Phycobilisome Mobility and Its Role in the Regulation of Light Harvesting in Red Algae

. 2014 Aug ; 165 (4) : 1618-1631. [epub] 20140619

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid24948833

Red algae represent an evolutionarily important group that gave rise to the whole red clade of photosynthetic organisms. They contain a unique combination of light-harvesting systems represented by a membrane-bound antenna and by phycobilisomes situated on thylakoid membrane surfaces. So far, very little has been revealed about the mobility of their phycobilisomes and the regulation of their light-harvesting system in general. Therefore, we carried out a detailed analysis of phycobilisome dynamics in several red alga strains and compared these results with the presence (or absence) of photoprotective mechanisms. Our data conclusively prove phycobilisome mobility in two model mesophilic red alga strains, Porphyridium cruentum and Rhodella violacea. In contrast, there was almost no phycobilisome mobility in the thermophilic red alga Cyanidium caldarium that was not caused by a decrease in lipid desaturation in this extremophile. Experimental data attributed this immobility to the strong phycobilisome-photosystem interaction that highly restricted phycobilisome movement. Variations in phycobilisome mobility reflect the different ways in which light-harvesting antennae can be regulated in mesophilic and thermophilic red algae. Fluorescence changes attributed in cyanobacteria to state transitions were observed only in mesophilic P. cruentum with mobile phycobilisomes, and they were absent in the extremophilic C. caldarium with immobile phycobilisomes. We suggest that state transitions have an important regulatory function in mesophilic red algae; however, in thermophilic red algae, this process is replaced by nonphotochemical quenching.

Zobrazit více v PubMed

Abramoff MD, Magelhaes PJ, Ram SJ. (2004) Image processing with ImageJ. Biophotonics International 11: 36–42

Adir N. (2005) Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynth Res 85: 15–32 PubMed

Ajlani G, Vernotte C. (1998) Deletion of the PB-loop in the L(CM) subunit does not affect phycobilisome assembly or energy transfer functions in the cyanobacterium Synechocystis sp. PCC6714. Eur J Biochem 257: 154–159 PubMed

Allen CF, Good P, Holton RW. (1970) Lipid composition of Cyanidium. Plant Physiol 46: 748–751 PubMed PMC

Allen MB. (1959) Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte. Arch Mikrobiol 32: 270–277 PubMed

Arteni AA, Liu LN, Aartsma TJ, Zhang YZ, Zhou BC, Boekema EJ. (2008) Structure and organization of phycobilisomes on membranes of the red alga Porphyridium cruentum. Photosynth Res 95: 169–174 PubMed PMC

Ashby MK, Houmard J, Mullineaux CW. (2002) The ycf27 genes from cyanobacteria and eukaryotic algae: distribution and implications for chloroplast evolution. FEMS Microbiol Lett 214: 25–30 PubMed

Ashby MK, Mullineaux CW. (1999) The role of ApcD and ApcF in energy transfer from phycobilisomes to PSI and PSII in a cyanobacterium. Photosynth Res 61: 169–179

Betterle N, Ballottari M, Zorzan S, de Bianchi S, Cazzaniga S, Dall’osto L, Morosinotto T, Bassi R. (2009) Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J Biol Chem 284: 15255–15266 PubMed PMC

Brody M, Emerson R. (1959) The quantum yield of photosynthesis in Porphyridium cruentum, and the role of chlorophyll a in the photosynthesis of red algae. J Gen Physiol 43: 251–264 PubMed PMC

Bumba L, Havelková-Dousová H, Husák M, Vácha F. (2004) Structural characterization of photosystem II complex from red alga Porphyridium cruentum retaining extrinsic subunits of the oxygen-evolving complex. Eur J Biochem 271: 2967–2975 PubMed

Busch A, Nield J, Hippler M. (2010) The composition and structure of photosystem I-associated antenna from Cyanidioschyzon merolae. Plant J 62: 886–897 PubMed

