring and cyanotoxin analysis. Limnol. Oceanogr. Bull. 2018;27:61–62. doi: 10.1002/lob.10227. DOI
Fott J., Kořínek V., Pražáková M., Vondruš B., Forejt K. Seasonal development of phytoplankton in fish ponds. Int. Rev. Gesamten Hydrobiol. Hydrogr. 1974;59:629–641. doi: 10.1002/iroh.19740590505. DOI
Sommer U., Gliwicz Z.M., Lampert W., Duncan A. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 1986;106:433–471.
Fastner J., Erhard M. Determination of oligopeptide diversity within a natural population of. Society. 2001;67:5069–5076. PubMed PMC
Welker M., Brunke M., Preussel K., Lippert I., von Döhren H. Diversity and distribution of Microcystis (cyanobacteria) oligopeptide chemotypes from natural communities studies by single-colony mass spectrometry. Microbiology. 2004;150:1785–1796. doi: 10.1099/mic.0.26947-0. PubMed DOI
Holland A., Kinnear S. Interpreting the possible ecological role(s) of cyanotoxins: Compounds for competitive advantage and/or physiological aide? Mar. Drugs. 2013;11:2239–2258. doi: 10.3390/md11072239. PubMed DOI PMC
Smith G.D., Thanh Doan N. Cyanobacterial metabolites with bioactivity against photosynthesis in cyanobacteria, algae and higher plants. J. Appl. Phycol. 1999;11:337–344. doi: 10.1023/A:1008115818348. DOI
Von Elert E., Agrawal M.K., Gebauer C., Jaensch H., Bauer U., Zitt A. Protease activity in gut of Daphnia magna: Evidence for trypsin and chymotrypsin enzymes. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2004;137:287–296. doi: 10.1016/j.cbpc.2003.11.008. PubMed DOI
Gerwick W.H. The face of a molecule. J. Nat. Prod. 2017;80:2583–2588. doi: 10.1021/acs.jnatprod.7b00624. PubMed DOI
Mohimani H., Gurevich A., Mikheenko A., Garg N., Nothias L.F., Ninomiya A., Takada K., Dorrestein P.C., Pevzner P.A. Dereplication of peptidic natural products through database search of mass spectra. Nat. Chem. Biol. 2017;13:30–37. doi: 10.1038/nchembio.2219. PubMed DOI PMC
Bertin M.J., Schwartz S.L., Lee J., Korobeynikov A., Dorrestein P.C., Gerwick L., Gerwick W.H. Spongosine production by a Vibrio harveyi strain associated with the sponge Tectitethya crypta. J. Nat. Prod. 2015;78:493–499. doi: 10.1021/np5009762. PubMed DOI PMC
Ishaque N.M., Burgsdorf I., Limlingan Malit J.J., Saha S., Teta R., Ewe D., Kannabiran K., Hrouzek P., Steindler L., Costantino V., et al. Isolation, genomic and metabolomic characterization of Streptomyces tendae VITAKN with quorum sensing inhibitory activity from southern india. Microorganisms. 2020;8:121. doi: 10.3390/microorganisms8010121. PubMed DOI PMC
Saha S., Esposito G., Urajová P., Mareš J., Ewe D., Caso A., Macho M., Delawská K., Kust A., Hrouzek P., et al. Discovery of unusual cyanobacterial tryptophan-containing anabaenopeptins by MS/MS-based molecular networking. Molecules. 2020;25:3786. doi: 10.3390/molecules25173786. PubMed DOI PMC
Kim Tiam S., Gugger M., Demay J., Le Manach S., Duval C., Bernard C., Marie B. Insights into the diversity of secondary metabolites of Planktothrix using a biphasic approach combining global genomics and metabolomics. Toxins. 2019;11:498. doi: 10.3390/toxins11090498. PubMed DOI PMC
Briand E., Bormans M., Gugger M., Dorrestein P.C., Gerwick W.H. Changes in secondary metabolic profiles of Microcystis aeruginosa strains in response to intraspecific interactions. Environ. Microbiol. 2016;18:384–400. doi: 10.1111/1462-2920.12904. PubMed DOI PMC
Bouaïcha N., Miles C.O., Beach D.G., Labidi Z., Djabri A., Benayache N.Y., Nguyen-Quang T. Structural diversity, characterization and toxicology of microcystins. Toxins. 2019;11:714. doi: 10.3390/toxins11120714. PubMed DOI PMC
