Insight into Unprecedented Diversity of Cyanopeptides in Eutrophic Ponds Using an MS/MS Networking Approach

. 2020 Aug 31 ; 12 (9) : . [epub] 20200831

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32878042

Grantová podpora
19-17868Y Grantová Agentura České Republiky - International
17-09310S Grantová Agentura České Republiky - International
CZ.02.2.69/0.0/0.0/18_070/0010493 Ministerstvo Školství, Mládeže a Tělovýchovy - International

Man-made shallow fishponds in the Czech Republic have been facing high eutrophication since the 1950s. Anthropogenic eutrophication and feeding of fish have strongly affected the physicochemical properties of water and its aquatic community composition, leading to harmful algal bloom formation. In our current study, we characterized the phytoplankton community across three eutrophic ponds to assess the phytoplankton dynamics during the vegetation season. We microscopically identified and quantified 29 cyanobacterial taxa comprising non-toxigenic and toxigenic species. Further, a detailed cyanopeptides (CNPs) profiling was performed using molecular networking analysis of liquid chromatography-tandem mass spectrometry (LC-MS/MS) data coupled with a dereplication strategy. This MS networking approach, coupled with dereplication, on the online global natural product social networking (GNPS) web platform led us to putatively identify forty CNPs: fourteen anabaenopeptins, ten microcystins, five cyanopeptolins, six microginins, two cyanobactins, a dipeptide radiosumin, a cyclooctapeptide planktocyclin, and epidolastatin 12. We applied the binary logistic regression to estimate the CNPs producers by correlating the GNPS data with the species abundance. The usage of the GNPS web platform proved a valuable approach for the rapid and simultaneous detection of a large number of peptides and rapid risk assessments for harmful blooms.

Zobrazit více v PubMed

Gantar M., Svirčev Z. Microalgae and cyanobacteria: Food for thought. J. Phycol. 2008;44:260–268. doi: 10.1111/j.1529-8817.2008.00469.x. PubMed DOI

Schindler D.W. Recent advances in the understanding and management of eutrophication. Limnol. Oceanogr. 2006;51:356–363. doi: 10.4319/lo.2006.51.1_part_2.0356. DOI

Weisse T. Limnoecology: The ecology of lakes and streams. J. Plankton Res. 2008;30:489–490. doi: 10.1093/plankt/fbn013. DOI

Buratti F.M., Manganelli M., Vichi S., Stefanelli M., Scardala S., Testai E., Funari E. Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch. Toxicol. 2017;91:1049–1130. doi: 10.1007/s00204-016-1913-6. PubMed DOI

Whitton B.A. Ecology of Cyanobacteria ii: Their Diversity in Time and Space. Springer; Dordrecht, The Netherlands: 2012. p. 760.

Corbel S., Mougin C., Bouaïcha N. Cyanobacterial toxins: Modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops. Chemosphere. 2014;96:1–15. doi: 10.1016/j.chemosphere.2013.07.056. PubMed DOI

Chorus I., Bartram J. In: Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management. Ingrid C., Jamie B., editors. World Health Organization; Geneva, Switzerland: 1999.

Runnegar M., Berndt N., Kong S.M., Lee E.Y., Zhang L. In Vivo and In Vitro binding of microcystin to protein phosphatases 1 and 2A. Biochem. Biophys. Res. Commun. 1995;216:162–169. doi: 10.1006/bbrc.1995.2605. PubMed DOI

Bernard C., Ballot A., Thomazeau S., Maloufi S., Furey A., Mankiewicz-Boczek J., Pawlik-Skowrońska B., Capelli C., Salmaso N. Appendix 2: Cyanobacteria associated with the production of cyanotoxins. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis. John Wiley & Sons; Hoboken, NJ, USA: 2017. pp. 501–525.

