Semi-synthetic puwainaphycin/minutissamide cyclic lipopeptides with improved antifungal activity and limited cytotoxicity
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35498921
PubMed Central
PMC9041360
DOI
10.1039/d1ra04882a
PII: d1ra04882a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Microbial cyclic lipopeptides are an important class of antifungal compounds with applications in pharmacology and biotechnology. However, the cytotoxicity of many cyclic lipopeptides limits their potential as antifungal drugs. Here we present a structure-activity relationship study on the puwainaphycin/minutissamide (PUW/MIN) family of cyclic lipopeptides isolated from cyanobacteria. PUWs/MINs with variable fatty acid chain lengths differed in the dynamic of their cytotoxic effect despite their similar IC50 after 48 hours (2.8 μM for MIN A and 3.2 μM for PUW F). Furthermore, they exhibited different antifungal potency with the lowest MIC values obtained for MIN A and PUW F against the facultative human pathogen Aspergillus fumigatus (37 μM) and the plant pathogen Alternaria alternata (0.6 μM), respectively. We used a Grignard-reaction with alkylmagnesium halides to lengthen the lipopeptide FA moiety as well as the Steglich esterification on the free hydroxyl substituents to prepare semi-synthetic lipopeptide variants possessing multiple fatty acid tails. Cyclic lipopeptides with extended and branched FA tails showed improved strain-specific antifungal activity against A. fumigatus (MIC = 0.5-3.8 μM) and A. alternata (MIC = 0.1-0.5 μM), but with partial retention of the cytotoxic effect (∼10-20 μM). However, lipopeptides with esterified free hydroxyl groups possessed substantially higher antifungal potencies, especially against A. alternata (MIC = 0.2-0.6 μM), and greatly reduced or abolished cytotoxic activity (>20 μM). Our findings pave the way for a generation of semi-synthetic variants of lipopeptides with improved and selective antifungal activities.
Zobrazit více v PubMed
Cochrane S. A. Vederas J. C. Med. Res. Rev. 2016;36:4–31. doi: 10.1002/med.21321. PubMed DOI
Li G. Kusari S. Golz C. Strohmann C. Spiteller M. RSC Adv. 2016;6:54092–54098. doi: 10.1039/C6RA10905E. DOI
Bahadoor A. Brauer E. K. Bosnich W. Schneiderman D. Johnston A. Aubin Y. Blackwell B. Melanson J. E. Harris L. J. J. Am. Chem. Soc. 2018;140:16783–16791. doi: 10.1021/jacs.8b10017. PubMed DOI
Balleza D. Alessandrini A. Garcia M. J. B. J. Membr. Biol. 2019;252:131–157. doi: 10.1007/s00232-019-00067-4. PubMed DOI
Sikorska E. Dawgul M. Greber K. Ilowska E. Pogorzelska A. Kamysz W. Biochim. Biophys. Acta, Biomembr. 2014;1838:2625–2634. doi: 10.1016/j.bbamem.2014.06.016. PubMed DOI
Magetdana R. Peypoux F. Toxicology. 1994;87:151–174. doi: 10.1016/0300-483X(94)90159-7. PubMed DOI
Horn J. N. Cravens A. Grossfield A. Biophys. J. 2013;105:1612–1623. doi: 10.1016/j.bpj.2013.08.034. PubMed DOI PMC
Carrillo C. Teruel J. A. Aranda F. J. Ortiz A. Biochim. Biophys. Acta, Biomembr. 2003;1611:91–97. doi: 10.1016/S0005-2736(03)00029-4. PubMed DOI
Cappelletty D. Eiselstein-McKitrick K. Pharmacotherapy. 2007;27:369–388. doi: 10.1592/phco.27.3.369. PubMed DOI
Arrebola E. Jacobs R. Korsten L. J. Appl. Microbiol. 2010;108:386–395. doi: 10.1111/j.1365-2672.2009.04438.x. PubMed DOI
Desmyttere H. Deweer C. Muchembled J. Sahmer K. Jacquin J. Coutte F. Jacques P. Front. Microbiol. 2019;10:2327. doi: 10.3389/fmicb.2019.02327. PubMed DOI PMC
Pathak K. V. Keharia H. 3 Biotech. 2014;4:283–295. doi: 10.1007/s13205-013-0151-3. PubMed DOI PMC
Besson F. Peypoux F. Michel G. Delcambe L. J. Antibiot. 1979;32:136–140. doi: 10.7164/antibiotics.32.828. PubMed DOI
Deleu M. Lorent J. Lins L. Brasseur R. Braun N. El Kirat K. Nylander T. Dufrene Y. F. P Mingeot-Leclercq M. Biochim. Biophys. Acta, Biomembr. 2013;1828:801–815. doi: 10.1016/j.bbamem.2012.11.007. PubMed DOI
Urajova P. Hajek J. Wahlsten M. Jokela J. Galica T. Fewer D. P. Kust A. Zapomelova-Kozlikova E. Delawska K. Sivonen K. Kopecky J. Hrouzek P. J. Chromatogr. A. 2016;1438:76–83. doi: 10.1016/j.chroma.2016.02.013. PubMed DOI
