Application of HPCCC Combined with Polymeric Resins and HPLC for the Separation of Cyclic Lipopeptides Muscotoxins A⁻C and Their Antimicrobial Activity
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-09381S
Grantová Agentura České Republiky
ID LO1416
National Program of Sustainability, MSMT Czech Republic
CZ.1.05/2.1.00/19.0392
ALGAMIC project, MSMT Czech Republic
PubMed
30332796
PubMed Central
PMC6222847
DOI
10.3390/molecules23102653
PII: molecules23102653
Knihovny.cz E-zdroje
- Klíčová slova
- antimicrobial activity, cyanobacteria, cyclic lipopeptides (CLPs), high performance countercurrent chromatography (HPCCC), muscotoxins, γ-methylproline,
- MeSH
- antiinfekční látky chemie izolace a purifikace farmakologie MeSH
- Ascomycota účinky léků MeSH
- Bacillus subtilis účinky léků MeSH
- bakteriální toxiny chemie izolace a purifikace farmakologie MeSH
- cyklické peptidy chemie farmakologie MeSH
- lipopeptidy chemie farmakologie MeSH
- mikrobiální testy citlivosti MeSH
- molekulární struktura MeSH
- sinice metabolismus MeSH
- syntetické pryskyřice chemie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiinfekční látky MeSH
- bakteriální toxiny MeSH
- cyklické peptidy MeSH
- lipopeptidy MeSH
- syntetické pryskyřice MeSH
Muscotoxins are cyanobacterial cyclic lipopeptides with potential applications in biomedicine and biotechnology. In this study, Desmonostoc muscorum CCALA125 strain extracts were enriched by polymeric resin treatment, and subjected to HPCCC affording three cyclic lipopeptides (1⁻3), which were further repurified by semi-preparative HPLC, affording 1, 2, and 3, with a purity of 86%, 92%, and 90%, respectively. The chemical identities of 2⁻3 were determined as muscotoxins A and B, respectively, by comparison with previously reported ESI-HRMS/MS data, whereas 1 was determined as a novel muscotoxin variant (muscotoxin C) using NMR and ESI-HRMS/MS data. Owing to the high yield (50 mg), compound 2 was broadly screened for its antimicrobial potential exhibiting a strong antifungal activity against Alternaria alternata, Monographella cucumerina, and Aspergillus fumigatus, with minimum inhibitory concentration (MIC) values of 0.58, 2.34, and 2.34 µg/mL; respectively, and weak antibacterial activity against Bacillus subtilis with a MIC value of 37.5 µg/mL. Compounds 1 and 3 were tested only against the plant pathogenic fungus Sclerotinia sclerotiorum due to their low yield, displaying a moderate antifungal activity. The developed chromatographic method proved to be an efficient tool for obtaining muscotoxins with potent antifungal properties.
Zobrazit více v PubMed
Chlipala G.E., Mo S., Orjala J. Chemodiversity in freshwater and terrestrial cyanobacteria—A source for drug discovery. Curr. Drug Targets. 2011;12:1654–1673. doi: 10.2174/138945011798109455. PubMed DOI PMC
Du L., Sanchez C., Shen B. Hybrid peptide-polyketide natural products: Biosynthesis and prospects toward engineering novel molecules. Met. Eng. 2001;3:78–95. doi: 10.1006/mben.2000.0171. PubMed DOI
Romano A., Vitullo D., Senatore M., Lima G., Lanzotti V. Antifungal cyclic lipopeptides from Bacillus amyloliquefaciens strain BO5A. J. Nat. Prod. 2013;76:2019–2025. doi: 10.1021/np400119n. PubMed DOI
Nielsen T.H., Sørensen D., Tobiasen C., Andersen J.B., Christophersen C., Givskov M., Sørensen J. Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl. Environ. Microbiol. 2002;68:3416–3423. doi: 10.1128/AEM.68.7.3416-3423.2002. PubMed DOI PMC