Carmichael W.W. Health effects of toxin-producing cyanobacteria: “The CyanoHABs”. Hum. Ecol. Risk Assess. HERA. 2001;7:1393–1407. doi: 10.1080/20018091095087. DOI

Welker M., Von Döhren H. Cyanobacterial peptides–Nature’s own combinatorial biosynthesis. FEMS Microbiol. Rev. 2006;30:530–563. doi: 10.1111/j.1574-6976.2006.00022.x. PubMed DOI

Beversdorf L.J., Weirich C.A., Bartlett S.L., Miller T.R. Variable cyanobacterial toxin and metabolite profiles across six eutrophic lakes of differing physiochemical characteristics. Toxins. 2017;9:62. doi: 10.3390/toxins9020062. DOI

Fastner J., Erhard M. Determination of oligopeptide diversity within a natural population of Microcystis spp. (cyanobacteria) by typing single colonies by matrix-assisted laser desorption ionization–time of flight mass spectrometry. Appl. Environ. Microbiol. 2001;67:5069–5076. doi: 10.1128/AEM.67.11.5069-5076.2001. PubMed DOI PMC

Janssen E.M.L. Cyanobacterial peptides beyond microcystins–A review on co-occurrence, toxicity, and challenges for risk assessment. Water Res. 2019;151:488–499. doi: 10.1016/j.watres.2018.12.048. PubMed DOI

Roy-Lachapelle A., Vo Duy S., Munoz G., Dinh Q.T., Bahl E., Simon D.F., Sauvé S. Analysis of multiclass cyanotoxins (microcystins, anabaenopeptins, cylindrospermopsin and anatoxins) in lake waters using on-line SPE liquid chromatography high-resolution Orbitrap mass spectrometry. Anal. Methods. 2019;11:5289–5300. doi: 10.1039/C9AY01132C. DOI

Mazur-Marzec H., Bertos-Fortis M., Toruńska-Sitarz A., Fidor A., Legrand C. Chemical and genetic diversity of Nodularia spumigena from the Baltic sea. Mar. Drugs. 2016;14:209. doi: 10.3390/md14110209. PubMed DOI PMC

Namikoshi M., Rinehart K.L. Bioactive compounds produced by cyanobacteria. J. Ind. Microbiol. Biotechnol. 1996;17:373–384. doi: 10.1007/BF01574768. DOI

Welker M., Maršálek B., Šejnohová L., von Döhren H. Detection and identification of oligopeptides in Microcystis (cyanobacteria) colonies: Toward an understanding of metabolic diversity. Peptides. 2006;27:2090–2103. doi: 10.1016/j.peptides.2006.03.014. PubMed DOI

Palíková M., Krejčí R., Hilscherová K., Babica P., Navrátil S., Kopp R., Bláha L. Effect of different cyanobacterial biomasses and their fractions with variable microcystin content on embryonal development of carp (Cyprinus carpio L.) Aquat. Toxicol. 2007;81:312–318. doi: 10.1016/j.aquatox.2007.01.001. PubMed DOI

Pawlik-Skowrońska B., Toporowska M., Mazur-Marzec H. Effects of secondary metabolites produced by different cyanobacterial populations on the freshwater zooplankters Brachionus calyciflorus and Daphnia pulex. Environ. Sci. Pollut. Res. 2019;26:11793–11804. doi: 10.1007/s11356-019-04543-1. PubMed DOI PMC

Wejnerowski L., Falfushynska H., Horyn O., Osypenko I., Kokocinski M., Meriluoto J., Jurczak T., Poniedzialek B., Pniewski F., Rzymski P. In Vitro Toxicological screening of stable and senescing cultures of Aphanizomenon, Planktothrix, and Raphidiopsis. Toxins (Basel) 2020;12:400. doi: 10.3390/toxins12060400. PubMed DOI PMC

Carmichael W.W., Biggs D.F., Gorham P.R. Toxicology and pharmacological action of Anabaena flos-aquae toxin. Science. 1975;187:542–544. doi: 10.1126/science.803708. PubMed DOI

Sivonen K., Kononen K., Esala A.L., Niemelä S.I. Toxicity and isolation of the cyanobacterium Nodularia spumigena from the southern Baltic Sea in 1986. Hydrobiologia. 1989;185:3–8. doi: 10.1007/BF00006062. DOI

Devlin J.P., Edwards O.E., Gorham P.R., Hunter N.R., Pike R.K., Stavric B. Anatoxin-a, a toxic alkaloid from Anabaena flos-aquae NRC-44h. Can. J. Chem. 1977;55:1367–1371. doi: 10.1139/v77-189. DOI

