Application of HPCCC Combined with Polymeric Resins and HPLC for the Separation of Cyclic Lipopeptides Muscotoxins A⁻C and Their Antimicrobial Activity

. 2018 Oct 16 ; 23 (10) : . [epub] 20181016

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30332796

Grantová podpora
16-09381S Grantová Agentura České Republiky
ID LO1416 National Program of Sustainability, MSMT Czech Republic
CZ.1.05/2.1.00/19.0392 ALGAMIC project, MSMT Czech Republic

Muscotoxins are cyanobacterial cyclic lipopeptides with potential applications in biomedicine and biotechnology. In this study, Desmonostoc muscorum CCALA125 strain extracts were enriched by polymeric resin treatment, and subjected to HPCCC affording three cyclic lipopeptides (1⁻3), which were further repurified by semi-preparative HPLC, affording 1, 2, and 3, with a purity of 86%, 92%, and 90%, respectively. The chemical identities of 2⁻3 were determined as muscotoxins A and B, respectively, by comparison with previously reported ESI-HRMS/MS data, whereas 1 was determined as a novel muscotoxin variant (muscotoxin C) using NMR and ESI-HRMS/MS data. Owing to the high yield (50 mg), compound 2 was broadly screened for its antimicrobial potential exhibiting a strong antifungal activity against Alternaria alternata, Monographella cucumerina, and Aspergillus fumigatus, with minimum inhibitory concentration (MIC) values of 0.58, 2.34, and 2.34 µg/mL; respectively, and weak antibacterial activity against Bacillus subtilis with a MIC value of 37.5 µg/mL. Compounds 1 and 3 were tested only against the plant pathogenic fungus Sclerotinia sclerotiorum due to their low yield, displaying a moderate antifungal activity. The developed chromatographic method proved to be an efficient tool for obtaining muscotoxins with potent antifungal properties.

Zobrazit více v PubMed

Chlipala G.E., Mo S., Orjala J. Chemodiversity in freshwater and terrestrial cyanobacteria—A source for drug discovery. Curr. Drug Targets. 2011;12:1654–1673. doi: 10.2174/138945011798109455. PubMed DOI PMC

Du L., Sanchez C., Shen B. Hybrid peptide-polyketide natural products: Biosynthesis and prospects toward engineering novel molecules. Met. Eng. 2001;3:78–95. doi: 10.1006/mben.2000.0171. PubMed DOI

Romano A., Vitullo D., Senatore M., Lima G., Lanzotti V. Antifungal cyclic lipopeptides from Bacillus amyloliquefaciens strain BO5A. J. Nat. Prod. 2013;76:2019–2025. doi: 10.1021/np400119n. PubMed DOI

Nielsen T.H., Sørensen D., Tobiasen C., Andersen J.B., Christophersen C., Givskov M., Sørensen J. Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl. Environ. Microbiol. 2002;68:3416–3423. doi: 10.1128/AEM.68.7.3416-3423.2002. PubMed DOI PMC

Hrouzek P., Kuzma M., Černý J., Novák P., Fišer R., Simek P., Lukešová A., Kopecký J. The cyanobacterial cyclic lipopeptides puwainaphycins F/G are inducing necrosis via cell membrane permeabilization and subsequent unusual actin relocalization. Chem. Res. Toxicol. 2012;25:1203–1211. doi: 10.1021/tx300044t. PubMed DOI

Kang H.S., Krunic A., Shen Q., Swanson S.M., Orjala J. Minutissamides A–D, antiproliferative cyclic decapeptides from the cultured cyanobacterium Anabaena minutissima. J. Nat. Prod. 2011;74:1597–1605. doi: 10.1021/np2002226. PubMed DOI PMC

Kang H.S., Sturdy M., Krunic A., Kim H., Shen Q., Swanson S.M., Orjala J. Minutissamides E–L, antiproliferative cyclic lipodecapeptides from the cultured freshwater cyanobacterium cf. Anabaena sp. Bioorg. Med. Chem. 2012;20:6134–6143. doi: 10.1016/j.bmc.2012.08.017. PubMed DOI PMC

