The Primitive Thylakoid-Less Cyanobacterium Gloeobacter Is a Common Rock-Dwelling Organism

. 2013 ; 8 (6) : e66323. [epub] 20130618

Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23823729

Cyanobacteria are an ancient group of photosynthetic prokaryotes, which are significant in biogeochemical cycles. The most primitive among living cyanobacteria, Gloeobacter violaceus, shows a unique ancestral cell organization with a complete absence of inner membranes (thylakoids) and an uncommon structure of the photosynthetic apparatus. Numerous phylogenetic papers proved its basal position among all of the organisms and organelles capable of plant-like photosynthesis (i.e., cyanobacteria, chloroplasts of algae and plants). Hence, G. violaceus has become one of the key species in evolutionary study of photosynthetic life. It also numbers among the most widely used organisms in experimental photosynthesis research. Except for a few related culture isolates, there has been little data on the actual biology of Gloeobacter, being relegated to an "evolutionary curiosity" with an enigmatic identity. Here we show that members of the genus Gloeobacter probably are common rock-dwelling cyanobacteria. On the basis of morphological, ultrastructural, pigment, and phylogenetic comparisons of available Gloeobacter strains, as well as on the basis of three new independent isolates and historical type specimen, we have produced strong evidence as to the close relationship of Gloeobacter to a long known rock-dwelling cyanobacterial morphospecies Aphanothece caldariorum. Our results bring new clues to solving the 40 year old puzzle of the true biological identity of Gloeobacter violaceus, a model organism with a high value in several biological disciplines. A probable broader distribution of Gloeobacter in common wet-rock habitats worldwide is suggested by our data, and its ecological meaning is discussed taking into consideration the background of cyanobacterial evolution. We provide observations of previously unknown genetic variability and phenotypic plasticity, which we expect to be utilized by experimental and evolutionary researchers worldwide.

Zobrazit více v PubMed

Tomitani A, Knoll AH, Cavanaugh CM, Ohno T (2006) The evolutionary diversification of cyanobacteria: Molecular-phylogenetic and paleontological perspectives. Proc Natl Acad Sci U S A 103: 5442–5447. PubMed PMC

Blank CE, Sanchez-Baracaldo P (2010) Timing of morphological and ecological innovations in the cyanobacteria - a key to understanding the rise in atmospheric oxygen. Geobiology 8: 1–23. PubMed

Koksharova OA (2010) Application of molecular genetic and microbiological techniques in ecology and biotechnology of cyanobacteria. Microbiology 79: 721–734. PubMed

Schirrmeister BE, Antonelli A, Bagheri HC (2011) The origin of multicellularity in cyanobacteria. BMC Evol Biol 11: 45. PubMed PMC

Beck C, Knoop H, Axmann IM, Steuer R (2012) The diversity of cyanobacterial metabolism: genome analysis of multiple phototrophic microorganisms. BMC Genomics 13: 56. PubMed PMC

Rippka R, Waterbury J, Cohen-Bazire G (1974) Cyanobacterium which lacks thylakoids. Arch Microbiol 100: 419–436.

Guglielmi G, Cohen-Bazire G, Bryant DA (1981) The structure of Gloeobacter violaceus and its phycobilisomes. Arch Microbiol 129: 181–189.

Bryant DA, Cohen-Bazire G, Glazer AN (1981) Characterization of the biliproteins of Gloeobacter violaceus chromophore content of a cyanobacterial phycoerythrin carrying phycourobilin chromophore. Arch Microbiol 129: 190–198.

Seo PS, Yokota A (2003) The phylogenetic relationships of cyanobacteria inferred from 16S rRNA, gyrB, rpoC1 and rpoD1 gene sequences. J Gen Appl Microbiol 49: 191–203. PubMed

Hoffmann L, Kaštovský J, Komárek J (2005) System of cyanoprokaryotes (cyanobacteria) – state in 2004. Arch Hydrobiol Suppl Algol Stud 117: 21.

Gupta RS, Mathews DW (2010) Signature proteins for the major clades of Cyanobacteria. BMC Evol Biol 10. PubMed PMC

Criscuolo A, Gribaldo S (2011) Large-Scale Phylogenomic Analyses Indicate a Deep Origin of Primary Plastids within Cyanobacteria. Mol Biol Evol 28: 3019–3032. PubMed

Turner S, Pryer KM, Miao VPW, Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small submit rRNA sequence analysis. J Eukaryot Microbiol 46: 327–338. PubMed

Zhaxybayeva O, Gogarten JP, Charlebois RL, Doolittle WF, Papke RT (2006) Phylogenetic analyses of cyanobacterial genomes: Quantification of horizontal gene transfer events. Genome Res 16: 1099–1108. PubMed PMC