Nothias L.F., Nothias-Esposito M., Da Silva R., Wang M., Protsyuk I., Zhang Z., Sarvepalli A., Leyssen P., Touboul D., Costa J., et al. Bioactivity-based molecular networking for the discovery of drug leads in natural product bioassay-guided fractionation. J. Nat. Prod. 2018;81:758–767. doi: 10.1021/acs.jnatprod.7b00737. PubMed DOI

Wang M., Carver J.J., Phelan V.V., Sanchez L.M., Garg N., Peng Y., Nguyen D.D., Watrous J., Kapono C.A., Luzzatto-Knaan T., et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016;34:828–837. doi: 10.1038/nbt.3597. PubMed DOI PMC

Ding C.Y.G., Pang L.M., Liang Z.X., Goh K.K.K., Glukhov E., Gerwick W.H., Tan L.T. MS/MS-Based molecular networking approach for the detection of aplysiatoxin-Related compounds in environmental marine cyanobacteria. Mar. Drugs. 2018;16:505. doi: 10.3390/md16120505. PubMed DOI PMC

Teta R., Sala G.D., Glukhov E., Gerwick L., Gerwick W.H., Mangoni A., Costantino V. A combined LC-MS/MS and molecular networking approach reveals new cyanotoxins from the 2014 cyanobacterial bloom in Green Lake, Seattle. Environ. Sci. Technol. 2017;176:139–148. doi: 10.1021/acs.est.5b04415. PubMed DOI PMC

Via C.W., Glukhov E., Costa S., Zimba P.V., Moeller P.D.R., Gerwick W.H., Bertin M.J. The metabolome of a cyanobacterial bloom visualized by MS/MS-Based molecular networking reveals new neurotoxic smenamide analogs (C, D, and E) Front. Chem. 2018;6:316. doi: 10.3389/fchem.2018.00316. PubMed DOI PMC

Fox Ramos A.E., Evanno L., Poupon E., Champy P., Beniddir M.A. Natural products targeting strategies involving molecular networking: Different manners, one goal. Nat. Prod. Rep. 2019;36:960–980. doi: 10.1039/C9NP00006B. PubMed DOI

Pechar L. Impacts of long-term changes in fishery management on the trophic level water quality in Czech fish ponds. Fish. Manag. Ecol. 2000;7:23–31. doi: 10.1046/j.1365-2400.2000.00193.x. DOI

Šimek K., Grujčić V., Nedoma J., Jezberová J., Šorf M., Matoušů A., Pechar L., Posch T., Bruni E.P., Vrba J. Microbial food webs in hypertrophic fishponds: Omnivorous ciliate taxa are major protistan bacterivores. Limnol. Oceanogr. 2019;64:2295–2309. doi: 10.1002/lno.11260. DOI

Graham J.L., Loftin K.A. Book review: Handbook of cyanobacterial monitoring and cyanotoxin analysis. Limnol. Oceanogr. Bull. 2018;27:61–62. doi: 10.1002/lob.10227. DOI

Fott J., Kořínek V., Pražáková M., Vondruš B., Forejt K. Seasonal development of phytoplankton in fish ponds. Int. Rev. Gesamten Hydrobiol. Hydrogr. 1974;59:629–641. doi: 10.1002/iroh.19740590505. DOI

Sommer U., Gliwicz Z.M., Lampert W., Duncan A. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 1986;106:433–471.

Fastner J., Erhard M. Determination of oligopeptide diversity within a natural population of. Society. 2001;67:5069–5076. PubMed PMC

Welker M., Brunke M., Preussel K., Lippert I., von Döhren H. Diversity and distribution of Microcystis (cyanobacteria) oligopeptide chemotypes from natural communities studies by single-colony mass spectrometry. Microbiology. 2004;150:1785–1796. doi: 10.1099/mic.0.26947-0. PubMed DOI

Holland A., Kinnear S. Interpreting the possible ecological role(s) of cyanotoxins: Compounds for competitive advantage and/or physiological aide? Mar. Drugs. 2013;11:2239–2258. doi: 10.3390/md11072239. PubMed DOI PMC