Maschmeyer G., Glasmacher A. Pharmacological properties and clinical efficacy of a recently licensed systemic antifungal, caspofungin. Mycoses. 2005;48:227–234. doi: 10.1111/j.1439-0507.2005.01131.x. PubMed DOI

Felnagle E.A., Jackson E.E., Chan Y.A., Podevels A.M., Berti A.D., McMahon M.D., Thomas M.G. Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Mol. Pharm. 2008;5:191–211. doi: 10.1021/mp700137g. PubMed DOI PMC

Schneider T., Müller A., Miess H., Gross H. Cyclic lipopeptides as antibacterial agents—Potent antibiotic activity mediated by intriguing mode of actions. Int. J. Med. Microbiol. 2014;304:37–43. doi: 10.1016/j.ijmm.2013.08.009. PubMed DOI

Joo S.H. Cyclic peptides as therapeutic agents and biochemical tools. Biomol. Ther. 2012;20:19–26. doi: 10.4062/biomolther.2012.20.1.019. PubMed DOI PMC

Liskamp R.M.J., Rijkers D.T.S., Bakker S.E. Bioactive macrocyclic peptides and peptide mimics. In: Diederich F., Stang P.J., Tykwinski R.R., editors. Modern Supramolecular Chemistry: Strategies for Macrocycle Synthesis. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2008. pp. 1–27.

Tomek P., Hrouzek P., Kuzma M., Sýkora J., Fiser R., Cerný J., Novák P., Bártová S., Simek P., Hof M., et al. Cytotoxic lipopeptide muscotoxin A, isolated from soil cyanobacterium Desmonostoc muscorum, permeabilizes phospholipid membranes by reducing their fluidity. Chem. Res. Toxicol. 2015;28:216–224. doi: 10.1021/tx500382b. PubMed DOI

Ito Y. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. J. Chromatogr. A. 2005;1065:145–168. doi: 10.1016/j.chroma.2004.12.044. PubMed DOI

Michel T., Destandau E., Elfakir C. New advances in countercurrent chromatography and centrifugal partition chromatography: Focus on coupling strategy. Anal. Bioanal. Chem. 2014;406:957–969. doi: 10.1007/s00216-013-7017-8. PubMed DOI

Tapia A., Cheel J., Theoduloz C., Rodríguez J., Schmeda-Hirschmann G., Gerth A., Wilken D., Jordan M., Jiménez-González E., Gomez-Kosky R., et al. Free radical scavengers from Cymbopogon citratus (DC.) Stapf. plants cultivated in bioreactors by the temporary immersion (TIS)-principle. Z. Naturforsch. C. 2007;62:447–457. doi: 10.1515/znc-2007-5-620. PubMed DOI

Spórna-Kucab A., Ignatova S., Garrard I., Wybraniec S. Versatile solvent systems for the separation of betalains from processed Beta vulgaris L. juice using counter-current chromatography. J. Chromatogr. B. 2013;941:54–61. doi: 10.1016/j.jchromb.2013.10.001. PubMed DOI

Costa F., Garrard I., da Silva A.J., Leitão G.G. Changes in the mobile phase composition on a stepwise counter-current chromatography elution for the isolation of flavonoids from Siparuna Glycycarpa. J. Sep. Sci. 2013;36:2253–2259. doi: 10.1002/jssc.201201054. PubMed DOI

Chen F., Li H.B., Wong R.N., Ji B., Jiang Y. Isolation and purification of the bioactive carotenoid zeaxanthin from the microalga Microcystis aeruginosa by high-speed counter-current chromatography. J. Chromatogr. A. 2005;1064:183–186. doi: 10.1016/j.chroma.2004.12.065. PubMed DOI

Li H.B., Fan K.W., Chen F. Isolation and purification of canthaxanthin from the microalga Chlorella zofingiensis by high-speed counter-current chromatography. J. Sep. Sci. 2006;29:699–703. doi: 10.1002/jssc.200500365. PubMed DOI

