• This record comes from PubMed

Chemical diversity and cellular effects of antifungal cyclic lipopeptides from cyanobacteria

. 2021 Oct ; 173 (2) : 639-650. [epub] 20210701

Language English Country Denmark Media print-electronic

Document type Journal Article, Review

Cyanobacteria produce a variety of chemically diverse cyclic lipopeptides with potent antifungal activities. These cyclic lipopeptides have an amphipathic structure comprised of a polar peptide cycle and hydrophobic fatty acid side chain. Many have antibiotic activity against a range of human and plant fungal pathogens. This review article aims to summarize the present knowledge on the chemical diversity and cellular effects of cyanobacterial cyclic lipopeptides that display antifungal activity. Cyclic antifungal lipopeptides from cyanobacteria commonly fall into four structural classes; hassallidins, puwainaphycins, laxaphycins, and anabaenolysins. Many of these antifungal cyclic lipopeptides act through cholesterol and ergosterol-dependent disruption of membranes. In many cases, the cyclic lipopeptides also exert cytotoxicity in human cells, and a more extensive examination of their biological activity and structure-activity relationship is warranted. The hassallidin, puwainaphycin, laxaphycin, and anabaenolysin structural classes are unified through shared complex biosynthetic pathways that encode a variety of unusual lipoinitiation mechanisms and branched biosynthesis that promote their chemical diversity. However, the biosynthetic origins of some cyanobacterial cyclic lipopeptides and the mechanisms, which drive their structural diversification in general, remain poorly understood. The strong functional convergence of differently organized chemical structures suggests that the production of lipopeptide confers benefits for their producer. Whether these benefits originate from their antifungal activity or some other physiological function remains to be answered in the future. However, it is clear that cyanobacteria encode a wealth of new cyclic lipopeptides with novel biotechnological and therapeutic applications.

See more in PubMed

Alvariño, R., Alonso, E., Bornancin, L., Bonnard, I., Inguimbert, N., Banaigs, B. et al. (2020) Biological activities of cyclic and acyclic B-type laxaphycins in SH-SY5Y human neuroblastoma cells. Marine Drugs, 18, 364.

Arima, K., Kakinuma, A. & Tamura, G. (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochemical and Biophysical Research Communications, 31, 488-494.

Besenicar, M.P., Bavdek, A., Kladnik, A., Macek, P. & Anderluh, G. (2008) Kinetics of cholesterol extraction from lipid membranes by methyl-beta-cyclodextrin-a surface plasmon resonance approach. Biochimica et Biophysica Acta, 1778, 175-184.

Bornancin, L., Alonso, E., Alvarino, R., Inguimbert, N., Bonnard, I., Botana, L.M. et al. (2019) Structure and biological evaluation of new cyclic and acyclic laxaphycin-a type peptides. Bioorganic & Medicinal Chemistry, 27, 1966-1980.

Bornancin, L., Boyaud, F., Mahiout, Z., Bonnard, I., Mills, S.C., Banaig, B. et al. (2015) Isolation and synthesis of laxaphycin B-type peptides: a case study and clues to their biosynthesis. Marine Drugs, 13, 7285-7300.

Bui, T.H., Wray, V., Nimtz, M., Fossen, T., Preisitsch, M., Schröder, G. et al. (2014) Balticidins A-D, antifungal hassallidin-like lipopeptides from the Baltic Sea cyanobacterium Anabaena cylindrica Bio33. Journal of Natural Products, 77, 1287-1296.

Cai, W.J., Matthew, S., Chen, Q.Y., Paul, V.J. & Luesch, H. (2018) Discovery of new A- and B-type laxaphycins with synergistic anticancer activity. Bioorganic & Medicinal Chemistry, 26, 2310-2319.

Carrillo, C., Teruel, J.A., Aranda, F.J. & Ortiz, A. (2003) Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochimica et Biophysica Acta, 1611, 91-97.

Cheel, J., Hájek, J., Kuzma, M., Saurav, K., Smýkalová, I., Ondráčková, E. et al. (2018) Application of HPCCC combined with polymeric resins and HPLC for the separation of cyclic lipopeptides muscotoxins A-C and their antimicrobial activity. Molecules, 23, 2653.