Racine M., Saleem A., Pick F.R. Metabolome variation between strains of Microcystis aeruginosa by untargeted mass spectrometry. Toxins. 2019;11:723. doi: 10.3390/toxins11120723. PubMed DOI PMC
Roy-Lachapelle A., Solliec M., Sauvé S., Gagnon C. A Data-independent methodology for the structural characterization of microcystins and anabaenopeptins leading to the identification of four new congeners. Toxins. 2019;11:619. doi: 10.3390/toxins11110619. PubMed DOI PMC
Benke P.I., Vinay Kumar M.C., Pan D., Swarup S. A mass spectrometry-based unique fragment approach for the identification of microcystins. Analyst. 2015;140:1198–1206. doi: 10.1039/C4AN01702A. PubMed DOI
Sanz M., Andreote A.P., Fiore M.F., Dorr F.A., Pinto E. Structural characterization of new peptide variants produced by cyanobacteria from the brazilian atlantic coastal forest using liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry. Mar. Drugs. 2015;13:3892–3919. doi: 10.3390/md13063892. PubMed DOI PMC
Harada K.I., Fujii K., Shimada T., Suzuki M., Sano H., Adachi K., Carmichael W.W. Two cyclic peptides, anabaenopeptins, a third group of bioactive compounds from the cyanobacterium Anabaena flos-aquae NRC 525-17. Tetrahedron Lett. 1995;36:1511–1514. doi: 10.1016/0040-4039(95)00073-L. DOI
Sano T., Kaya K. Oscillamide Y, a chymotrypsin inhibitor from toxic Oscillatoria agardhii. Tetrahedron Lett. 1995;36:5933–5936. doi: 10.1016/00404-0399(50)1198Q-. PubMed DOI
Spoof L., Błaszczyk A., Meriluoto J., Cegłowska M., Mazur-Marzec H. Structures and activity of new anabaenopeptins produced by Baltic Sea cyanobacteria. Mar. Drugs. 2016;14:8. doi: 10.3390/md14010008. PubMed DOI PMC
Adamovsky O., Moosova Z., Pekarova M., Basu A., Babica P., Svihalkova Sindlerova L., Kubala L., Blaha L. Immunomodulatory potency of microcystin, an important water-polluting cyanobacterial toxin. Environ. Sci. Technol. 2015;49:12457–12464. doi: 10.1021/acs.est.5b02049. PubMed DOI
Moosova Z., Hrouzek P., Kapuscik A., Blaha L., Adamovsky O. Immunomodulatory effects of selected cyanobacterial peptides in vitro. Toxicon. 2018;149:20–25. doi: 10.1016/j.toxicon.2018.04.031. PubMed DOI
World Health Organization . Guidelines for Drinking-Water Quality. 2nd ed. Volume 2 World Health Organization; Geneva, Switzerland: 1996. International Programme on Chemical, S. Health criteria and other supporting information.
Martin C., Oberer L., Ino T., Konig W.A., Busch M., Weckesser J. Cyanopeptolins, new depsipeptides from the cyanobacterium Microcystis sp. PCC 7806. J. Antibiot. Tokyo. 1993;46:1550–1556. doi: 10.7164/antibiotics.46.1550. PubMed DOI
Köcher S., Resch S., Kessenbrock T., Schrapp L., Ehrmann M., Kaiser M. From dolastatin 13 to cyanopeptolins, micropeptins, and lyngbyastatins: The chemical biology of Ahp-cyclodepsipeptides. Nat. Prod. Rep. 2020;37:163–174. doi: 10.1039/C9NP00033J. PubMed DOI
Weckesser J., Martin C., Jakobi C. Cyanopeptolins, depsipeptides from cyanobacteria. Syst. Appl. Microbiol. 1996;19:133–138. doi: 10.1016/S0723-2020(96)80038-5. DOI
Pettit G.R., Kamano Y., Herald C.L., Tuinman A.A., Boettner F.E., Kizu H., Schmidt J.M., Baczynskyi L., Tomer K.B., Bontems R.J. The isolation and structure of a remarkable marine animal antineoplastic constituent: Dolastatin 10. J. Am. Chem. Soc. 1987;109:6883–6885. doi: 10.1021/ja00256a070. DOI
Harrigan G.G., Yoshida W.Y., Moore R.E., Nagle D.G., Park P.U., Biggs J., Paul V.J., Mooberry S.L., Corbett T.H., Valeriote F.A. Isolation, structure determination, and biological activity of dolastatin 12 and lyngbyastatin 1 from Lyngbya majuscula/Schizothrix calcicola cyanobacterial assemblages. J. Nat. Prod. 1998;61:1221–1225. doi: 10.1021/np9801211. PubMed DOI