Caffarri S, Kouril R, Kereïche S, Boekema EJ, Croce R. (2009) Functional architecture of higher plant photosystem II supercomplexes. EMBO J 28: 3052–3063 PubMed PMC

Consoli E, Croce R, Dunlap DD, Finzi L. (2005) Diffusion of light-harvesting complex II in the thylakoid membranes. EMBO Rep 6: 782–786 PubMed PMC

Cunningham FX, Dennenberg RJ, Jursinic PA, Gantt E. (1990) Growth under red light enhances photosystem II relative to photosystem I and phycobilisomes in the red alga Porphyridium cruentum. Plant Physiol 93: 888–895 PubMed PMC

Cunningham FX, Dennenberg RJ, Mustardy L, Jursinic PA, Gantt E. (1989) Stoichiometry of photosystem I, photosystem II, and phycobilisomes in the red alga Porphyridium cruentum as a function of growth irradiance. Plant Physiol 91: 1179–1187 PubMed PMC

Dekker JP, Boekema EJ. (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706: 12–39 PubMed

Delphin E, Duval JC, Etienne AL, Kirilovsky D. (1996) State transitions or delta pH-dependent quenching of photosystem II fluorescence in red algae. Biochemistry 35: 9435–9445 PubMed

Delphin E, Duval JC, Etienne AL, Kirilovsky D. (1998) ΔpH-dependent photosystem II fluorescence quenching induced by saturating, multiturnover pulses in red algae. Plant Physiol 118: 103–113 PubMed PMC

Dix JA, Verkman AS. (2008) Crowding effects on diffusion in solutions and cells. Annu Rev Biophys 37: 247–263 PubMed

Emlyn-Jones D, Ashby MK, Mullineaux CW. (1999) A gene required for the regulation of photosynthetic light harvesting in the cyanobacterium Synechocystis 6803. Mol Microbiol 33: 1050–1058 PubMed

Fromme P, editor (2008) Photosynthetic Protein Complexes: A Structural Approach. Wiley-VCH, Weinheim, Germany

Gantt E, Lipschultz CA, Grabowski J, Zimmerman BK. (1979) Phycobilisomes from blue-green and red algae: isolation criteria and dissociation characteristics. Plant Physiol 63: 615–620 PubMed PMC

Gardian Z, Bumba L, Schrofel A, Herbstova M, Nebesarova J, Vacha F. (2007) Organisation of photosystem I and photosystem II in red alga Cyanidium caldarium: encounter of cyanobacterial and higher plant concepts. Biochim Biophys Acta 1767: 725–731 PubMed

Glazer AN. (1989) Light guides: directional energy transfer in a photosynthetic antenna. J Biol Chem 264: 1–4 PubMed

Goral TK, Johnson MP, Brain APR, Kirchhoff H, Ruban AV, Mullineaux CW. (2010) Visualizing the mobility and distribution of chlorophyll proteins in higher plant thylakoid membranes: effects of photoinhibition and protein phosphorylation. Plant J 62: 948–959 PubMed

Goral TK, Johnson MP, Duffy CDP, Brain APR, Ruban AV, Mullineaux CW. (2012) Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis. Plant J 69: 289–301 PubMed

Green BR. (2011) After the primary endosymbiosis: an update on the chromalveolate hypothesis and the origins of algae with Chl c. Photosynth Res 107: 103–115 PubMed

Johnson MP, Goral TK, Duffy CDP, Brain APR, Mullineaux CW, Ruban AV. (2011) Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts. Plant Cell 23: 1468–1479 PubMed PMC

Joshua S, Bailey S, Mann NH, Mullineaux CW. (2005) Involvement of phycobilisome diffusion in energy quenching in cyanobacteria. Plant Physiol 138: 1577–1585 PubMed PMC

Joshua S, Mullineaux CW. (2004) Phycobilisome diffusion is required for light-state transitions in cyanobacteria. Plant Physiol 135: 2112–2119 PubMed PMC

Joshua S, Mullineaux CW. (2005) The rpaC gene product regulates phycobilisome-photosystem II interaction in cyanobacteria. Biochim Biophys Acta 1709: 58–68 PubMed