Chooi, Y.H. & Tang, Y. (2010) Adding the lipo to lipopeptides: do more with less. Chemistry & Biology, 17, 791-793.

Cochrane, S.A. & Vederas, J.C. (2016) Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Medicinal Research Reviews, 36, 4-31.

de Souza Freitas, F., Coelho de Assis Lage, T., BAL, A., de Paula Siqueira, T., de Barros, M. & Tótola, M.R. (2020) Bacillus subtilis TR47II as a source of bioactive lipopeptides against gram-negative pathogens causing nosocomial infections. 3 Biotech, 10, 474.

Demay, J., Bernard, C., Reinhardt, A. & Marie, B. (2019) Natural products from cyanobacteria: focus on beneficial activities. Marine Drugs, 17, 320.

Desmyttere, H., Deweer, C., Muchembled, J., Sahmer, K., Jacquin, J., Coutte, F. et al. (2019) Antifungal activities of Bacillus subtilis lipopeptides to two Venturia inaequalis strains possessing different tebuconazole sensitivity. Frontiers in Microbiology, 10, 2327.

Dittmann, E., Gugger, M., Sivonen, K. & Fewer, D.P. (2015) Natural product biosynthetic diversity and comparative genomics of the cyanobacteria. Trends in Microbiology, 23, 642-652.

Fewer, D.P. & Metsä-Ketelä, M. (2020) A pharmaceutical model for the molecular evolution of microbial natural products. The FEBS Journal, 287, 1429-1449.

Frankmölle, W.P., Knubel, G., Moore, R.E. & Patterson, G.M.L. (1992) Antifungal cyclic peptides from the terrestrial blue-green alga Anabaena laxa. 2. Structures of laxaphycin A, laxaphycin B, laxaphycin D and laxaphycin E J Antibiot, 45, 1458-1466.

Frankmölle, W.P., Larsen, L.K., Caplan, F.R., Patterson, G.M.L., Knubel, G., Levine, I.A. et al. (1992) Antifungal cyclic peptides from the terrestrial blue-green alga Anabaena laxa. 1. Isolation Biol. PRO, 45, 1451-1457.

Frenkel, N., Makky, A., Sudji, I.R., Wink, M. & Tanaka, M. (2014) Mechanistic investigation of interactions between steroidal saponin digitonin and cell membrane models. The Journal of Physical Chemistry. B, 118, 14632-14639.

Galica, T., Hrouzek, P. & Mareš, J. (2017) Genome mining reveals high incidence of putative lipopeptide biosynthesis NRPS/PKS clusters containing fatty acyl-AMP ligase genes in biofilm-forming cyanobacteria. Journal of Phycology, 53, 985-998.

Gbankoto, A., Vigo, J., Dramane, K., Banaigs, B., Aina, E. & Salmon, J.M. (2005) Cytotoxic effect of laxaphycins a and B on human lymphoblastic cells (CCRF-CEM) using digitized videomicrofluorometry. In Vivo, 19, 577-582.

Gregson, J.M., Chen, J.-L., Patterson, G.M.L. & Moore, R.E. (1992) Structures of puwainaphycins A-E. Tetrahedron, 48, 3727-3734.

Heinilä, L.M.P., Fewer, D.P., Jokela, J.K., Wahlsten, M., Jortikka, A. & Sivonen, K. (2020) Shared PKS module in biosynthesis of synergistic laxaphycins. Frontiers in Microbiology, 11, 2173.

Houšť, J., Spížek, J. & Havlíček, V. (2020) Antifungal drugs. Metabolites, 10, 106.

Hrouzek, P., Kuzma, M., Černý, J., Novák, P., Fišer, R., Simek, P. et al. (2012) The cyanobacterial cyclic lipopeptides puwainaphycins F/G are inducing necrosis via cell membrane permeabilization and subsequent unusual Actin relocalization. Chemical Research in Toxicology, 25, 1203-1211.

Humisto, A., Jokela, J., Teigen, K., Wahlsten, M., Permi, P., Sivonen, K. et al. (2019) Characterization of the interaction of the antifungal and cytotoxic cyclic glycolipopeptide hassallidin with sterol-containing lipid membranes. Biochimica et Biophysica Acta - Biomembranes, 1861, 1510-1521.

Irie, T., Otagiri, M., Sunada, M., Uekama, K., Ohtani, Y., Yamada, Y. et al. (1982) Cyclodextrin-induced hemolysis and shape changes of human erythrocytes in vitro. Journal of Pharmacobio-Dynamics, 5, 741-744.

Iwasaki, A., Ohno, O., Sumimoto, S., Ogawa, H., Nguyen, K.A. & Suenaga, K. (2015) Jahanyne, an apoptosis-inducing lipopeptide from the marine cyanobacterium Lyngbya sp. Organic Letters, 17, 652-655.

Jokela, J., Oftedal, L., Herfindal, L., Permi, P., Wahlsten, M., Døskeland, S.O. et al. (2012) Anabaenolysins, novel cytolytic lipopeptides from benthic Anabaena cyanobacteria. PLoS One, 7, e41222.

Jones, M.R., Pinto, E., Torres, M.A., Dörr, F., Mazur-Marzec, H., Szubert, K. et al. (2021) CyanoMetDB, a comprehensive public database of secondary metabolites from cyanobacteria. Water Research, 196, 117017.

Kajiyama, S., Kanzaki, H., Kawazu, K. & Kobayashi, A. (1998) Nostofungicidine, an antifungal lipopeptide from the field-grown terrestrial blue-green alga Nostoc commune. Tetrahedron Letters, 39, 3737-3740.

Kang, H.S., Krunic, A., Shen, Q., Swanson, S.M. & Orjala, J. (2011) Minutissamides A-D, antiproliferative cyclic decapeptides from the cultured cyanobacterium Anabaena minutissima. Journal of Natural Products, 74, 1597-1605.

Kang, H.S., Sturdy, M., Krunic, A., Kim, H., Shen, Q., Swanson, S.M. et al. (2012) Minutissamides E-L, antiproliferative cyclic lipodecapeptides from the cultured freshwater cyanobacterium cf. Anabaena sp. Bioorganic & Medicinal Chemistry, 20, 6134-6143.

Lin, L.Z., Zheng, Q.W., Wei, T., Zhang, Z.Q., Zhao, C.F., Zhong, H. et al. (2020) Isolation and characterization of fengycins produced by Bacillus amyloliquefaciens JFL21 and its broad-spectrum antimicrobial potential against multidrug-resistant foodborne pathogens. Frontiers in Microbiology, 11, 579621.

Luo, S.W., Kang, H.S., Krunic, A., Chen, W.L., Yang, J.L., Woodard, J.L. et al. (2015) Trichormamides C and D, antiproliferative cyclic lipopeptides from the cultured freshwater cyanobacterium cf. Oscillatoria sp. UIC 10045. Bioorganic Medicinal Chemistry, 23, 3153-3162.

Malviya, D., Sahu, P.K., Singh, U.B., Paul, S., Gupta, A., Gupta, A.R. et al. (2020) Lesson from ecotoxicity: revisiting the microbial lipopeptides for the management of emerging diseases for crop protection. International Journal of Environmental Research and Public Health, 17, 1434.

Mareš, J., Hájek, J., Urajová, P., Kopecký, J. & Hrouzek, P. (2014) A hybrid nonribosomal peptide/polyketide synthetase containing fatty-acyl ligase (FAAL) synthesizes the β-amino fatty acid lipopeptides puwainaphycins in the cyanobacterium Cylindrospermum alatosporum. PLoS One, 9, e111904.

Mareš, J., Hájek, J., Urajová, P., Kust, A., Jokela, J., Saurav, K. et al. (2019) Alternative biosynthetic starter units enhance the structural diversity of cyanobacterial lipopeptides. Applied and Environmental Microbiology, 85, e02675-e02618.

Minagawa, S., Kondoh, Y., Sueoka, K., Osada, H. & Nakamoto, H. (2011) Cyclic lipopeptide antibiotics bind to the N-terminal domain of the prokaryotic Hsp90 to inhibit the chaperone activity. The Biochemical Journal, 435, 237-246.

Moon, S.S., Chen, J.L., Moore, R.E. & Patterson, G.M.L. (1992) Calophycin, a fungicidal cyclic decapeptide from the terrestrial blue-green alga Calothrix fusca. The Journal of Organic Chemistry, 57, 1097-1103.

Neuhof, T., Schmieder, P., Preussel, K., Dieckmann, R., Pham, H., Bartl, F. et al. (2005) Hassallidin A, a glycosylated lipopeptide with antifungal activity from the cyanobacterium Hassallia sp. Journal of Natural Products, 68, 695-700.

Neuhof, T., Schmieder, P., Seibold, M., Preussel, K. & von Döhren, H. (2006) Hassallidin B-second antifungal member of the hassallidin family. Bioorganic & Medicinal Chemistry Letters, 16, 4220-4222.

Neuhof, T., Seibold, M., Thewes, S., Laue, M., Han, C.O., Hube, B. et al. (2006) Comparison of susceptibility and transcription profile of the new antifungal hassallidin a with caspofungin. Biochemical and Biophysical Research Communications, 349, 740-749.

Niedermeyer, T.H. (2015) Anti-infective natural products from cyanobacteria. Planta Medica, 15, 1309-1325.

Nishikawa, M., Nojima, S., Akiyama, T., Sankawa, U. & Inoue, K. (1984) Interaction of digitonin and its analogs with membrane cholesterol. Journal of Biochemistry, 4, 1231-1239.

Oftedal, L., Myhren, L., Jokela, J., Gausdal, G., Sivonen, K., Døskeland, S.O. et al. (2012) The lipopeptide toxins anabaenolysin a and B target biological membranes in a cholesterol-dependent manner. Biochimica et Biophysica Acta, 1818, 3000-3009.

Ongena, M. & Jacques, P. (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 16, 115-125.

Pancrace, C., Jokela, J., Sassoon, N., Ganneau, C., Desnos-Ollivier, M., Wahlsten, M. et al. (2017) Rearranged biosynthetic gene cluster and synthesis of hassallidin E in Planktothrix serta PCC 8927. ACS Chemical Biology, 12, 1796-1804.

Roongsawang, N., Washio, K. & Morikawa, M. (2010) Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. International Journal of Molecular Sciences, 12, 141-172.

Shishido, T.K., Humisto, A., Jokela, J., Liu, L., Wahlsten, M., Tamrakar, A. et al. (2015) Antifungal compounds from cyanobacteria. Marine Drugs, 13, 2124-2140.

Shishido, T.K., Jokela, J., Kolehmainen, C.T., Fewer, D.P., Wahlsten, M., Wang, H. et al. (2015) Antifungal activity improved by coproduction of cyclodextrins and anabaenolysins in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 112, 13669-13674.

Sieber, S.A. & Marahiel, M.A. (2005) Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chemical Reviews, 105, 715-738.

Taylor, S.D. & Palmer, M. (2016) The action mechanism of daptomycin. Bioorganic & Medicinal Chemistry, 24, 6253-6268.

Tomek, P., Hrouzek, P., Kuzma, M., Sýkora, J., Fiser, R., Cerný, J. et al. (2015) Cytotoxic lipopeptide muscotoxin a, isolated from soil cyanobacterium Desmonostoc muscorum, permeabilizes phospholipid membranes by reducing their fluidity. Chemical Research in Toxicology, 28, 216-224.

Urajová, P., Hájek, J., Wahlsten, M., Jokela, J., Galica, T., Fewer, D.P. et al. (2016) A liquid chromatography-mass spectrometric method for the detection of cyclic β-amino fatty acid lipopeptides. Journal of Chromatography. A, 1438, 76-83.

Vašíček, O., Hájek, J., Bláhová, L., Hrouzek, P., Babica, P., Kubala, L. et al. (2020) Cyanobacterial lipopeptides puwainaphycins and minutissamides induce disruptive and pro-inflammatory processes in Caco-2 human intestinal barrier model. Harmful Algae, 96, 101849.

Vestola, J., Shishido, T.K., Jokela, J., Fewer, D.P., Aitio, O., Permi, P. et al. (2014) Hassallidins, antifungal glycolipopeptides, are widespread among cyanobacteria and are the end-product of a nonribosomal pathway. Proceedings of the National Academy of Sciences of the United States of America, 111, E1909-E1917.

Zhong, L., Diao, X., Zhang, N., Li, F., Zhou, H., Chen, H. et al. (2021) Engineering and elucidation of the lipoinitiation process in nonribosomal peptide biosynthesis. Nature Communications, 12, 296.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...