Mares J. Hajek J. Urajova P. Kust A. Jokela J. Saurav K. Galica T. Capkova K. Mattila A. Haapaniemi E. Permi P. Mysterud I. Skulberg O. M. Karlsen J. Fewer D. P. Sivonen K. Tonnesen H. H. Hrouzek P. Appl. Environ. Microbiol. 2019;85:e02675-18. doi: 10.1128/AEM.02675-18. PubMed DOI PMC
Kang H. S. Krunic A. Shen Q. Swanson S. M. Orjala J. J. Nat. Prod. 2011;74:1597–1605. doi: 10.1021/np2002226. PubMed DOI PMC
Kang H. S. Sturdy M. Krunic A. Kim H. Shen Q. Swanson S. M. Orjala J. Bioorg. Med. Chem. 2012;20:6134–6143. doi: 10.1016/j.bmc.2012.08.017. PubMed DOI PMC
Tomek P. Hrouzek P. Kuzma M. Sykora J. Fiser R. Cerny J. Novak P. Bartova S. Simek P. Hof M. Kavan D. Kopecky J. Chem. Res. Toxicol. 2015;28:216–224. PubMed
Hrouzek P. Kuzma M. Cerny J. Novak P. Fiser R. Simek P. Lukesova A. Kopecky J. Chem. Res. Toxicol. 2012;25:1203–1211. PubMed
Jokela J. Oftedal L. Herfindal L. Permi P. Wahlsten M. Doskeland S. O. S. O. Sivonen K. PLoS One. 2012;7:e41222. doi: 10.1371/journal.pone.0041222. PubMed DOI PMC
Bornancin L. Boyaud F. Mahiout Z. Bonnard I. Mills S. C. Banaigs B. Inguimbert N. Mar. Drugs. 2015;13:7285–7300. doi: 10.3390/md13127065. PubMed DOI PMC
Frankmolle W. P. Knubel G. Moore R. E. Patterson G. M. L. J. Antibiot. 1992;45:1458–1466. doi: 10.7164/antibiotics.45.1458. PubMed DOI
Fewer D. P. Jokela J. Heinilä L. Aesoy R. Sivonen K. Galica T. Hrouzek P. Herfindal L. Physiol. Plant. 2021:1–12. PubMed
Vestola J. Shishido T. K. Jokela J. Fewer D. P. Aitio O. Permi P. Wahlsten M. Wang H. Rouhiainen L. Svonen K. Proc. Natl. Acad. Sci. U. S. A. 2014;111:E1909–E1917. doi: 10.1073/pnas.1320913111. PubMed DOI PMC
Frankmolle W. P. Larsen L. K. Caplan F. R. Patterson G. M. L. Knubel G. Levine I. A. Moore R. E. J. Antibiot. 1992;45:1451–1457. doi: 10.7164/antibiotics.45.1451. PubMed DOI
Cheel J. Hajek J. Kuzma M. Saurav K. Smykalova I. Ondrackova E. Urajova P. Vu D. L. Faure K. Kopecky J. Hrouzek P. Molecules. 2018;23 doi: 10.3390/molecules23102653. PubMed DOI PMC
Shishido T. K. Jokela J. Kolehmainen C. T. Fewer D. P. Wahlsten M. Wang H. Rouhiainen L. Rizzi E. De Bellis G. Permi P. Sivonen K. Proc. Natl. Acad. Sci. U. S. A. 2015;112:13669–13674. doi: 10.1073/pnas.1510432112. PubMed DOI PMC
Gregson J. M. Chen J. L. Patterson G. M. L. Moore R. E. Tetrahedron. 1992;48:3727–3734. doi: 10.1016/S0040-4020(01)92264-1. DOI
Mares J. Hajek J. Urajova P. Kopecky J. Hrouzek P. PLoS One. 2014;9 doi: 10.1371/journal.pone.0111904. PubMed DOI PMC
Cheel J. Urajova P. Hajek J. Hrouzek P. Kuzma M. Bouju E. Faure K. Kopecky J. Anal. Bioanal. Chem. 2017;409:917–930. doi: 10.1007/s00216-016-0066-z. PubMed DOI
Nicolai C. Sachs F. Biophys. Rev. Lett. 2013;8:191–211. doi: 10.1142/S1793048013300053. DOI
Saurav K. Macho K. Kust A. Delawska K. Hajek J. Hrouzek P. Folia Microbiol. 2019;64:645–654. doi: 10.1007/s12223-019-00737-9. PubMed DOI
Neises B. Steglich W. Angew. Chem., Int. Ed. 1978;17:522–524. doi: 10.1002/anie.197805221. DOI
Luo S. W. Kang H. S. Krunic A. Chen W. L. Yang J. L. Woodard J. L. Fuchs J. R. Cho S. H. Franzblau S. G. Swanson S. M. Orjala J. Bioorg. Med. Chem. 2015;23:3153–3162. doi: 10.1016/j.bmc.2015.04.073. PubMed DOI PMC
Luo S. W. Krunic A. Kang H. S. Chen W. L. Woodard J. L. Fuchs J. R. Swanson S. M. Orjala J. J. Nat. Prod. 2014;77:1871–1880. doi: 10.1021/np5003548. PubMed DOI PMC
MacMillan J. B. Ernst-Russell M. A. de Ropp J. S. Molinski T. F. J. Org. Chem. 2002;67:8210–8215. doi: 10.1021/jo0261909. PubMed DOI
Bonnard I. Rolland M. Salmon J. M. Debiton E. Barthomeuf C. Banaigs B. J. Med. Chem. 2007;50:1266–1279. doi: 10.1021/jm061307x. PubMed DOI
Alvarino R. Alonso E. Bornancin L. Bonnard I. Inguimbert N. Banaigs B. Botana L. M. Mar. Drugs. 2020;18 doi: 10.3390/md18070364. PubMed DOI PMC
Son S. Ko S. K. Jang M. Kim J. W. Kim G. S. Lee J. K. Jeon E. S. Futamura Y. Ryoo I. J. Lee J. S. Oh H. Hong Y. S. Kim B. Y. Takahashi S. Osada H. Jang J. H. Ahn J. S. Mar. Drugs. 2016;14 doi: 10.3390/md14040072. PubMed DOI PMC