Kainz M, Lucotte M, Parrish CC. (2002) Methyl mercury in zooplankton: the role of size, habitat, and food quality. Can J Fish Aquat Sci 59: 1606–1615

Kaňa R. (2013) Mobility of photosynthetic proteins. Photosynth Res 116: 465–479 PubMed

Kaňa R, Kotabová E, Komárek O, Šedivá B, Papageorgiou GC, Govindjee, Prášil O. (2012a) The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition. Biochim Biophys Acta 1817: 1237–1247 PubMed

Kaňa R, Kotabová E, Sobotka R, Prášil O. (2012b) Non-photochemical quenching in cryptophyte alga Rhodomonas salina is located in chlorophyll a/c antennae. PLoS ONE 7: e29700. PubMed PMC

Kaňa R, Matonoha C, Papáček S, Soukup J. (2013) On estimation of diffusion coefficient based on spatio-temporal frap images: an inverse ill-posed problem. In J Chleboun, K Segeth, J Šístek, T Vejchodský eds, Programs and Algorithms of Numerical Mathematics 16. Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague, pp 100–111

Kaňa R, Prášil O, Komárek O, Papageorgiou GC, Govindjee (2009a) Spectral characteristic of fluorescence induction in a model cyanobacterium, Synechococcus sp. (PCC 7942). Biochim Biophys Acta 1787: 1170–1178 PubMed

Kaňa R, Prásil O, Mullineaux CW. (2009b) Immobility of phycobilins in the thylakoid lumen of a cryptophyte suggests that protein diffusion in the lumen is very restricted. FEBS Lett 583: 670–674 PubMed

Khozin I, Adlerstein D, Bigongo C, Heimer YM, Cohen Z. (1997) Elucidation of the biosynthesis of eicosapentaenoic acid in the microalga Porphyridium cruentum. II. Studies with radiolabeled precursors. Plant Physiol 114: 223–230 PubMed PMC

Khozin-Goldberg I, Yu HZ, Adlerstein D, Didi-Cohen S, Heimer YM, Cohen Z. (2000) Triacylglycerols of the red microalga Porphyridium cruentum can contribute to the biosynthesis of eukaryotic galactolipids. Lipids 35: 881–889 PubMed

Kirchhoff H. (2007) Protein diffusion and macromolecular crowding in grana. Photosynth Res 91: PS72

Kirchhoff H. (2008a) Molecular crowding and order in photosynthetic membranes. Trends Plant Sci 13: 201–207 PubMed

Kirchhoff H. (2008b) Significance of protein crowding, order and mobility for photosynthetic membrane functions. Biochem Soc Trans 36: 967–970 PubMed

Kirchhoff H. (2014) Diffusion of molecules and macromolecules in thylakoid membranes. Biochim Biophys Acta 1837: 495–502 PubMed

Kirchhoff H, Haferkamp S, Allen JF, Epstein DBA, Mullineaux CW. (2008) Protein diffusion and macromolecular crowding in thylakoid membranes. Plant Physiol 146: 1571–1578 PubMed PMC

Kirchhoff H, Sharpe RM, Herbstova M, Yarbrough R, Edwards GE. (2013) Differential mobility of pigment-protein complexes in granal and agranal thylakoid membranes of C3 and C4 plants. Plant Physiol 161: 497–507 PubMed PMC

Kirilovsky D, Kaňa R, Prášil O (2014) Mechanisms modulating energy arriving at reaction centers in cyanobacteria. In B Demmig-Adams, W Adams, G Garab, Govindjee, eds, Non-Photochemical Quenching and Thermal Energy Dissipation In Plants, Algae and Cyanobacteria, Vol 40. Springer, Dordrecht, The Netherlands, in press

Koller KP, Wehrmeyer W, Schneider H. (1977) Isolation and characterization of disc-shaped phycobilisomes from the red alga Rhodella violacea. Arch Microbiol 112: 61–67 PubMed