Hrouzek P., Kuzma M., Černý J., Novák P., Fišer R., Simek P., Lukešová A., Kopecký J. The cyanobacterial cyclic lipopeptides puwainaphycins F/G are inducing necrosis via cell membrane permeabilization and subsequent unusual actin relocalization. Chem. Res. Toxicol. 2012;25:1203–1211. doi: 10.1021/tx300044t. PubMed DOI
Kang H.S., Krunic A., Shen Q., Swanson S.M., Orjala J. Minutissamides A–D, antiproliferative cyclic decapeptides from the cultured cyanobacterium Anabaena minutissima. J. Nat. Prod. 2011;74:1597–1605. doi: 10.1021/np2002226. PubMed DOI PMC
Kang H.S., Sturdy M., Krunic A., Kim H., Shen Q., Swanson S.M., Orjala J. Minutissamides E–L, antiproliferative cyclic lipodecapeptides from the cultured freshwater cyanobacterium cf. Anabaena sp. Bioorg. Med. Chem. 2012;20:6134–6143. doi: 10.1016/j.bmc.2012.08.017. PubMed DOI PMC
Maschmeyer G., Glasmacher A. Pharmacological properties and clinical efficacy of a recently licensed systemic antifungal, caspofungin. Mycoses. 2005;48:227–234. doi: 10.1111/j.1439-0507.2005.01131.x. PubMed DOI
Felnagle E.A., Jackson E.E., Chan Y.A., Podevels A.M., Berti A.D., McMahon M.D., Thomas M.G. Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Mol. Pharm. 2008;5:191–211. doi: 10.1021/mp700137g. PubMed DOI PMC
Schneider T., Müller A., Miess H., Gross H. Cyclic lipopeptides as antibacterial agents—Potent antibiotic activity mediated by intriguing mode of actions. Int. J. Med. Microbiol. 2014;304:37–43. doi: 10.1016/j.ijmm.2013.08.009. PubMed DOI
Joo S.H. Cyclic peptides as therapeutic agents and biochemical tools. Biomol. Ther. 2012;20:19–26. doi: 10.4062/biomolther.2012.20.1.019. PubMed DOI PMC
Liskamp R.M.J., Rijkers D.T.S., Bakker S.E. Bioactive macrocyclic peptides and peptide mimics. In: Diederich F., Stang P.J., Tykwinski R.R., editors. Modern Supramolecular Chemistry: Strategies for Macrocycle Synthesis. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2008. pp. 1–27.
Tomek P., Hrouzek P., Kuzma M., Sýkora J., Fiser R., Cerný J., Novák P., Bártová S., Simek P., Hof M., et al. Cytotoxic lipopeptide muscotoxin A, isolated from soil cyanobacterium Desmonostoc muscorum, permeabilizes phospholipid membranes by reducing their fluidity. Chem. Res. Toxicol. 2015;28:216–224. doi: 10.1021/tx500382b. PubMed DOI
Ito Y. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. J. Chromatogr. A. 2005;1065:145–168. doi: 10.1016/j.chroma.2004.12.044. PubMed DOI
Michel T., Destandau E., Elfakir C. New advances in countercurrent chromatography and centrifugal partition chromatography: Focus on coupling strategy. Anal. Bioanal. Chem. 2014;406:957–969. doi: 10.1007/s00216-013-7017-8. PubMed DOI
Tapia A., Cheel J., Theoduloz C., Rodríguez J., Schmeda-Hirschmann G., Gerth A., Wilken D., Jordan M., Jiménez-González E., Gomez-Kosky R., et al. Free radical scavengers from Cymbopogon citratus (DC.) Stapf. plants cultivated in bioreactors by the temporary immersion (TIS)-principle. Z. Naturforsch. C. 2007;62:447–457. doi: 10.1515/znc-2007-5-620. PubMed DOI
Spórna-Kucab A., Ignatova S., Garrard I., Wybraniec S. Versatile solvent systems for the separation of betalains from processed Beta vulgaris L. juice using counter-current chromatography. J. Chromatogr. B. 2013;941:54–61. doi: 10.1016/j.jchromb.2013.10.001. PubMed DOI
Costa F., Garrard I., da Silva A.J., Leitão G.G. Changes in the mobile phase composition on a stepwise counter-current chromatography elution for the isolation of flavonoids from Siparuna Glycycarpa. J. Sep. Sci. 2013;36:2253–2259. doi: 10.1002/jssc.201201054. PubMed DOI
Chen F., Li H.B., Wong R.N., Ji B., Jiang Y. Isolation and purification of the bioactive carotenoid zeaxanthin from the microalga Microcystis aeruginosa by high-speed counter-current chromatography. J. Chromatogr. A. 2005;1064:183–186. doi: 10.1016/j.chroma.2004.12.065. PubMed DOI
