Quorum-Sensing Signals from Epibiont Mediate the Induction of Novel Microviridins in the Mat-Forming Cyanobacterial Genus Nostoc
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34259556
PubMed Central
PMC8386392
DOI
10.1128/msphere.00562-21
Knihovny.cz E-zdroje
- Klíčová slova
- cyanobacteria, cyanopeptides, homoserine lactones, microviridin, quorum sensing,
- MeSH
- cyklické peptidy genetika metabolismus MeSH
- genom bakteriální MeSH
- mikrocystiny genetika metabolismus MeSH
- Nostoc genetika metabolismus MeSH
- quorum sensing genetika fyziologie MeSH
- sladká voda mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cyklické peptidy MeSH
- microcystin MeSH Prohlížeč
- mikrocystiny MeSH
The regulation of the production of oligopeptides is essential in understanding their ecological role in complex microbial communities, including harmful cyanobacterial blooms. The role of chemical communication between the cyanobacterium and the microbial community harbored as epibionts within its phycosphere is at an initial stage of research, and little is understood about its specificity. Here, we present insight into the role of a bacterial epibiont in regulating the production of novel microviridins isolated from Nostoc, an ecologically important cyanobacterial genus. Microviridins are well-known elastase inhibitors with presumed antigrazing effects. Heterologous expression and identification of specific signal molecules from the epibiont suggest the role of a quorum-sensing-based interaction. Furthermore, physiological experiments show an increase in microviridin production without affecting cyanobacterial growth and photosynthetic activity. Simultaneously, oligopeptides presenting a selective inhibition pattern provide support for their specific function in response to the presence of cohabitant epibionts. Thus, the chemical interaction revealed in our study provides an example of an interspecies signaling pathway monitoring the bacterial flora around the cyanobacterial filaments and the induction of intrinsic species-specific metabolic responses. IMPORTANCE The regulation of the production of cyanopeptides beyond microcystin is essential to understand their ecological role in complex microbial communities, e.g., harmful cyanobacterial blooms. The role of chemical communication between the cyanobacterium and the epibionts within its phycosphere is at an initial stage of research, and little is understood about its specificity. The frequency of cyanopeptide occurrence also demonstrates the need to understand the contribution of cyanobacterial peptides to the overall biological impact of cyanopeptides on aquatic organisms and vertebrates, including humans. Our results shed light on the epibiont control of microviridin production via quorum-sensing mechanisms, and we posit that such mechanisms may be widespread in natural cyanobacterial bloom community regulation.
Zobrazit více v PubMed
Janssen EM-L. 2019. Cyanobacterial peptides beyond microcystins—a review on co-occurrence, toxicity, and challenges for risk assessment. Water Res 151:488–499. doi:10.1016/j.watres.2018.12.048. PubMed DOI
Kust A, Řeháková K, Vrba J, Maicher V, Mareš J, Hrouzek P, Chiriac M-C, Benedová Z, Tesařová B, Saurav K. 2020. Insight into unprecedented diversity of cyanopeptides in eutrophic ponds using an MS/MS networking approach. Toxins (Basel) 12:561. doi:10.3390/toxins12090561. PubMed DOI PMC
Natumi R, Janssen EM-L. 2020. Cyanopeptide co-production dynamics beyond mirocystins and effects of growth stages and nutrient availability. Environ Sci Technol 54:6063–6072. doi:10.1021/acs.est.9b07334. PubMed DOI
Briand JF, Jacquet S, Flinois C, Avois-Jacquet C, Maisonnette C, Leberre B, Humbert JF. 2005. Variations in the microcystin production of Planktothrix rubescens (cyanobacteria) assessed from a four-year survey of Lac du Bourget (France) and from laboratory experiments. Microb Ecol 50:418–428. doi:10.1007/s00248-005-0186-z. PubMed DOI
Li Q, Lin F, Yang C, Wang J, Yan L, Shen M, Park MS, Li T, Zhao J. 2018. A large-scale comparative metagenomic study reveals the functional interactions in six bloom-forming Microcystis-epibiont communities. Front Microbiol 9:746. doi:10.3389/fmicb.2018.00746. PubMed DOI PMC
Salomon PS, Janson S, Granéli E. 2003. Molecular identification of bacteria associated with filaments of Nodularia spumigena and their effect on the cyanobacterial growth. Harmful Algae 2:261–272. doi:10.1016/S1568-9883(03)00045-3. DOI
Rossi F, De Philippis R. 2015. Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life (Basel) 5:1218–1238. doi:10.3390/life5021218. PubMed DOI PMC
Sharif DI, Gallon J, Smith CJ, Dudley E. 2008. Quorum sensing in cyanobacteria: N-octanoyl-homoserine lactone release and response, by the epilithic colonial cyanobacterium Gloeothece PCC6909. ISME J 2:1171–1182. doi:10.1038/ismej.2008.68. PubMed DOI
Rohrlack T, Edvardsen B, Skulberg R, Halstvedt CB, Utkilen HC, Ptacnik R, Skulberg OM. 2008. Oligopeptide chemotypes of the toxic freshwater cyanobacterium Planktothrix can form sub-populations with dissimilar ecological traits. Limnol Oceanogr 53:1279–1293. doi:10.4319/lo.2008.53.4.1279. DOI
Saurav K, Burgsdorf I, Teta R, Esposito G, Bar-Shalom R, Costantino V, Steindler L. 2016. Isolation of marine Paracoccus sp. Ss63 from the sponge Sarcotragus sp. and characterization of its quorum-sensing chemical-signaling molecules by LC-MS/MS analysis. Isr J Chem 56:330–340. doi:10.1002/ijch.201600003. DOI
Bachofen R, Schenk A. 1998. Quorum sensing autoinducers: do they play a role in natural microbial habitats? Microbiol Res 153:61–63. doi:10.1016/S0944-5013(98)80022-0. DOI
Schaefer AL, Greenberg EP, Oliver CM, Oda Y, Huang JJ, Bittan-Banin G, Peres CM, Schmidt S, Juhaszova K, Sufrin JR, Harwood CS. 2008. A new class of homoserine lactone quorum-sensing signals. Nature 454:595–599. doi:10.1038/nature07088. PubMed DOI
Rolland JL, Stien D, Sanchez-Ferandin S, Lami R. 2016. Quorum sensing and quorum quenching in the phycosphere of phytoplankton: a case of chemical interactions in ecology. J Chem Ecol 42:1201–1211. doi:10.1007/s10886-016-0791-y. PubMed DOI
Landa M, Burns AS, Roth SJ, Moran MA. 2017. Bacterial transcriptome remodeling during sequential co-culture with a marine dinoflagellate and diatom. ISME J 11:2677–2690. doi:10.1038/ismej.2017.117. PubMed DOI PMC
Zhou J, Lyu Y, Richlen M, Anderson DM, Cai Z. 2016. Quorum sensing is a language of chemical signals and plays an ecological role in algal-bacterial interactions. CRC Crit Rev Plant Sci 35:81–105. doi:10.1080/07352689.2016.1172461. PubMed DOI PMC
Rohrlack T, Christoffersen K, Kaebernick M, Neilan BA. 2004. Cyanobacterial protease inhibitor microviridin J causes a lethal molting disruption in Daphnia pulicaria. Appl Environ Microbiol 70:5047–5050. doi:10.1128/AEM.70.8.5047-5050.2004. PubMed DOI PMC
Saurav K, Costantino V, Venturi V, Steindler L. 2017. Quorum sensing inhibitors from the sea discovered using bacterial N-acyl-homoserine lactone-based biosensors. Mar Drugs 15:53. doi:10.3390/md15030053. PubMed DOI PMC
van der Meij A, Worsley SF, Hutchings MI, van Wezel GP. 2017. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol Rev 41:392–416. doi:10.1093/femsre/fux005. PubMed DOI
Okada BK, Seyedsayamdost MR. 2017. Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiol Rev 41:19–33. doi:10.1093/femsre/fuw035. PubMed DOI PMC
Ziemert N, Ishida K, Weiz A, Hertweck C, Dittmann E. 2010. Exploiting the natural diversity of microviridin gene clusters for discovery of novel tricyclic depsipeptides. Appl Environ Microbiol 76:3568–3574. doi:10.1128/AEM.02858-09. PubMed DOI PMC