Production of Fucoxanthin from Phaeodactylum tricornutum Using High Performance Countercurrent Chromatography Retaining Its FOXO3 Nuclear Translocation-Inducing Effect
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TN010000048/03
Technology Agency of the Czech Republic
LO1416
National Programme of Sustainability I of the Ministry of Education, Youth and Sports of the Czech Republic
CIVP18A3891
Ramón Areces Foundation
MICINN, RYC-2017-22335
Ramon y Cajal Fellowship
017/2019/P
GAJU
PubMed
34564179
PubMed Central
PMC8466784
DOI
10.3390/md19090517
PII: md19090517
Knihovny.cz E-zdroje
- Klíčová slova
- Phaeodactylum tricornutum, centrifugal partition chromatography (CPC), countercurrent chromatography (CCC), fucoxanthin, high performance countercurrent chromatography (HPCCC),
- MeSH
- protiproudá chromatografie MeSH
- rozsivky chemie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- xanthofyly chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fucoxanthin MeSH Prohlížeč
- xanthofyly MeSH
Phaeodactylum tricornutum is a rich source of fucoxanthin, a carotenoid with several health benefits. In the present study, high performance countercurrent chromatography (HPCCC) was used to isolate fucoxanthin from an extract of P. tricornutum. A multiple sequential injection HPCCC method was developed combining two elution modes (reverse phase and extrusion). The lower phase of a biphasic solvent system (n-heptane, ethyl acetate, ethanol and water, ratio 5/5/6/3, v/v/v/v) was used as the mobile phase, while the upper phase was the stationary phase. Ten consecutive sample injections (240 mg of extract each) were performed leading to the separation of 38 mg fucoxanthin with purity of 97% and a recovery of 98%. The process throughput was 0.189 g/h, while the efficiency per gram of fucoxanthin was 0.003 g/h. Environmental risk and general process evaluation factors were used for assessment of the developed separation method and compared with existing fucoxanthin liquid-liquid isolation methods. The isolated fucoxanthin retained its well-described ability to induce nuclear translocation of transcription factor FOXO3. Overall, the developed isolation method may represent a useful model to produce biologically active fucoxanthin from diatom biomass.
Faculty of Science Department of Ecology Charles University Viničná 7 128 44 Prague 2 Czech Republic
Zobrazit více v PubMed
Guler B.A., Deniz I., Demirel Z., Yesil-Celiktas O., Imamoglu E. A novel subcritical fucoxanthin extraction with a biorefinery approach. Biochem. Eng. J. 2020;153:107403. doi: 10.1016/j.bej.2019.107403. DOI
Zhang H., Tang Y., Zhang Y., Zhang S., Qu J., Wang X., Kong R., Han C., Liu Z. Fucoxanthin: A promising medicinal and nutritional ingredient. Evid. Based Complement. Alternat. Med. 2015:723515. doi: 10.1155/2015/723515. PubMed DOI PMC
Neumann U., Derwenskus F., Flaiz Flister V., Schmid-Staiger U., Hirth T., Bischoff S.C. Fucoxanthin, a carotenoid derived from Phaeodactylum tricornutum exerts antiproliferative and antioxidant activities in vitro. Antioxidants. 2019;8:183. doi: 10.3390/antiox8060183. PubMed DOI PMC
Maeda H., Hosokawa M., Sashima T., Funayama K., Miyashita K. Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochem. Biophys. Res. Commun. 2005;332:392–397. doi: 10.1016/j.bbrc.2005.05.002. PubMed DOI
Jeon S.M., Kim H.J., Woo M.N., Lee M.K., Shin Y.C., Park Y.B., Choi M.S. Fucoxanthin-rich seaweed extract suppresses body weight gain and improves lipid metabolism in high-fat-fed C57BL/6J mice. Biotechnol. J. 2010;5:961–969. doi: 10.1002/biot.201000215. PubMed DOI