Ishida K., Okita Y., Matsuda H., Okino T., Murakami M. Aeruginosins, protease inhibitors from the cyanobacterium Microcystis aeruginosa. Tetrahedron. 1999;55:10971–10988. doi: 10.1016/S0040-4020(99)00621-3. DOI
Okino T.M.H., Murakami M., Yamaguchi K. Microginin, an angiotensin-converting enzyme inhibitor from the blue-green alga Microcystis aeruginosa. Tetrahedron Lett. 1993;34:501–504. doi: 10.1016/0040-4039(93)85112-A. DOI
Ishida K., Murakami M. Kasumigamide, an antialgal peptide from the cyanobacterium Microcystis aeruginosa. J. Org. Chem. 2000;65:5898–5900. doi: 10.1021/jo991918f. PubMed DOI
Welker M., Christiansen G., von Dohren H. Diversity of coexisting Planktothrix (cyanobacteria) chemotypes deduced by mass spectral analysis of microystins and other oligopeptides. Arch. Microbiol. 2004;182:288–298. doi: 10.1007/s00203-004-0711-3. PubMed DOI
Christophoridis C., Zervou S.K., Manolidi K., Katsiapi M., Moustaka-Gouni M., Kaloudis T., Triantis T.M., Hiskia A. Occurrence and diversity of cyanotoxins in Greek lakes. Sci. Rep. 2018;8:1–22. doi: 10.1038/s41598-018-35428-x. PubMed DOI PMC
Gkelis S., Lanaras T., Sivonen K., Taglialatela-Scafati O. Cyanobacterial toxic and bioactive peptides in freshwater bodies of Greece: Concentrations, occurrence patterns, and implications for human health. Mar. Drugs. 2015;13:6319–6335. doi: 10.3390/md13106319. PubMed DOI PMC
Preece E.P., Hardy F.J., Moore B.C., Bryan M. A review of microcystin detections in Estuarine and Marine waters: Environmental implications and human health risk. Harmful Algae. 2017;61:31–45. doi: 10.1016/j.hal.2016.11.006. DOI
Ploutno A., Carmeli S. Modified peptides from a water bloom of the cyanobacterium Nostoc sp. Tetrahedron. 2002;58:9949–9957. doi: 10.1016/S0040-4020(02)01326-1. DOI
Matsuda H., Okino T., Murakami M., Yamaguchi K. Radiosumin, a trypsin inhibitor from the blue-green alga Plectonema radiosum. J. Org. Chem. 1996;61:8648–8650. doi: 10.1021/jo961130m. DOI
Baumann H.I., Keller S., Wolter F.E., Nicholson G.J., Jung G., Sussmuth R.D., Juttner F. Planktocyclin, a cyclooctapeptide protease inhibitor produced by the freshwater cyanobacterium Planktothrix rubescens. J. Nat. Prod. 2007;70:1611–1615. doi: 10.1021/np0700873. PubMed DOI
Martins J., Vasconcelos V. Cyanobactins from cyanobacteria: Current genetic and chemical state of knowledge. Mar. Drugs. 2015;13:6910–6946. doi: 10.3390/md13116910. PubMed DOI PMC
Lawton L.A., Morris L.A., Jaspars M. A bioactive modified peptide, aeruginosamide, isolated from the cyanobacterium Microcystis aeruginosa. J. Org. Chem. 1999;64:5329–5332. doi: 10.1021/jo990247i. PubMed DOI
Oh H.M., Lee S.J., Kim J.H., Kim H.S., Yoon B.D. Seasonal variation and indirect monitoring of microcystin concentrations in Daechung reservoir, Korea. Appl. Environ. Microbiol. 2001;67:1484–1489. doi: 10.1128/AEM.67.4.1484-1489.2001. PubMed DOI PMC
Martins J., Saker M.L., Moreira C., Welker M., Fastner J., Vasconcelos V.M. Peptide diversity in strains of the cyanobacterium Microcystis aeruginosa isolated from Portuguese water supplies. Appl. Microbiol. Biotechnol. 2009;82:951–961. doi: 10.1007/s00253-009-1877-z. PubMed DOI
Le Manach S., Duval C., Marie A., Djediat C., Catherine A., Edery M., Bernard C., Marie B. Global metabolomic characterizations of Microcystis spp. Highlights clonal diversity in natural bloom-forming populations and expands metabolite structural diversity. Front. Microbiol. 2019;10:791. doi: 10.3389/fmicb.2019.00791. PubMed DOI PMC