Cheel J., Urajová P., Hájek J., Hrouzek P., Kuzma M., Bouju E., Faure K., Kopecký J. Separation of cyclic lipopeptide puwainaphycins from cyanobacteria by countercurrent chromatography combined with polymeric resins and HPLC. Anal. Bioanal. Chem. 2017;409:917–930. doi: 10.1007/s00216-016-0066-z. PubMed DOI

Moore R.E., Bornemann V., Niemczura W.P., Gregson J.M., Chen J.L., Norton T.R., Patterson G.M.L., Helms G.L. Puwainaphycin C, a cardioactive cyclic peptide from the blue-green alga Anabaena BQ-16-1. Use of two-dimensional 13C-13C and 13C-15N correlation spectroscopy in sequencing the amino acid units. J. Am. Chem. Soc. 1989;111:6128–6132. doi: 10.1021/ja00198a021. DOI

Martin N.I., Hu H., Moake M.M., Churey J.J., Whittal R., Worobo R.W., Vederas J.C. Isolation, structural characterization, and properties of mattacin (polymyxin M), a cyclic peptide antibiotic produced by Paenibacillus kobensis M. J. Biol. Chem. 2003;278:13124–13132. doi: 10.1074/jbc.M212364200. PubMed DOI

Sasse F., Steinmetz H., Schupp T., Petersen F., Memmert K., Hofmann H., Heusser C., Brinkmann V., von Matt P., Höfle G., et al. Argyrins, immunosuppressive cyclic peptides from myxobacteria. I. Production, isolation, physico-chemical and biological properties. J. Antibiot. 2002;55:543–551. doi: 10.7164/antibiotics.55.543. PubMed DOI

Sasse F., Steinmetz H., Höfle G., Reichenbach H. Archazolids, new cytotoxic macrolactones from Archangium gephyra (Myxobacteria). Production, isolation, physico-chemical and biological properties. J. Antibiot. 2003;56:520–525. doi: 10.7164/antibiotics.56.520. PubMed DOI

Ito Y., Conway W.D. Experimental observations of the hydrodynamic behavior of solvent systems in high-speed counter-current chromatography. III. Effects of physical properties of the solvent systems and operating temperature on the distribution of two-phase solvent systems. J. Chromatogr. A. 1984;301:405–414. doi: 10.1016/S0021-9673(01)89214-1. PubMed DOI

Berthod A., Maryutina T., Spivakov B., Shpigun O., Sutherland I.A. Countercurrent chromatography in analytical chemistry. Pure Appl. Chem. 2009;81:355–387. doi: 10.1351/PAC-REP-08-06-05. DOI

Meena K.R., Kanwar S.S. Lipopeptides as the antifungal and antibacterial agents: Applications in food safety and therapeutics. Biomed. Res. Int. 2015;2015:473050. doi: 10.1155/2015/473050. PubMed DOI PMC

Smykalova I., Soukup A., Ondráčková E., Hrouzek P. Soubor Laboratorních in Vitro Biotestů Pro Testování Bioaktivních Látek Z Mikrořas. Agritec, výzkum, šlechtění a služby, s.r.o.; Šumperk, Czech Republic: 2016.

Espinel-Ingroff A., Fothergill A., Ghannoum M., Manavathu E., Ostrosky-Zeichner L., Pfaller M.A., Rinaldi M.G., Schell W., Walsh T.J. Quality control and reference guidelines for CLSI broth microdilution method (M38-A document) for susceptibility testing of anidulafungin against molds. J. Clin. Microbiol. 2007;45:2180–2182. doi: 10.1128/JCM.00399-07. PubMed DOI PMC

Borman A.M., Fraser M., Palmer M.D., Szekely A., Houldsworth M., Patterson Z., Johnson E.M. MIC distributions and evaluation of fungicidal activity for amphotericin B, itraconazole, voriconazole, posaconazole and caspofungin and 20 species of pathogenic filamentous fungi determined using the CLSI broth microdilution method. J. Fungi. 2017;3:27. doi: 10.3390/jof3020027. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...