Smith G.D., Thanh Doan N. Cyanobacterial metabolites with bioactivity against photosynthesis in cyanobacteria, algae and higher plants. J. Appl. Phycol. 1999;11:337–344. doi: 10.1023/A:1008115818348. DOI

Von Elert E., Agrawal M.K., Gebauer C., Jaensch H., Bauer U., Zitt A. Protease activity in gut of Daphnia magna: Evidence for trypsin and chymotrypsin enzymes. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2004;137:287–296. doi: 10.1016/j.cbpc.2003.11.008. PubMed DOI

Gerwick W.H. The face of a molecule. J. Nat. Prod. 2017;80:2583–2588. doi: 10.1021/acs.jnatprod.7b00624. PubMed DOI

Mohimani H., Gurevich A., Mikheenko A., Garg N., Nothias L.F., Ninomiya A., Takada K., Dorrestein P.C., Pevzner P.A. Dereplication of peptidic natural products through database search of mass spectra. Nat. Chem. Biol. 2017;13:30–37. doi: 10.1038/nchembio.2219. PubMed DOI PMC

Bertin M.J., Schwartz S.L., Lee J., Korobeynikov A., Dorrestein P.C., Gerwick L., Gerwick W.H. Spongosine production by a Vibrio harveyi strain associated with the sponge Tectitethya crypta. J. Nat. Prod. 2015;78:493–499. doi: 10.1021/np5009762. PubMed DOI PMC

Ishaque N.M., Burgsdorf I., Limlingan Malit J.J., Saha S., Teta R., Ewe D., Kannabiran K., Hrouzek P., Steindler L., Costantino V., et al. Isolation, genomic and metabolomic characterization of Streptomyces tendae VITAKN with quorum sensing inhibitory activity from southern india. Microorganisms. 2020;8:121. doi: 10.3390/microorganisms8010121. PubMed DOI PMC

Saha S., Esposito G., Urajová P., Mareš J., Ewe D., Caso A., Macho M., Delawská K., Kust A., Hrouzek P., et al. Discovery of unusual cyanobacterial tryptophan-containing anabaenopeptins by MS/MS-based molecular networking. Molecules. 2020;25:3786. doi: 10.3390/molecules25173786. PubMed DOI PMC

Kim Tiam S., Gugger M., Demay J., Le Manach S., Duval C., Bernard C., Marie B. Insights into the diversity of secondary metabolites of Planktothrix using a biphasic approach combining global genomics and metabolomics. Toxins. 2019;11:498. doi: 10.3390/toxins11090498. PubMed DOI PMC

Briand E., Bormans M., Gugger M., Dorrestein P.C., Gerwick W.H. Changes in secondary metabolic profiles of Microcystis aeruginosa strains in response to intraspecific interactions. Environ. Microbiol. 2016;18:384–400. doi: 10.1111/1462-2920.12904. PubMed DOI PMC

Bouaïcha N., Miles C.O., Beach D.G., Labidi Z., Djabri A., Benayache N.Y., Nguyen-Quang T. Structural diversity, characterization and toxicology of microcystins. Toxins. 2019;11:714. doi: 10.3390/toxins11120714. PubMed DOI PMC

Racine M., Saleem A., Pick F.R. Metabolome variation between strains of Microcystis aeruginosa by untargeted mass spectrometry. Toxins. 2019;11:723. doi: 10.3390/toxins11120723. PubMed DOI PMC

Roy-Lachapelle A., Solliec M., Sauvé S., Gagnon C. A Data-independent methodology for the structural characterization of microcystins and anabaenopeptins leading to the identification of four new congeners. Toxins. 2019;11:619. doi: 10.3390/toxins11110619. PubMed DOI PMC

Benke P.I., Vinay Kumar M.C., Pan D., Swarup S. A mass spectrometry-based unique fragment approach for the identification of microcystins. Analyst. 2015;140:1198–1206. doi: 10.1039/C4AN01702A. PubMed DOI

Sanz M., Andreote A.P., Fiore M.F., Dorr F.A., Pinto E. Structural characterization of new peptide variants produced by cyanobacteria from the brazilian atlantic coastal forest using liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry. Mar. Drugs. 2015;13:3892–3919. doi: 10.3390/md13063892. PubMed DOI PMC