Gupta RS (2009) Protein signatures (molecular synapomorphies) that are distinctive characteristics of the major cyanobacterial clades. Int J Syst Evol Microbiol 59: 2510–2526. PubMed

Tsuchiya T, Takaichi S, Misawa N, Maoka T, Miyashita H, et al. (2005) The cyanobacterium Gloeobacter violaceus PCC 7421 uses bacterial-type phytoene desaturase in carotenoid biosynthesis. Febs Letters 579: 2125–2129. PubMed

Mimuro M, Tomo T, Tsuchiya T (2008) Two unique cyanobacteria lead to a traceable approach of the first appearance of oxygenic photosynthesis. Photosynth Res 97: 167–176. PubMed

Williamson A, Conlan B, Hillier W, Wydrzynski T (2011) The evolution of Photosystem II: insights into the past and future. Photosynth Res 107: 71–86. PubMed

Nakamura Y, Kaneko T, Sato S, Mimuro M, Miyashita H, et al. (2003) Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. DNA Res 10: 137–145. PubMed

Bernat G, Schreiber U, Sendtko E, Stadnichuk IN, Rexroth S, et al. (2012) Unique properties vs. common themes: The atypical cyanobacterium Gloeobacter violaceus PCC 7421 is capable of state transitions and blue-light-induced fluorescence quenching. Plant Cell Physiol 53: 528–542. PubMed

Inoue H, Tsuchiya T, Satoh S, Miyashita H, Kaneko T, et al. (2004) Unique constitution of photosystem I with a novel subunit in the cyanobacterium Gloeobacter violaceus PCC 7421. Febs Letters 578: 275–279. PubMed

Dreher C, Hielscher R, Prodohl A, Hellwig P, Schneider D (2010) Characterization of two cytochrome b(6) proteins from the cyanobacterium Gloeobacter violaceus PCC 7421. J Bioenerg Biomembr 42: 517–526. PubMed

Mimuro M, Yokono M, Akimoto S (2010) Variations in photosystem I properties in the primordial cyanobacterium Gloeobacter violaceus PCC 7421. Photochem Photobiol 86: 62–69. PubMed

Krogmann DW, Perez-Gomez B, Gutierrez-Cirlos EB, Chagolla-Lopez A, de la Vara LG, et al. (2007) The presence of multidomain linkers determines the bundle-shape structure of the phycobilisome of the cyanobacterium Gloeobacter violaceus PCC 7421. Photosynt Res 93: 27–43. PubMed

Yokono M, Akimoto S, Koyama K, Tsuchiya T, Mimuro M (2008) Energy transfer processes in Gloeobacter violaceus PCC 7421 that possesses phycobilisomes with a unique morphology. Biochim Biophys Acta Bioenergetics1777: 55–65. PubMed

Bocquet N, Nury H, Baaden M, Le Poupon C, Changeux JP, et al. (2009) X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 457: 111–114. PubMed

Weng Y, Yang LY, Corringer PJ, Sonner JM (2010) Anesthetic sensitivity of the Gloeobacter violaceus proton-gated ion channel. Anesth Analg 110: 59–63. PubMed PMC

Nury H, Van Renterghem C, Weng Y, Tran A, Baaden M, et al. (2011) X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel. Nature 469: 428–431. PubMed

Cuzman OA, Ventura S, Sili C, Mascalchi C, Turchetti T, et al. (2010) Biodiversity of phototrophic biofilms dwelling on monumental fountains. Microb Ecol 60: 81–95. PubMed

Geitler L (1927) Neue Blaualgen aus Lunz. Archiv für Protistenkunde 60: 440–448.

Golubic S, Campbell SE (1979) Analogous microbial forms in recent subaerial habitats and in precambrian cherts – Gloeothece coerulea Geitler and Eosynechococcus moorei Hofmann. Precambrian Res 8: 201–217.

Hansgirg A (1892) Prodromus der Algenflora von Böhmen. 2. Arch Naturwiss Landesdurchforsch Böhmen 8: 1–268.

Komárek J, Anagnostidis K (1999) Cyanoprokaryota. 1. Teil: Chroococcales Süsswasserflora von Mitteleuropa. Heidelberg, Berlin: Spektrum Akademischer Verlag GmbH. 548.

Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111: 1–61.

Statsoft Inc. (2012) STATISTICA (data analysis software system), version 9.1. www.statsoft.com.

Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26: 31–43. PubMed

Yilmaz M, Phlips EJ, Tillett D (2009) Improved methods for the isolation of cyanobacterial DNA from environmental samples. J Phycol 45: 517–521. PubMed

Wilmotte A, Van der Auwera G, Dewachter R (1993) Structure of the 16S ribosomal-RNA of the thermophilic cyanobacterium Chlorogloeopsis HTF (Mastigocladus laminosus HTF) strain PCC7518, and phylogenetic analysis. FEBS Letters 317: 96–100. PubMed

Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Env Microbiol 63: 3327–3332. PubMed PMC

Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences with MAFFT. In: Posada D, editor. Bioinformatics for DNA Sequence Analysis. Totowa, New Jersey: Humana Press. 39–64. PubMed

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. PubMed

Stamatakis A (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690. PubMed

Swofford DL (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4. Sunderland, Massachusetts: Sinauer Associates.

Kaňa R, Prášil O, Komárek O, Papageorgiou GC (2009) Govindjee (2009) Spectral characteristic of fluorescence induction in a model cyanobacterium, Synechococcus sp. (PCC 7942). Biochim Biophys Acta Bioenergetics 1787: 1170–1178. PubMed

Hauer T (2008) Epilithic cyanobacterial flora of Mohelenská hadcová steppe Nature Reserve (western Moravia, Czech Republic) 70 years ago and now. Fottea 8: 129–132.

Halda J, Hauer T, Kociánová M, Mühlsteinová R, Řeháková K, et al. (2011) Biodiverzita cévnatých rostlin, lišejníků, sinic a řas na skalách s ledopády v Labském dole. Opera Corcontica 48: 45–67.

Johansen JR, Lowe RL, Carty S, Fučíková K, Olsen CE, et al. (2007) New algal species records for Great Smoky Mountains National Park, with an annotated checklist of all reported algal taxa for the park. Southeast Nat 6: 99–134.

Lamprinou V, Danielidis DB, Economou-Amilli A, Pantazidou A (2012) Distribution survey of Cyanobacteria in three Greek caves of Peloponnese. Int J Speleol 41: 267–273.

Matuła J, Pietryka M, Richter D, Wojtuń B (2007) Cyanoprokaryota and algae of Arctic terrestrial ecosystems in the Hornsund area, Spitsbergen. Pol Polar Res 28: 283–315.

Uher B, Kováčik L (2002) Epilithic cyanobacteria of subaerial habitats in National Park Slovak Paradise (1998–2000). Bull Slov Bot Spoločn, Bratislava 24: 25–29.

Alvarez-Cobelas M, Gallardo T (1988) Catalogo de las algas continentales Españolas v. Cyanophyceae Schaffner 1909. Acta Bot Malacit 13: 53–76.

Singh SM, Singh P, Thajuddin N (2008) Biodiversity and distribution of cyanobacteria at Dronning Maud Land, East Antarctica. Acta Bot Malacit 33: 17–28.

Skinner S, Entwisle TJ (2001) Non-marine algae of Australia: 1. Survey of colonial gelatinous blue-green macroalgae (Cyanobacteria). Telopea 9: 573–599.

Gutierrez-Cirlos EB, Perez-Gomez B, Krogmann DW, Gomez-Lojero C (2006) The phycocyanin-associated rod linker proteins of the phycobilisome of Gloeobacter violaceus PCC 7421 contain unusually located rod-capping domains. Biochim Biophys Acta Bioenergetics 1757: 130–134. PubMed

Kondo K, Ochiai Y, Katayama M, Ikeuchi M (2007) The membrane-associated CpcG2-phycobilisome in Synechocystis: A new photosystem I antenna. Plant Physiol 144: 1200–1210. PubMed PMC

Takaichi S, Maoka T, Takasaki K, Hanada S (2010) Carotenoids of Gemmatimonas aurantiaca (Gemmatimonadetes): identification of a novel carotenoid, deoxyoscillol 2-rhamnoside, and proposed biosynthetic pathway of oscillol 2,2-dirhamnoside. Microbiology 156: 757–763. PubMed

Foss P, Skulberg OM, Kilaas L, Liaaen-Jensen S (1986) The carbohydrate moieties bound to the carotenoids myxol and oscillol and their chemosystematic applications. Phytochemistry 25: 1127–1132.

Rexroth S, Mullineaux CW, Ellinger D, Sendtko E, Rogner M, et al. (2011) The plasma membrane of the cyanobacterium Gloeobacter violaceus contains segregated bioenergetic domains. Plant Cell 23: 2379–2390. PubMed PMC

Herrero A, Flores E (2008) The Cyanobacteria: Molecular biology, genomics and evolution. Wymondham, Norfolk, UK: Caister Academic. 484 p.

Wu DY, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, et al. (2009) A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462: 1056–1060. PubMed PMC

Couradeau E, Benzerara K, Gerard E, Moreira D, Bernard S, et al. (2012) An early-branching microbialite cyanobacterium forms intracellular carbonates. Science 336: 459–462. PubMed

Cavalier-Smith T (2002) The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int J Syst Evol Microbiol 52: 7–76. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...