Woo M.N., Jeon S.M., Shin Y.C., Lee M.K., Kang M.A., Choi M.S. Anti-obese property of fucoxanthin is partly mediated by altering lipid-regulating enzymes and uncoupling proteins of visceral adipose tissue in mice. Mol. Nutr. Food Res. 2009;53:1603–1611. doi: 10.1002/mnfr.200900079. PubMed DOI
Hosokawa M., Miyashita T., Nishikawa S., Emi S., Tsukui T., Beppu F., Okada T., Miyashita K. Fucoxanthin regulates adipocytokine mRNA expression in white adipose tissue of diabetic/obese KK-Ay mice. Arch. Biochem. Biophys. 2010;1:17–25. doi: 10.1016/j.abb.2010.05.031. PubMed DOI
Maeda H., Hosokawa M., Sashima T., Murakami-Funayama K., Miyashita K. Anti-obesity and anti-diabetic effects of fucoxanthin on diet-induced obesity conditions in a murine model. Mol. Med. Rep. 2009;2:897–902. doi: 10.3892/mmr_00000189. PubMed DOI
Heo S.J., Yoon W.J., Kim K.N., Ahn G.N., Kang S.M., Kang D.H., Affan A., Oh C., Jung W.K., Jeon J.Y. Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Chem. Toxicol. 2010;48:2045–2051. doi: 10.1016/j.fct.2010.05.003. PubMed DOI
Kim K.N., Heo S.J., Yoon W.J., Kang S.M., Ahn G., Yi T.H., Jeon Y.J. Fucoxanthin inhibits the inflammatory response by suppressing the activation of NF-κB and MAPKs in lipopolysaccharide-induced RAW 264.7 macrophages. Eur. J. Pharmacol. 2010;649:369–375. doi: 10.1016/j.ejphar.2010.09.032. PubMed DOI
Su J., Guo K., Huang M., Liu Y., Zhang J., Sun L., Li D., Pang K., Wang G., Chen L., et al. Fucoxanthin, a marine xanthophyll isolated from Conticribra weissflogii ND-8: Preventive anti-inflammatory effect in a mouse model of sepsis. Front. Pharmacol. 2019;10:906. doi: 10.3389/fphar.2019.00906. PubMed DOI PMC
Moghadamtousi S.Z., Karimian H., Khanabdali R., Razavi M., Firoozinia M., Zandi K., Kadir H.A. Anticancer and antitumor potential of fucoidan and fucoxanthin, two main metabolites isolated from brown algae. Sci. World J. 2014:768323. doi: 10.1155/2014/768323. PubMed DOI PMC
Ishikawa C., Tafuku S., Kadekaru T., Sawada S., Tomita M., Okudaira T., Nakazato T., Toda T., Uchihara J.N., Taira N., et al. Antiadult T-cell leukemia effects of brown algae fucoxanthin and its deacetylated product, fucoxanthinol. Int. J. Cancer. 2008;123:2702–2712. doi: 10.1002/ijc.23860. PubMed DOI
Das S.K., Hashimoto T., Kanazawa K. Growth inhibition of human hepatic carcinoma HepG2 cells by fucoxanthin is associated with down-regulation of cyclin D. Biochim. Biophys. 2008;1780:743–749. doi: 10.1016/j.bbagen.2008.01.003. PubMed DOI
Zhang Z., Zhang P., Hamada M., Takahashi S., Xing G., Liu J., Sugiura N. Potential chemoprevention effect of dietary fucoxanthin on urinary bladder cancer EJ-1 cell line. Oncol. Rep. 2008;20:1099–1103. doi: 10.3892/or_00000115. PubMed DOI
Sachindra N.M., Sato E., Maeda H., Hosokawa M., Niwano Y., Kohno M., Miyashita K. Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. J. Agric. Food Chem. 2007;55:8516–8522. doi: 10.1021/jf071848a. PubMed DOI
Nomura T., Kikuchi M., Kubodera A., Kawakami Y. Proton-donative antioxidant activity of fucoxanthin with 1,1-diphenyl-2-picrylhydrazyl (DPPH) Biochem. Mol. Biol. Int. 1997;42:361–370. doi: 10.1080/15216549700202761. PubMed DOI
Yan X., Chuda Y., Suzuki M., Nagata T. Fucoxanthin as the major antioxidant in Hijikia fusiformis, a common edible seaweed. Biosci. Biotechnol. Biochem. 1999;63:605–607. doi: 10.1271/bbb.63.605. PubMed DOI
Mise T., Ueda M., Yasumoto T. Production of fucoxanthin-rich powder from Cladosiphon okamuranus. Adv. J. Food Sci. Technol. 2011;3:73–76.