Osterholm J., Popin R.V., Fewer D.P., Sivonen K. Phylogenomic analysis of secondary metabolism in the toxic cyanobacterial genera Anabaena, Dolichospermum and Aphanizomenon. Toxins. 2020;12:248. doi: 10.3390/toxins12040248. PubMed DOI PMC
Natumi R., Janssen E.M. Cyanopeptide co-production dynamics beyond mirocystins and effects of growth stages and nutrient availability. Environ. Sci. Technol. 2020;54:6063–6072. doi: 10.1021/acs.est.9b07334. PubMed DOI
Bober B., Lechowski Z., Bialczyk J. Determination of some cyanopeptides synthesized by Woronichinia naegeliana (Chroococcales, Cyanophyceae) Phycol. Res. 2011;59:286–294. doi: 10.1111/j.1440-1835.2011.00628.x. DOI
Jakubowska N., Szeląg-Wasielewska E. Toxic picoplanktonic cyanobacteria–Review. Mar. Drugs. 2015;13:1497–1518. doi: 10.3390/md13031497. PubMed DOI PMC
Lincoln E.P., Carmichael W.W. Preliminary tests of toxicity of Synechocystis sp. grown on wastewater medium. In: Carmichael W.W., editor. The Water Environment: Algal Toxins and Health. Springer; Boston, MA, USA: 1981. pp. 223–230.
Ludvek B., Blahoslav M. Microcystin production and toxicity of picocyanobacteria as a risk factor for drinking water treatment plants. Algol. Stud. 1999;92:95–108.
Mitsui A., Rosner D., Goodman A., Reyes-Vasquez G., Kusumi T., Kodama T., Nomoto K. Hemolytic Toxins in a Marine Cyanobacterium Synechococcus sp.; Proceedings of the International Red Tide Symposium; Takamatsu, Japan. November 1987.
Jasser I., Callieri C. Picocyanobacteria: The smallest cell‐size cyanobacteria. In: Meriluoto J., Spoof L., Codd G.A., editors. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2017. pp. 19–27.
Pechar L. Photosynthesis of natural populations of Aphanizomenon flos-aquae: Some ecological implications. Int. Rev. Gesamten Hydrobiol. Hydrogr. 1987;72:599–606. doi: 10.1002/iroh.19870720506. DOI
Utermöhl H. Methods of collecting plankton for various purposes are discussed. SIL Commun. 1953–1996. 1958;9:1–38. doi: 10.1080/05384680.1958.11904091. DOI
Hillebrand H., Dürselen C.-D., Kirschtel D., Pollingher U., Zohary T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 1999;35:403–424. doi: 10.1046/j.1529-8817.1999.3520403.x. DOI
Komárek J. Cyanoprokaryota, Teil 1/Part 1: Chroococcales. 1st ed. Spektrum Akademischer Verlag GmbH; Heidelberg/Berlin, Germany: 1999. p. 548.
Komárek J., Anagnostidis K. Süsswasserflora von Mitteleuropa. Elsevier; Heidelberg, Germany: Spektrum; Champaign, IL, USA: 2005. Cyanoprokaryota 2. Teil/2nd Part: Oscillatoriales; p. 759.
Komárek J. Süsswasserflora von Mitteleuropa. Elsevier; Heidelberg, Germany: Spektrum; Champaign, IL, USA: 2005. Cyanoprokaryota,3. Teil/ 3rd Part: Heterocytous genera; p. 1130.
Saurav K., Macho M., Kust A., Delawska K., Hajek J., Hrouzek P. Antimicrobial activity and bioactive profiling of heterocytous cyanobacterial strains using MS/MS-based molecular networking. Folia Microbiol. Praha. 2019;64:645–654. doi: 10.1007/s12223-019-00737-9. PubMed DOI
Chambers M.C., Maclean B., Burke R., Amodei D., Ruderman D.L., Neumann S., Gatto L., Fischer B., Pratt B., Egertson J., et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 2012;30:918–920. doi: 10.1038/nbt.2377. PubMed DOI PMC
Team, RDC. A language and environment for statistical computing. R Foundation for Statistical Computing. 2006. [(accessed on 30 August 2020)]; Available online: http://www.R-project.org/
Tolles J., Meurer W.J. Logistic Regression: Relating Patient Characteristics to Outcomes. JAMA. 2016;316:533–534. doi: 10.1001/jama.2016.7653. PubMed DOI
Benjamini Y., Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI