Isolation, Genomic and Metabolomic Characterization of Streptomyces tendae VITAKN with Quorum Sensing Inhibitory Activity from Southern India

. 2020 Jan 16 ; 8 (1) : . [epub] 20200116

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31963137

Grantová podpora
19-17868Y Grantová Agentura České Republiky
MSCA IF II project (CZ.02.2.69/0.0/0.0/18_070/0010493) Ministry of Education, Youth and Sports of the Czech Republic
Project No. 41 Cross-Border cooperation Czech-Bavaria- Interreg

Odkazy

PubMed 31963137
PubMed Central PMC7023471
DOI 10.3390/microorganisms8010121
PII: microorganisms8010121
Knihovny.cz E-zdroje

Streptomyces are among the most promising genera in terms of production ability to biosynthesize a variety of bioactive secondary metabolites with pharmaceutical interest. Coinciding with the increase in genomic sequencing of these bacteria, mining of their genomes for biosynthetic gene clusters (BGCs) has become a routine component of natural product discovery. Herein, we describe the isolation and characterization of a Streptomyces tendae VITAKN with quorum sensing inhibitory (QSI) activity that was isolated from southern coastal part of India. The nearly complete genome consists of 8,621,231bp with a GC content of 72.2%. Sequence similarity networks of the BGCs detected from this strain against the Minimum Information about a Biosynthetic Gene Cluster (MIBiG) database and 3365 BGCs predicted by antiSMASH analysis of publicly available complete Streptomyces genomes were generated through the BiG-SCAPE-CORASON platform to evaluate its biosynthetic novelty. Crude extract analysis using high-performance liquid chromatography connected to high resolution tandem mass spectrometry (HPLC-HRMS/MS) and dereplication through the Global Natural Product Social Molecular Networking (GNPS) online workflow resulted in the identification of cyclic dipeptides (2, 5-diketopiperazines, DKPs) in the extract, which are known to possess QSI activity. Our results highlight the potential of genome mining coupled with LC-HRMS/MS and in silico tools (GNPS) as a valid approach for the discovery of novel QSI lead compounds. This study also provides the biosynthetic diversity of BGCs and an assessment of the predicted chemical space yet to be discovered.

Zobrazit více v PubMed

Benndorf R., Guo H., Sommerwerk E., Weigel C., Garcia-Altares M., Martin K., Hu H., Kufner M., de Beer Z.W., Poulsen M., et al. Natural Products from Actinobacteria Associated with Fungus-Growing Termites. Antibiotics. 2018;7:83. doi: 10.3390/antibiotics7030083. PubMed DOI PMC

Teta R., Marteinsson V.T., Longeon A., Klonowski A.M., Groben R., Bourguet-Kondracki M.L., Costantino V., Mangoni A. Thermoactinoamide A, an Antibiotic Lipophilic Cyclopeptide from the Icelandic Thermophilic Bacterium Thermoactinomyces vulgaris. J. Nat. Prod. 2017;80:2530–2535. doi: 10.1021/acs.jnatprod.7b00560. PubMed DOI

Chokshi A., Sifri Z., Cennimo D., Horng H. Global Contributors to Antibiotic Resistance. J. Glob. Infect. Dis. 2019;11:36–42. PubMed PMC

Waters C.M., Bassler B.L. Quorum sensing: Cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 2005;21:319–346. doi: 10.1146/annurev.cellbio.21.012704.131001. PubMed DOI

LaSarre B., Federle M.J. Exploiting quorum sensing to confuse bacterial pathogens. Microbiol. Mol. Biol. Rev. 2013;77:73–111. doi: 10.1128/MMBR.00046-12. PubMed DOI PMC

Saurav K., Bar-Shalom R., Haber M., Burgsdorf I., Oliviero G., Costantino V., Morgenstern D., Steindler L. In Search of Alternative Antibiotic Drugs: Quorum-Quenching Activity in Sponges and their Bacterial Isolates. Front. Microbiol. 2016;7:416. doi: 10.3389/fmicb.2016.00416. PubMed DOI PMC

Della Sala G., Teta R., Esposito G., Costantino V. Chapter 1—The Chemical Language of Gram-Negative Bacteria. In: Tommonaro G., editor. Quorum Sensing. Academic Press; Cambridge, MA, USA: 2019. pp. 3–28.

Strömstedt A.A., Felth J., Bohlin L. Bioassays in Natural Product Research—Strategies and Methods in the Search for Anti-inflammatory and Antimicrobial Activity. Phytochem. Anal. 2014;25:13–28. doi: 10.1002/pca.2468. PubMed DOI

Mohimani H., Gurevich A., Mikheenko A., Garg N., Nothias L.F., Ninomiya A., Takada K., Dorrestein P.C., Pevzner P.A. Dereplication of peptidic natural products through database search of mass spectra. Nat. Chem. Biol. 2017;13:30–37. doi: 10.1038/nchembio.2219. PubMed DOI PMC

Mohimani H., Gurevich A., Shlemov A., Mikheenko A., Korobeynikov A., Cao L., Shcherbin E., Nothias L.F., Dorrestein P.C., Pevzner P.A. Dereplication of microbial metabolites through database search of mass spectra. Nat. Commun. 2018;9:4035. doi: 10.1038/s41467-018-06082-8. PubMed DOI PMC

Schorn M.A., Alanjary M.M., Aguinaldo K., Korobeynikov A., Podell S., Patin N., Lincecum T., Jensen P.R., Ziemert N., Moore B.S. Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters. Microbiology. 2016;162:2075–2086. doi: 10.1099/mic.0.000386. PubMed DOI PMC

Carroll A.R., Copp B.R., Davis R.A., Keyzers R.A., Prinsep M.R. Marine natural products. Nat. Prod. Rep. 2019;36:122–173. doi: 10.1039/C8NP00092A. PubMed DOI

Esposito G., Bourguet-Kondracki M.L., Mai L.H., Longeon A., Teta R., Meijer L., Van Soest R., Mangoni A., Costantino V. Chloromethylhalicyclamine B, a Marine-Derived Protein Kinase CK1delta/epsilon Inhibitor. J. Nat. Prod. 2016;79:2953–2960. doi: 10.1021/acs.jnatprod.6b00939. PubMed DOI

Gebreyohannes G., Moges F., Sahile S., Raja N. Isolation and characterization of potential antibiotic producing actinomycetes from water and sediments of Lake Tana, Ethiopia. Asian Pac. J. Trop. Biomed. 2013;3:426–435. doi: 10.1016/S2221-1691(13)60092-1. PubMed DOI PMC

Hong K., Gao A.H., Xie Q.Y., Gao H., Zhuang L., Lin H.P., Yu H.P., Li J., Yao X.S., Goodfellow M., et al. Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. Mar. Drugs. 2009;7:24–44. doi: 10.3390/md7010024. PubMed DOI PMC

Kumar S., Kannabiran K. Antifungal activity of Streptomyces VITSVK5 spp. against drug resistant Aspergillus clinical isolates from pulmonary tuberculosis patients. J. Mycol. Med. 2010;20:101–107. doi: 10.1016/j.mycmed.2010.04.005. DOI

Winson M.K., Swift S., Fish L., Throup J.P., Jorgensen F., Chhabra S.R., Bycroft B.W., Williams P., Stewart G.S. Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol. Lett. 1998;163:185–192. doi: 10.1111/j.1574-6968.1998.tb13044.x. PubMed DOI

Saurav K., Costantino V., Venturi V., Steindler L. Quorum Sensing Inhibitors from the Sea Discovered Using Bacterial N-acyl-homoserine Lactone-Based Biosensors. Mar. Drugs. 2017;15:53. doi: 10.3390/md15030053. PubMed DOI PMC

Costantino V., Della Sala G., Saurav K., Teta R., Bar-Shalom R., Mangoni A., Steindler L. Plakofuranolactone as a Quorum Quenching Agent from the Indonesian Sponge Plakortis cf. lita. Mar. Drugs. 2017;15:59. doi: 10.3390/md15030059. PubMed DOI PMC

Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Wingett S.W., Andrews S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Res. 2018;7 doi: 10.12688/f1000research.15931.2. PubMed DOI PMC

Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D., et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC

Parks D.H., Imelfort M., Skennerton C.T., Hugenholtz P., Tyson G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–1055. doi: 10.1101/gr.186072.114. PubMed DOI PMC

Kopylova E., Noe L., Touzet H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–3217. doi: 10.1093/bioinformatics/bts611. PubMed DOI

Bushmanova E., Antipov D., Lapidus A., Prjibelski A.D. rnaSPAdes: A de novo transcriptome assembler and its application to RNA-Seq data. Gigascience. 2019;8:giz100. doi: 10.1093/gigascience/giz100. PubMed DOI PMC

Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., Yi H., et al. Introducing EzTaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 2012;62:716–721. doi: 10.1099/ijs.0.038075-0. PubMed DOI

Brettin T., Davis J.J., Disz T., Edwards R.A., Gerdes S., Olsen G.J., Olson R., Overbeek R., Parrello B., Pusch G.D., et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 2015;5:8365. doi: 10.1038/srep08365. PubMed DOI PMC

Overbeek R., Olson R., Pusch G.D., Olsen G.J., Davis J.J., Disz T., Edwards R.A., Gerdes S., Parrello B., Shukla M., et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST) Nucleic Acids Res. 2014;42:D206–D214. doi: 10.1093/nar/gkt1226. PubMed DOI PMC

Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC

Eddy S.R. Accelerated Profile HMM Searches. PLoSComput. Biol. 2011;7:e1002195. doi: 10.1371/journal.pcbi.1002195. PubMed DOI PMC

Blin K., Wolf T., Chevrette M.G., Lu X., Schwalen C.J., Kautsar S.A., Suarez Duran H.G., de Los Santos E.L.C., Kim H.U., Nave M., et al. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 2017;45:W36–W41. doi: 10.1093/nar/gkx319. PubMed DOI PMC

Navarro-Muñoz J.C., Selem-Mojica N., Mullowney M.W., Kautsar S.A., Tryon J.H., Parkinson E.I., De Los Santos E.L.C., Yeong M., Cruz-Morales P., Abubucker S., et al. A computational framework to explore large-scale biosynthetic diversity. Nat. Chem. Biol. 2020;16:60–68. doi: 10.1038/s41589-019-0400-9. PubMed DOI PMC

Medema M.H., Kottmann R., Yilmaz P., Cummings M., Biggins J.B., Blin K., de Bruijn I., Chooi Y.H., Claesen J., Coates R.C., et al. Minimum Information about a Biosynthetic Gene cluster. Nat. Chem. Biol. 2015;11:625–631. doi: 10.1038/nchembio.1890. PubMed DOI PMC

Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC

Nothias L.F., Petras D., Schmid R., Dührkop K., Rainer J., Sarvepalli A., Protsyuk I., Ernst M., Tsugawa H., Fleischauer M., et al. Feature-based Molecular Networking in the GNPS Analysis Environment. bioRxiv. 2019:812404. doi: 10.1101/812404. PubMed DOI PMC

Wang M., Carver J.J., Phelan V.V., Sanchez L.M., Garg N., Peng Y., Nguyen D.D., Watrous J., Kapono C.A., Luzzatto-Knaan T., et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016;34:828–837. doi: 10.1038/nbt.3597. PubMed DOI PMC

Caso A., Esposito G., Della Sala G., Pawlik J.R., Teta R., Mangoni A., Costantino V. Fast Detection of Two Smenamide Family Members Using Molecular Networking. Mar. Drugs. 2019;17:618. doi: 10.3390/md17110618. PubMed DOI PMC