Sangeetha R.K., Bhaskar N., Baskaran V. Comparative effects of beta-carotene and fucoxanthin on retinol deficiency induced oxidative stress in rats. Mol. Cell Biochem. 2009;331:59–67. doi: 10.1007/s11010-009-0145-y. PubMed DOI
Yang G., Jin L., Zheng D., Tang X., Yang J., Fan L., Xie X. Fucoxanthin Alleviates Oxidative Stress through Akt/Sirt1/FoxO3α Signaling to Inhibit HG-Induced Renal Fibrosis in GMCs. Mar. Drugs. 2019;17:702. doi: 10.3390/md17120702. PubMed DOI PMC
Xiao H., Zhao J., Fang C., Cao Q., Xing M., Li X., Hou J., Ji A., Song S. Advances in Studies on the Pharmacological Activities of Fucoxanthin. Mar. Drugs. 2020;18:634. doi: 10.3390/md18120634. PubMed DOI PMC
Yang R., Wei D., Xie J. Diatoms as cell factories for high-value products: Chrysolaminarin, eicosapentaenoic acid, and fucoxanthin. Crit. Rev. Biotechnol. 2020;40:993–1009. doi: 10.1080/07388551.2020.1805402. PubMed DOI
BGG World [(accessed on 10 June 2021)]. Available online: https://bggworld.com/thinogentm-fucoxanthin/
Kim S.M., Jung Y.J., Kwon O.N., Cha K.H., Um B.H., Chung D., Pan C.H. A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl. Biochem. Biotechnol. 2012;166:1843–1855. doi: 10.1007/s12010-012-9602-2. PubMed DOI
Derwenskus F., Metz F., Gille A., Schmid-Staiger U., Briviba K., Schließmann U., Hirth T. Pressurized extraction of unsaturated fatty acids and carotenoids from wet Chlorella vulgaris and Phaeodactylum tricornutum biomass using subcritical liquids. Glob. Bioenergy. 2019;11:335–344. doi: 10.1111/gcbb.12563. DOI
Global Fucoxanthin (CAS 3351-86-8) Market 2020 by Manufacturers, Regions, Type and Application, Forecast to 2025. [(accessed on 15 January 2021)]. Available online: https://www.360researchreports.com/global-fucoxanthin-cas-3351-86-8-market-16507769.
Noviendri D., Jaswir I., Salleh H.M., Taher M., Miyashita K., Ramli N. Fucoxanthin extraction and fatty acid analysis of Sargassum bindery and S. dulicatum. J. Med. Plants Res. 2011;5:2405–2412.