Harada K.I., Fujii K., Shimada T., Suzuki M., Sano H., Adachi K., Carmichael W.W. Two cyclic peptides, anabaenopeptins, a third group of bioactive compounds from the cyanobacterium Anabaena flos-aquae NRC 525-17. Tetrahedron Lett. 1995;36:1511–1514. doi: 10.1016/0040-4039(95)00073-L. DOI

Sano T., Kaya K. Oscillamide Y, a chymotrypsin inhibitor from toxic Oscillatoria agardhii. Tetrahedron Lett. 1995;36:5933–5936. doi: 10.1016/00404-0399(50)1198Q-. PubMed DOI

Spoof L., Błaszczyk A., Meriluoto J., Cegłowska M., Mazur-Marzec H. Structures and activity of new anabaenopeptins produced by Baltic Sea cyanobacteria. Mar. Drugs. 2016;14:8. doi: 10.3390/md14010008. PubMed DOI PMC

Adamovsky O., Moosova Z., Pekarova M., Basu A., Babica P., Svihalkova Sindlerova L., Kubala L., Blaha L. Immunomodulatory potency of microcystin, an important water-polluting cyanobacterial toxin. Environ. Sci. Technol. 2015;49:12457–12464. doi: 10.1021/acs.est.5b02049. PubMed DOI

Moosova Z., Hrouzek P., Kapuscik A., Blaha L., Adamovsky O. Immunomodulatory effects of selected cyanobacterial peptides in vitro. Toxicon. 2018;149:20–25. doi: 10.1016/j.toxicon.2018.04.031. PubMed DOI

World Health Organization . Guidelines for Drinking-Water Quality. 2nd ed. Volume 2 World Health Organization; Geneva, Switzerland: 1996. International Programme on Chemical, S. Health criteria and other supporting information.

Martin C., Oberer L., Ino T., Konig W.A., Busch M., Weckesser J. Cyanopeptolins, new depsipeptides from the cyanobacterium Microcystis sp. PCC 7806. J. Antibiot. Tokyo. 1993;46:1550–1556. doi: 10.7164/antibiotics.46.1550. PubMed DOI

Köcher S., Resch S., Kessenbrock T., Schrapp L., Ehrmann M., Kaiser M. From dolastatin 13 to cyanopeptolins, micropeptins, and lyngbyastatins: The chemical biology of Ahp-cyclodepsipeptides. Nat. Prod. Rep. 2020;37:163–174. doi: 10.1039/C9NP00033J. PubMed DOI

Weckesser J., Martin C., Jakobi C. Cyanopeptolins, depsipeptides from cyanobacteria. Syst. Appl. Microbiol. 1996;19:133–138. doi: 10.1016/S0723-2020(96)80038-5. DOI

Pettit G.R., Kamano Y., Herald C.L., Tuinman A.A., Boettner F.E., Kizu H., Schmidt J.M., Baczynskyi L., Tomer K.B., Bontems R.J. The isolation and structure of a remarkable marine animal antineoplastic constituent: Dolastatin 10. J. Am. Chem. Soc. 1987;109:6883–6885. doi: 10.1021/ja00256a070. DOI

Harrigan G.G., Yoshida W.Y., Moore R.E., Nagle D.G., Park P.U., Biggs J., Paul V.J., Mooberry S.L., Corbett T.H., Valeriote F.A. Isolation, structure determination, and biological activity of dolastatin 12 and lyngbyastatin 1 from Lyngbya majuscula/Schizothrix calcicola cyanobacterial assemblages. J. Nat. Prod. 1998;61:1221–1225. doi: 10.1021/np9801211. PubMed DOI

Ishida K., Okita Y., Matsuda H., Okino T., Murakami M. Aeruginosins, protease inhibitors from the cyanobacterium Microcystis aeruginosa. Tetrahedron. 1999;55:10971–10988. doi: 10.1016/S0040-4020(99)00621-3. DOI

Okino T.M.H., Murakami M., Yamaguchi K. Microginin, an angiotensin-converting enzyme inhibitor from the blue-green alga Microcystis aeruginosa. Tetrahedron Lett. 1993;34:501–504. doi: 10.1016/0040-4039(93)85112-A. DOI