Pluskal T., Castillo S., Villar-Briones A., Oresic M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010;11:395. doi: 10.1186/1471-2105-11-395. PubMed DOI PMC

Horai H., Arita M., Kanaya S., Nihei Y., Ikeda T., Suwa K., Ojima Y., Tanaka K., Tanaka S., Aoshima K., et al. MassBank: A public repository for sharing mass spectral data for life sciences. J. Mass Spectrom. 2010;45:703–714. doi: 10.1002/jms.1777. PubMed DOI

Shirling E.B., Gottlieb D. Methods for characterization of Streptomyces species1. Int. J. Syst. Evol. Microbiol. 1966;16:313–340.

Kodani S., Hudson M.E., Durrant M.C., Buttner M.J., Nodwell J.R., Willey J.M. The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor. Proc. Natl. Acad. Sci. USA. 2004;101:11448–11453. doi: 10.1073/pnas.0404220101. PubMed DOI PMC

Zhao B., Moody S.C., Hider R.C., Lei L., Kelly S.L., Waterman M.R., Lamb D.C. Structural analysis of cytochrome P450 105N1 involved in the biosynthesis of the zincophore, coelibactin. Int. J. Mol. Sci. 2012;13:8500–8513. doi: 10.3390/ijms13078500. PubMed DOI PMC

Bentley S.D., Chater K.F., Cerdeño-Tárraga A.M., Challis G.L., Thomson N.R., James K.D., Harris D.E., Quail M.A., Kieser H., Harper D., et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) Nature. 2002;417:141–147. doi: 10.1038/417141a. PubMed DOI

Ikeda H., Ishikawa J., Hanamoto A., Shinose M., Kikuchi H., Shiba T., Sakaki Y., Hattori M., Omura S. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 2003;21:526–531. doi: 10.1038/nbt820. PubMed DOI

Ziemert N., Alanjary M., Weber T. The evolution of genome mining in microbes—A review. Nat. Prod. Rep. 2016;33:988–1005. doi: 10.1039/C6NP00025H. PubMed DOI

Kautsar S.A., Blin K., Shaw S., Navarro-Muñoz J.C., Terlouw B.R., van der Hooft J.J.J., van Santen J.A., Tracanna V., Suarez Duran H.G., Pascal Andreu V., et al. MIBiG 2.0: A repository for biosynthetic gene clusters of known function. Nucleic Acids Res. 2019;48:D454–D458. doi: 10.1093/nar/gkz882. PubMed DOI PMC

Medema M.H., Fischbach M.A. Computational approaches to natural product discovery. Nat. Chem. Biol. 2015;11:639–648. doi: 10.1038/nchembio.1884. PubMed DOI PMC

Frank A.M., Bandeira N., Shen Z., Tanner S., Briggs S.P., Smith R.D., Pevzner P.A. Clustering millions of tandem mass spectra. J. Proteome Res. 2008;7:113–122. doi: 10.1021/pr070361e. PubMed DOI PMC

Campbell J., Lin Q., Geske G.D., Blackwell H.E. New and unexpected insights into the modulation of LuxR-type quorum sensing by cyclic dipeptides. ACS Chem. Biol. 2009;4:1051–1059. doi: 10.1021/cb900165y. PubMed DOI PMC

Yao T., Liu J., Liu Z., Li T., Li H., Che Q., Zhu T., Li D., Gu Q., Li W. Genome mining of cyclodipeptide synthases unravels unusual tRNA-dependent diketopiperazine-terpene biosynthetic machinery. Nat. Commun. 2018;9:4091. doi: 10.1038/s41467-018-06411-x. PubMed DOI PMC

Canu N., Moutiez M., Belin P., Gondry M. Cyclodipeptide synthases: A promising biotechnological tool for the synthesis of diverse 2,5-diketopiperazines. Nat. Prod. Rep. 2019 doi: 10.1039/C9NP00036D. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...