Kondo K, Ochiai Y, Katayama M, Ikeuchi M. (2007) The membrane-associated CpcG2-phycobilisome in Synechocystis: a new photosystem I antenna. Plant Physiol 144: 1200–1210 PubMed PMC

Kouřil R, Zygadlo A, Arteni AA, de Wit CD, Dekker JP, Jensen PE, Scheller HV, Boekema EJ. (2005) Structural characterization of a complex of photosystem I and light-harvesting complex II of Arabidopsis thaliana. Biochemistry 44: 10935–10940 PubMed

Kowalczyk N, Rappaport F, Boyen C, Wollman FA, Collén J, Joliot P. (2013) Photosynthesis in Chondrus crispus: the contribution of energy spill-over in the regulation of excitonic flux. Biochim Biophys Acta 1827: 834–842 PubMed

Krogmann DW, Pérez-Gómez B, Gutiérrez-Cirlos EB, Chagolla-López A, González de la Vara L, Gómez-Lojero C. (2007) The presence of multidomain linkers determines the bundle-shape structure of the phycobilisome of the cyanobacterium Gloeobacter violaceus PCC 7421. Photosynth Res 93: 27–43 PubMed

Krupnik T, Kotabová E, van Bezouwen LS, Mazur R, Garstka M, Nixon PJ, Barber J, Kaňa R, Boekema EJ, Kargul J. (2013) A reaction center-dependent photoprotection mechanism in a highly robust photosystem II from an extremophilic red alga, Cyanidioschyzon merolae. J Biol Chem 288: 23529–23542 PubMed PMC

Lange W, Wilhelm C, Wehrmeyer W, Morschel E. (1990) The supramolecular structure of photosystem II-phycobilisome complexes of Porphyridium cruentum. Bot Acta 103: 250–257

Ley AC, Butler WL, Bryant DA, Glazer AN. (1977) Isolation and function of allophycocyanin B of Porphyridium cruentum. Plant Physiol 59: 974–980 PubMed PMC

Liberton M, Page LE, O’Dell WB, O’Neill H, Mamontov E, Urban VS, Pakrasi HB. (2013) Organization and flexibility of cyanobacterial thylakoid membranes examined by neutron scattering. J Biol Chem 288: 3632–3640 PubMed PMC

Lippincott-Schwartz J, Snapp E, Kenworthy A. (2001) Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2: 444–456 PubMed

Liu H, Zhang H, Niedzwiedzki DM, Prado M, He G, Gross ML, Blankenship RE. (2013) Phycobilisomes supply excitations to both photosystems in a megacomplex in cyanobacteria. Science 342: 1104–1107 PubMed PMC

Liu LN, Aartsma TJ, Thomas JC, Lamers GEM, Zhou BC, Zhang YZ. (2008a) Watching the native supramolecular architecture of photosynthetic membrane in red algae: topography of phycobilisomes and their crowding, diverse distribution patterns. J Biol Chem 283: 34946–34953 PubMed PMC

Liu LN, Aartsma TJ, Thomas JC, Zhou BC, Zhang YZ. (2009) FRAP analysis on red alga reveals the fluorescence recovery is ascribed to intrinsic photoprocesses of phycobilisomes than large-scale diffusion. PLoS ONE 4: e5295. PubMed PMC

Liu LN, Bryan SJ, Huang F, Yu J, Nixon PJ, Rich PR, Mullineaux CW. (2012) Control of electron transport routes through redox-regulated redistribution of respiratory complexes. Proc Natl Acad Sci USA 109: 11431–11436 PubMed PMC

Liu LN, Chen XL, Zhang YZ, Zhou BC. (2005) Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: an overview. Biochim Biophys Acta 1708: 133–142 PubMed

Liu LN, Duquesne K, Oesterhelt F, Sturgis JN, Scheuring S. (2011) Forces guiding assembly of light-harvesting complex 2 in native membranes. Proc Natl Acad Sci USA 108: 9455–9459 PubMed PMC