Jaswir I., Noviendri D., Salleh H.M., Muhammad T., Miyashita K. Isolation of fucoxanthin and fatty acids analysis of Padina australis and cytotoxic effect of fucoxanthin on human lung cancer (H1299) cell lines. Afr. J. Biotechnol. 2011;10:18855–18862. doi: 10.5897/AJB11.2765. DOI
Xia S., Wang K., Wan L., Li A., Hu Q., Zhang C. Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Mar. Drugs. 2013;11:2667–2681. doi: 10.3390/md11072667. PubMed DOI PMC
Jaswir I., Noviendri D., Salleh H.M., Taher M., Miyashita K., Ramli N. Analysis of fucoxanthin content and purification of all-trans-fucoxanthin from Turbinaria turbinate and Sargassum plagyophyllum by SiO2 open column chromatography and reversed phase-HPLC. J. Liq. Chromatogr. Relat. Technol. 2013;36:1340–1354. doi: 10.1080/10826076.2012.691435. DOI
Zhang W., Wang F., Gao B., Huang L., Zhang C. An integrated biorefinery process: Stepwise extraction of fucoxanthin, eicosapentaenoic acid and chrysolaminarin from the same Phaeodactylum tricornutum biomass. Algal Res. 2018;32:193–200. doi: 10.1016/j.algal.2018.04.002. DOI
Sun P., Wong C.C., Li Y., He Y., Mao X., Wu T., Ren Y., Chen F. A novel strategy for isolation and purification of fucoxanthinol and fucoxanthin from the diatom Nitzschia laevis. Food Chem. 2019;30:566–572. doi: 10.1016/j.foodchem.2018.10.133. PubMed DOI
Billakanti M.J., Catchpole O., Fenton T., Mitchell K. Enzyme-assisted extraction of fucoxanthin and lipids containing polyunsaturated fatty acids from Undaria pinnatifida using dimethyl ether and ethanol. Process. Biochem. 2013;48:1999–2008. doi: 10.1016/j.procbio.2013.09.015. DOI
Gómez-Loredo A., Benavides J., Rito-Palomares M. Partition behavior of fucoxanthin in ethanol-potassium phosphate two-phase systems. J. Chem. Technol. Biotechnol. 2014;89:1637–1645. doi: 10.1002/jctb.4514. DOI
Roh M.K., Uddin M.S., Chun B.S. Extraction of fucoxanthin and polyphenol from Undaria pinnatifida using supercritical carbon dioxide with co-solvent. Biotechnol Bioprocess. Eng. 2008;13:724–729. doi: 10.1007/s12257-008-0104-6. DOI
Shang Y.F., Kim S.M., Lee W.J., Um B.H. Pressurized liquid method for fucoxanthin extraction from Eisenia bicyclis (Kjellman) setchell. J. Biosci Bioeng. 2011;111:237–241. doi: 10.1016/j.jbiosc.2010.10.008. PubMed DOI
Gilbert-López B., Barranco A., Herrero M., Cifuentes A., Ibáñez E. Development of new green processes for the recovery of bioactives from Phaeodactylum tricornutum. Food Res. Int. 2017;99:1056–1065. doi: 10.1016/j.foodres.2016.04.022. PubMed DOI
Kuczynska P., Jemiola-Rzeminska M., Strzalka K. Photosynthetic pigments in diatoms. Mar. Drugs. 2015;13:5847–5881. doi: 10.3390/md13095847. PubMed DOI PMC
Ito Y. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. J. Chromatogr. A. 2005;1065:145–168. doi: 10.1016/j.chroma.2004.12.044. PubMed DOI
Michel T., Destandau E., Elfakir C. New advances in countercurrent chromatography and centrifugal partition chromatography: Focus on coupling strategy. Anal. Bioanal. Chem. 2014;406:957–969. doi: 10.1007/s00216-013-7017-8. PubMed DOI
Bárcenas-Pérez D., Lukeš M., Hrouzek P., Kubáč D., Kopecký J., Kaštánek P., Cheel J. A biorefinery approach to obtain docosahexaenoic acid and docosapentaenoic acid n-6 from Schizochytrium using high performance countercurrent chromatography. Algal Res. 2021;55:102241. doi: 10.1016/j.algal.2021.102241. DOI
Cheel J., Urajová P., Hájek J., Hrouzek P., Kuzma M., Bouju E., Faure K., Kopecký J. Separation of cyclic lipopeptide puwainaphycins from cyanobacteria by countercurrent chromatography combined with polymeric resins and HPLC. Anal. Bioanal. Chem. 2017;409:917–930. doi: 10.1007/s00216-016-0066-z. PubMed DOI
Cheel J., Hájek J., Kuzma M., Saurav K., Smýkalová I., Ondráčková E., Urajová P., Vu D.L., Faure K., Kopecký J., et al. Application of HPCCC combined with polymeric resins and HPLC for the separation of cyclic lipopeptides muscotoxins A–C and their antimicrobial activity. Molecules. 2018;23:2653. doi: 10.3390/molecules23102653. PubMed DOI PMC
Fábryová T., Cheel J., Kubac D., Hrouzek P., Vu D.L., Tůmová L., Kopecký J. Purification of lutein from the green microalgae Chlorella vulgaris by integrated use of a new extraction protocol and a multi-injection high performance counter-current chromatography (HPCCC) Algal Res. 2019;41:101574. doi: 10.1016/j.algal.2019.101574. DOI
Fábryová T., Tůmová L., da Silva D.C., Pereira D.M., Andrade P.B., Valentão P., Hrouzek P., Kopecký J., Cheel J. Isolation of astaxanthin monoesters from the microalgae Haematococcus pluvialis by high performance countercurrent chromatography (HPCCC) combined with high performance liquid chromatography (HPLC) Algal Res. 2020;49:101947. doi: 10.1016/j.algal.2020.101947. DOI
Nováková M., Fábryová T., Vokurková D., Dolečková I., Kopecký J., Hrouzek P., Tůmová L., Cheel J. Separation of the glycosylated carotenoid myxoxanthophyll from Synechocystis salina by HPCCC and evaluation of its antioxidant, tyrosinase inhibitory and immune-stimulating properties. Separations. 2020;7:73. doi: 10.3390/separations7040073. DOI
Fábryová T., Kubáč D., Kuzma M., Hrouzek P., Kopecký J., Tůmová L., Cheel J. High-performance countercurrent chromatography for lutein production from a chlorophyll-deficient strain of the microalgae Parachlorella kessleri HY1. J. Appl. Phycol. 2021 doi: 10.1007/s10811-021-02434-y. DOI
Sutherland I., Thickitt C., Douillet N., Freebairn K., Johns D., Mountain C., Wood P., Edwards N., Rooke D., Harris G., et al. Scalable technology for the extraction of pharmaceutics: Outcomes from a 3 year collaborative industry/academia research programme. J. Chromatogr. A. 2013;1282:84–94. doi: 10.1016/j.chroma.2013.01.049. PubMed DOI
Xiao X., Si X., Yuan Z., Xu X., Li G. Isolation of fucoxanthin from edible brown algae by microwave-assisted extraction coupled with high-speed countercurrent chromatography. J. Sep. Sci. 2012;35:2313–2317. doi: 10.1002/jssc.201200231. PubMed DOI
Kim S.M., Shang Y.F., Um B.H. A preparative method for isolation of fucoxanthin from Eisenia bicyclis by centrifugal partition chromatography. Phytochem Anal. 2011;22:322–329. doi: 10.1002/pca.1283. PubMed DOI
Gonçalves de Oliveira-Júnior R., Grougnet R., Bodet P.E., Bonnet A., Nicolau E., Jebali A., Rumin J., Picot L. Updated pigment composition of Tisochrysis lutea and purification of fucoxanthin using centrifugal partition chromatography coupled to flash chromatography for the chemosensitization of melanoma cells. Algal Res. 2020;51:102035. doi: 10.1016/j.algal.2020.102035. DOI
Cheel J., Minceva M., Urajová P., Aslam R., Hrouzek P., Kopecký J. Separation of Aeruginosin -865 from cultivated soil cyanobacterium (Nostoc sp.) by centrifugal partitition chromatography combined with gel permeation chromatography. Nat. Prod. Commun. 2015;10:1719–1722. doi: 10.1177/1934578X1501001022. PubMed DOI
Ito Y., Conway W.D. Experimental observations of the hydrodynamic behavior of solvent systems in high-speed counter-current chromatography. III. Effects of physical properties of the solvent systems and operating temperature on the distribution of two-phase solvent systems. J. Chromatogr. A. 1984;301:405–414. doi: 10.1016/S0021-9673(01)89214-1. PubMed DOI
Berthod A., Maryutina T., Spivakov B., Shpigun O., Sutherland I. Countercurrent chromatography in analytical chemistry (IUPAC Technical Report) Pure Appl. Chem. 2009;81:355–387. doi: 10.1351/PAC-REP-08-06-05. DOI
Wood P., Ignatova S., Janaway L., Keay D., Hawes D., Garrard I., Sutherland I.A. Counter-current chromatography separation scaled up from an analytical column to a production column. J. Chromatogr. A. 2007;1151:25–30. doi: 10.1016/j.chroma.2007.02.014. PubMed DOI
Sutherland I.A. Liquid stationary phase retention and resolution in hydrodynamic CCC. In: Berthod A., editor. Comprehensive Analytical Chemistry. Volume 38. Elsevier Science B.V.; Amsterdam, The Netherlands: 2002. pp. 159–176.