Li H.B., Fan K.W., Chen F. Isolation and purification of canthaxanthin from the microalga Chlorella zofingiensis by high-speed counter-current chromatography. J. Sep. Sci. 2006;29:699–703. doi: 10.1002/jssc.200500365. PubMed DOI
Cheel J., Urajová P., Hájek J., Hrouzek P., Kuzma M., Bouju E., Faure K., Kopecký J. Separation of cyclic lipopeptide puwainaphycins from cyanobacteria by countercurrent chromatography combined with polymeric resins and HPLC. Anal. Bioanal. Chem. 2017;409:917–930. doi: 10.1007/s00216-016-0066-z. PubMed DOI
Moore R.E., Bornemann V., Niemczura W.P., Gregson J.M., Chen J.L., Norton T.R., Patterson G.M.L., Helms G.L. Puwainaphycin C, a cardioactive cyclic peptide from the blue-green alga Anabaena BQ-16-1. Use of two-dimensional 13C-13C and 13C-15N correlation spectroscopy in sequencing the amino acid units. J. Am. Chem. Soc. 1989;111:6128–6132. doi: 10.1021/ja00198a021. DOI
Martin N.I., Hu H., Moake M.M., Churey J.J., Whittal R., Worobo R.W., Vederas J.C. Isolation, structural characterization, and properties of mattacin (polymyxin M), a cyclic peptide antibiotic produced by Paenibacillus kobensis M. J. Biol. Chem. 2003;278:13124–13132. doi: 10.1074/jbc.M212364200. PubMed DOI
Sasse F., Steinmetz H., Schupp T., Petersen F., Memmert K., Hofmann H., Heusser C., Brinkmann V., von Matt P., Höfle G., et al. Argyrins, immunosuppressive cyclic peptides from myxobacteria. I. Production, isolation, physico-chemical and biological properties. J. Antibiot. 2002;55:543–551. doi: 10.7164/antibiotics.55.543. PubMed DOI
Sasse F., Steinmetz H., Höfle G., Reichenbach H. Archazolids, new cytotoxic macrolactones from Archangium gephyra (Myxobacteria). Production, isolation, physico-chemical and biological properties. J. Antibiot. 2003;56:520–525. doi: 10.7164/antibiotics.56.520. PubMed DOI
Ito Y., Conway W.D. Experimental observations of the hydrodynamic behavior of solvent systems in high-speed counter-current chromatography. III. Effects of physical properties of the solvent systems and operating temperature on the distribution of two-phase solvent systems. J. Chromatogr. A. 1984;301:405–414. doi: 10.1016/S0021-9673(01)89214-1. PubMed DOI
Berthod A., Maryutina T., Spivakov B., Shpigun O., Sutherland I.A. Countercurrent chromatography in analytical chemistry. Pure Appl. Chem. 2009;81:355–387. doi: 10.1351/PAC-REP-08-06-05. DOI
Meena K.R., Kanwar S.S. Lipopeptides as the antifungal and antibacterial agents: Applications in food safety and therapeutics. Biomed. Res. Int. 2015;2015:473050. doi: 10.1155/2015/473050. PubMed DOI PMC
Smykalova I., Soukup A., Ondráčková E., Hrouzek P. Soubor Laboratorních in Vitro Biotestů Pro Testování Bioaktivních Látek Z Mikrořas. Agritec, výzkum, šlechtění a služby, s.r.o.; Šumperk, Czech Republic: 2016.
Espinel-Ingroff A., Fothergill A., Ghannoum M., Manavathu E., Ostrosky-Zeichner L., Pfaller M.A., Rinaldi M.G., Schell W., Walsh T.J. Quality control and reference guidelines for CLSI broth microdilution method (M38-A document) for susceptibility testing of anidulafungin against molds. J. Clin. Microbiol. 2007;45:2180–2182. doi: 10.1128/JCM.00399-07. PubMed DOI PMC
Borman A.M., Fraser M., Palmer M.D., Szekely A., Houldsworth M., Patterson Z., Johnson E.M. MIC distributions and evaluation of fungicidal activity for amphotericin B, itraconazole, voriconazole, posaconazole and caspofungin and 20 species of pathogenic filamentous fungi determined using the CLSI broth microdilution method. J. Fungi. 2017;3:27. doi: 10.3390/jof3020027. PubMed DOI PMC