Liu LN, Elmalk AT, Aartsma TJ, Thomas JC, Lamers GEM, Zhou BC, Zhang YZ. (2008b) Light-induced energetic decoupling as a mechanism for phycobilisome-related energy dissipation in red algae: a single molecule study. PLoS ONE 3: e3134. PubMed PMC

Lukšan L., Tůma M., Vlček J., Ramešová N., Šiška M., Hartman J., Matonoha C. (2011) UFO 2011: Interactive System for Universal Functional Optimization. Institute of Computer Science, Czech Academy of Sciences, Prague, Technical Report No. 1151, p 305

Mareš J, Hrouzek P, Kaňa R, Ventura S, Strunecký O, Komárek J. (2013) The primitive thylakoid-less cyanobacterium Gloeobacter is a common rock-dwelling organism. PLoS ONE 8: e66323. PubMed PMC

Masood A, Stark KD, Salem N., Jr (2005) A simplified and efficient method for the analysis of fatty acid methyl esters suitable for large clinical studies. J Lipid Res 46: 2299–2305 PubMed

McConnell MD, Koop R, Vasil’ev S, Bruce D. (2002) Regulation of the distribution of chlorophyll and phycobilin-absorbed excitation energy in cyanobacteria: a structure-based model for the light state transition. Plant Physiol 130: 1201–1212 PubMed PMC

Mika JT, Poolman B. (2011) Macromolecule diffusion and confinement in prokaryotic cells. Curr Opin Biotechnol 22: 117–126 PubMed

Mimuro M, Kikuchi H (2003) Antenna systems and energy transfer in Cyanophyta and Rhodophyta. In BR Green, WW Parson, eds, Light-Harvesting Antennas in Photosynthesis, Vol 13. Springer, Dordrecht, The Netherlands, pp 281–306

Mullineaux CW. (1992) Excitation energy transfer from phycobilisomes to photosystem I in a cyanobacterium. Biochim Biophys Acta 1100: 285–292 PubMed

Mullineaux CW. (1994) Excitation energy transfer from phycobilisomes to photosystem I in a cyanobacterial mutant lacking photosystem II. Biochim Biophys Acta 1184: 71–77

Mullineaux CW. (2008a) Factors controlling the mobility of photosynthetic proteins. Photochem Photobiol 84: 1310–1316 PubMed

Mullineaux CW. (2008b) Phycobilisome-reaction centre interaction in cyanobacteria. Photosynth Res 95: 175–182 PubMed

Mullineaux CW, Bittersmann E, Allen JF, Holzwarth AR. (1990) Picosecond time-resolved fluorescence emission spectra indicate decreased energy transfer from the phycobilisome to photosystem II in light state 2 in the cyanobacterium Synechococcus. Biochim Biophys Acta 1015: 231–242

Mullineaux CW, Tobin MJ, Jones GR. (1997) Mobility of photosynthetic complexes in thylakoid membranes. Nature 390: 421–424

Nagy G, Szabó M, Unnep R, Káli G, Miloslavina Y, Lambrev PH, Zsiros O, Porcar L, Timmins P, Rosta L, et al. (2012) Modulation of the multilamellar membrane organization and of the chiral macrodomains in the diatom Phaeodactylum tricornutum revealed by small-angle neutron scattering and circular dichroism spectroscopy. Photosynth Res 111: 71–79 PubMed

Neilson JAD, Durnford DG. (2010) Structural and functional diversification of the light-harvesting complexes in photosynthetic eukaryotes. Photosynth Res 106: 57–71 PubMed

Papáček Š, Kaňa R, Matonoha C. (2013) Estimation of diffusivity of phycobilisomes on thylakoid membrane based on spatio-temporal FRAP images. Math Comput Model 57: 1907–1912

Papageorgiou GC, Tsimilli-Michael M, Stamatakis K. (2007) The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. Photosynthesis Research 94: 275–290 PubMed

Phair RD, Gorski SA, Misteli T. (2004) Measurement of dynamic protein binding to chromatin in vivo, using photobleaching microscopy. Chromatin and Chromatin Remodeling Enzymes Part A 375: 393–414 PubMed