Crupi P., Toci A.T., Mangini S., Wrubl F., Rodolfi L., Tredici M.R., Coletta A., Antonacci D. Determination of fucoxanthin isomers in microalgae (Isochrysis sp.) by high-performance liquid chromatography coupled with diode-array detector multistage mass spectrometry coupled with positive electrospray ionization. Rapid Commun. Mass Spectrom. 2013;15:1027–1035. doi: 10.1002/rcm.6531. PubMed DOI
Haugan J.A., Englert G., Glinz E., Liaaen-Jensen S. Algal Carotenoids. 48. Structural Assignments of Geometrical Isomers of Fucoxanthin. Acta Chem. Scand. 1992;46:389–395. doi: 10.3891/acta.chem.scand.46-0389. DOI
DeAmicis C., Edwards N.A., Giles M.B., Harris G.H., Hewitson P., Janaway L., Ignatova S. Comparison of preparative reversed phase liquid chromatography and countercurrent chromatography for the kilogram scale purification of crude spinetoram insecticide. J. Chromatogr. A. 2011;1218:6122–6127. doi: 10.1016/j.chroma.2011.06.073. PubMed DOI
Zhang M., Ignatova S., Liang Q., Wu Jun F., Sutherland I., Wang Y., Luo G. Rapid and high-throughput purification of salvianolic acid B from Salvia miltiorrhiza Bunge by high-performance counter-current chromatography. J. Chromatogr. A. 2009;18:3869–3873. doi: 10.1016/j.chroma.2009.02.067. PubMed DOI
Barradas M., Link W., Megias D., Fernandez-Marcos P.J. High-Throughput Image-Based Screening to Identify Chemical Compounds Capable of Activating FOXO. Methods Mol. Biol. 2019;1890:151–161. doi: 10.1007/978-1-4939-8900-3_13. PubMed DOI
Zanella F., Rosado A., Garcia B., Carnero A., Link W. Using multiplexed regulation of luciferase activity and GFP translocation to screen for FOXO modulators. BMC Cell Biol. 2009;10:14. doi: 10.1186/1471-2121-10-14. PubMed DOI PMC
Zanella F., Rosado A., García B., Carnero A., Link W. Chemical genetic analysis of FOXO nuclear-cytoplasmic shuttling by using image-based cell screening. Chembiochem. 2008;22:2229–2237. doi: 10.1002/cbic.200800255. PubMed DOI
Furet P., Guagnano V., Fairhurst R.A., Imbach-Weese P., Bruce I., Knapp M., Fritsch C., Blasco F., Blanz J., Aichholz R., et al. Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. Bioorg. Med. Chem. Lett. 2013;23:3741–3748. doi: 10.1016/j.bmcl.2013.05.007. PubMed DOI
Garg S., Afzal S., Elwakeel A., Sharma D., Radhakrishnan N., Dhanjal J.K., Sundar D., Kaul S.C., Wadhwa R. Marine Carotenoid Fucoxanthin Possesses Anti-Metastasis Activity: Molecular Evidence. Mar. Drugs. 2019;17:338. doi: 10.3390/md17060338. PubMed DOI PMC
Starr R.C., Zeikus J.A. UTEX–The Culture Collection of Algae at the University of Texas at Austin 1993 List of Cultures. J. Phycol. 1993;29:106. doi: 10.1111/j.0022-3646.1993.00001.x. DOI
Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959;37:911–917. doi: 10.1139/o59-099. PubMed DOI