Ishida K., Murakami M. Kasumigamide, an antialgal peptide from the cyanobacterium Microcystis aeruginosa. J. Org. Chem. 2000;65:5898–5900. doi: 10.1021/jo991918f. PubMed DOI

Welker M., Christiansen G., von Dohren H. Diversity of coexisting Planktothrix (cyanobacteria) chemotypes deduced by mass spectral analysis of microystins and other oligopeptides. Arch. Microbiol. 2004;182:288–298. doi: 10.1007/s00203-004-0711-3. PubMed DOI

Christophoridis C., Zervou S.K., Manolidi K., Katsiapi M., Moustaka-Gouni M., Kaloudis T., Triantis T.M., Hiskia A. Occurrence and diversity of cyanotoxins in Greek lakes. Sci. Rep. 2018;8:1–22. doi: 10.1038/s41598-018-35428-x. PubMed DOI PMC

Gkelis S., Lanaras T., Sivonen K., Taglialatela-Scafati O. Cyanobacterial toxic and bioactive peptides in freshwater bodies of Greece: Concentrations, occurrence patterns, and implications for human health. Mar. Drugs. 2015;13:6319–6335. doi: 10.3390/md13106319. PubMed DOI PMC

Preece E.P., Hardy F.J., Moore B.C., Bryan M. A review of microcystin detections in Estuarine and Marine waters: Environmental implications and human health risk. Harmful Algae. 2017;61:31–45. doi: 10.1016/j.hal.2016.11.006. DOI

Ploutno A., Carmeli S. Modified peptides from a water bloom of the cyanobacterium Nostoc sp. Tetrahedron. 2002;58:9949–9957. doi: 10.1016/S0040-4020(02)01326-1. DOI

Matsuda H., Okino T., Murakami M., Yamaguchi K. Radiosumin, a trypsin inhibitor from the blue-green alga Plectonema radiosum. J. Org. Chem. 1996;61:8648–8650. doi: 10.1021/jo961130m. DOI

Baumann H.I., Keller S., Wolter F.E., Nicholson G.J., Jung G., Sussmuth R.D., Juttner F. Planktocyclin, a cyclooctapeptide protease inhibitor produced by the freshwater cyanobacterium Planktothrix rubescens. J. Nat. Prod. 2007;70:1611–1615. doi: 10.1021/np0700873. PubMed DOI

Martins J., Vasconcelos V. Cyanobactins from cyanobacteria: Current genetic and chemical state of knowledge. Mar. Drugs. 2015;13:6910–6946. doi: 10.3390/md13116910. PubMed DOI PMC

Lawton L.A., Morris L.A., Jaspars M. A bioactive modified peptide, aeruginosamide, isolated from the cyanobacterium Microcystis aeruginosa. J. Org. Chem. 1999;64:5329–5332. doi: 10.1021/jo990247i. PubMed DOI

Oh H.M., Lee S.J., Kim J.H., Kim H.S., Yoon B.D. Seasonal variation and indirect monitoring of microcystin concentrations in Daechung reservoir, Korea. Appl. Environ. Microbiol. 2001;67:1484–1489. doi: 10.1128/AEM.67.4.1484-1489.2001. PubMed DOI PMC

Martins J., Saker M.L., Moreira C., Welker M., Fastner J., Vasconcelos V.M. Peptide diversity in strains of the cyanobacterium Microcystis aeruginosa isolated from Portuguese water supplies. Appl. Microbiol. Biotechnol. 2009;82:951–961. doi: 10.1007/s00253-009-1877-z. PubMed DOI

Le Manach S., Duval C., Marie A., Djediat C., Catherine A., Edery M., Bernard C., Marie B. Global metabolomic characterizations of Microcystis spp. Highlights clonal diversity in natural bloom-forming populations and expands metabolite structural diversity. Front. Microbiol. 2019;10:791. doi: 10.3389/fmicb.2019.00791. PubMed DOI PMC

Osterholm J., Popin R.V., Fewer D.P., Sivonen K. Phylogenomic analysis of secondary metabolism in the toxic cyanobacterial genera Anabaena, Dolichospermum and Aphanizomenon. Toxins. 2020;12:248. doi: 10.3390/toxins12040248. PubMed DOI PMC