Rakhimberdieva MG, Boichenko VA, Karapetyan NV, Stadnichuk IN. (2001) Interaction of phycobilisomes with photosystem II dimers and photosystem I monomers and trimers in the cyanobacterium Spirulina platensis. Biochemistry 40: 15780–15788 PubMed

Sarcina M, Mullineaux CW. (2004) Mobility of the IsiA chlorophyll-binding protein in cyanobacterial thylakoid membranes. J Biol Chem 279: 36514–36518 PubMed

Sarcina M, Tobin MJ, Mullineaux CW. (2001) Diffusion of phycobilisomes on the thylakoid membranes of the cyanobacterium Synechococcus 7942: effects of phycobilisome size, temperature, and membrane lipid composition. J Biol Chem 276: 46830–46834 PubMed

Stadnichuk IN, Bulychev AA, Lukashev EP, Sinetova MP, Khristin MS, Johnson MP, Ruban AV. (2011) Far-red light-regulated efficient energy transfer from phycobilisomes to photosystem I in the red microalga Galdieria sulphuraria and photosystems-related heterogeneity of phycobilisome population. Biochim Biophys Acta 1807: 227–235 PubMed

Su HN, Xie BB, Zhang XY, Zhou BC, Zhang YZ. (2010) The supramolecular architecture, function, and regulation of thylakoid membranes in red algae: an overview. Photosynth Res 106: 73–87 PubMed

Tamary E, Kiss V, Nevo R, Adam Z, Bernát G, Rexroth S, Rögner M, Reich Z. (2012) Structural and functional alterations of cyanobacterial phycobilisomes induced by high-light stress. Biochim Biophys Acta 1817: 319–327 PubMed

Thangaraj B, Jolley CC, Sarrou I, Bultema JB, Greyslak J, Whitelegge JP, Lin S, Kouřil R, Subramanyam R, Boekema EJ, et al. (2011) Efficient light harvesting in a dark, hot, acidic environment: the structure and function of PSI-LHCI from Galdieria sulphuraria. Biophys J 100: 135–143 PubMed PMC

Theiss C, Schmitt FJ, Pieper J, Nganou C, Grehn M, Vitali M, Olliges R, Eichler HJ, Eckert HJ. (2011) Excitation energy transfer in intact cells and in the phycobiliprotein antennae of the chlorophyll d containing cyanobacterium Acaryochloris marina. J Plant Physiol 168: 1473–1487 PubMed

Tsekos I, Reiss HD, Delivopoulos SG. (2004) The supramolecular organization of photosynthetic membranes in the red alga Thorea ramosissima: spatial relationship between putative photosystem II core particles (EF-particles) and phycobilisomes. Phycologia 43: 543–551

Vanselow C, Weber APM, Krause K, Fromme P. (2009) Genetic analysis of the photosystem I subunits from the red alga, Galdieria sulphuraria. Biochim Biophys Acta 1787: 46–59 PubMed

Wang L, Mao Y, Kong F, Li G, Ma F, Zhang B, Sun P, Bi G, Zhang F, Xue H, et al. (2013) Complete sequence and analysis of plastid genomes of two economically important red algae: Pyropia haitanensis and Pyropia yezoensis. PLoS ONE 8: e65902. PubMed PMC

Wolfe GR, Cunningham FX, Durnford D, Green BR, Gantt E. (1994) Evidence for a common origin of chloroplasts with light-harvesting complexes of different pigmentation. Nature 367: 566–568

Yokono M, Murakami A, Akimoto S. (2011) Excitation energy transfer between photosystem II and photosystem I in red algae: larger amounts of phycobilisome enhance spillover. Biochim Biophys Acta 1807: 847–853 PubMed

Yoon HS, Muller KM, Sheath RG, Ott FD, Bhattacharya D. (2006) Defining the major lineages of red algae (Rhodophyta). J Phycol 42: 482–492

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...