Natumi R., Janssen E.M. Cyanopeptide co-production dynamics beyond mirocystins and effects of growth stages and nutrient availability. Environ. Sci. Technol. 2020;54:6063–6072. doi: 10.1021/acs.est.9b07334. PubMed DOI

Bober B., Lechowski Z., Bialczyk J. Determination of some cyanopeptides synthesized by Woronichinia naegeliana (Chroococcales, Cyanophyceae) Phycol. Res. 2011;59:286–294. doi: 10.1111/j.1440-1835.2011.00628.x. DOI

Jakubowska N., Szeląg-Wasielewska E. Toxic picoplanktonic cyanobacteria–Review. Mar. Drugs. 2015;13:1497–1518. doi: 10.3390/md13031497. PubMed DOI PMC

Lincoln E.P., Carmichael W.W. Preliminary tests of toxicity of Synechocystis sp. grown on wastewater medium. In: Carmichael W.W., editor. The Water Environment: Algal Toxins and Health. Springer; Boston, MA, USA: 1981. pp. 223–230.

Ludvek B., Blahoslav M. Microcystin production and toxicity of picocyanobacteria as a risk factor for drinking water treatment plants. Algol. Stud. 1999;92:95–108.

Mitsui A., Rosner D., Goodman A., Reyes-Vasquez G., Kusumi T., Kodama T., Nomoto K. Hemolytic Toxins in a Marine Cyanobacterium Synechococcus sp.; Proceedings of the International Red Tide Symposium; Takamatsu, Japan. November 1987.

Jasser I., Callieri C. Picocyanobacteria: The smallest cell‐size cyanobacteria. In: Meriluoto J., Spoof L., Codd G.A., editors. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2017. pp. 19–27.

Pechar L. Photosynthesis of natural populations of Aphanizomenon flos-aquae: Some ecological implications. Int. Rev. Gesamten Hydrobiol. Hydrogr. 1987;72:599–606. doi: 10.1002/iroh.19870720506. DOI

Utermöhl H. Methods of collecting plankton for various purposes are discussed. SIL Commun. 1953–1996. 1958;9:1–38. doi: 10.1080/05384680.1958.11904091. DOI

Hillebrand H., Dürselen C.-D., Kirschtel D., Pollingher U., Zohary T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 1999;35:403–424. doi: 10.1046/j.1529-8817.1999.3520403.x. DOI

Komárek J. Cyanoprokaryota, Teil 1/Part 1: Chroococcales. 1st ed. Spektrum Akademischer Verlag GmbH; Heidelberg/Berlin, Germany: 1999. p. 548.

Komárek J., Anagnostidis K. Süsswasserflora von Mitteleuropa. Elsevier; Heidelberg, Germany: Spektrum; Champaign, IL, USA: 2005. Cyanoprokaryota 2. Teil/2nd Part: Oscillatoriales; p. 759.

Komárek J. Süsswasserflora von Mitteleuropa. Elsevier; Heidelberg, Germany: Spektrum; Champaign, IL, USA: 2005. Cyanoprokaryota,3. Teil/ 3rd Part: Heterocytous genera; p. 1130.

Saurav K., Macho M., Kust A., Delawska K., Hajek J., Hrouzek P. Antimicrobial activity and bioactive profiling of heterocytous cyanobacterial strains using MS/MS-based molecular networking. Folia Microbiol. Praha. 2019;64:645–654. doi: 10.1007/s12223-019-00737-9. PubMed DOI

Chambers M.C., Maclean B., Burke R., Amodei D., Ruderman D.L., Neumann S., Gatto L., Fischer B., Pratt B., Egertson J., et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 2012;30:918–920. doi: 10.1038/nbt.2377. PubMed DOI PMC

Team, RDC. A language and environment for statistical computing. R Foundation for Statistical Computing. 2006. [(accessed on 30 August 2020)]; Available online: http://www.R-project.org/

Tolles J., Meurer W.J. Logistic Regression: Relating Patient Characteristics to Outcomes. JAMA. 2016;316:533–534. doi: 10.1001/jama.2016.7653. PubMed DOI

Benjamini Y., Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...