Fast Diffusion of the Unassembled PetC1-GFP Protein in the Cyanobacterial Thylakoid Membrane

. 2020 Dec 29 ; 11 (1) : . [epub] 20201229

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33383642

Grantová podpora
19-11494S Grantová Agentura České Republiky
. 854126 European Resuscitation Council
2.3.2-15-2016-00001 GINOP
NN 129371 National Research, Development and Innovation Office
ANN 135107 National Research, Development and Innovation Office
CZ.1.05/2.1.00/19.0392 Czech Ministry of Education, Youth and Sport

Biological membranes were originally described as a fluid mosaic with uniform distribution of proteins and lipids. Later, heterogeneous membrane areas were found in many membrane systems including cyanobacterial thylakoids. In fact, cyanobacterial pigment-protein complexes (photosystems, phycobilisomes) form a heterogeneous mosaic of thylakoid membrane microdomains (MDs) restricting protein mobility. The trafficking of membrane proteins is one of the key factors for long-term survival under stress conditions, for instance during exposure to photoinhibitory light conditions. However, the mobility of unbound 'free' proteins in thylakoid membrane is poorly characterized. In this work, we assessed the maximal diffusional ability of a small, unbound thylakoid membrane protein by semi-single molecule FCS (fluorescence correlation spectroscopy) method in the cyanobacterium Synechocystis sp. PCC6803. We utilized a GFP-tagged variant of the cytochrome b6f subunit PetC1 (PetC1-GFP), which was not assembled in the b6f complex due to the presence of the tag. Subsequent FCS measurements have identified a very fast diffusion of the PetC1-GFP protein in the thylakoid membrane (D = 0.14 - 2.95 µm2s-1). This means that the mobility of PetC1-GFP was comparable with that of free lipids and was 50-500 times higher in comparison to the mobility of proteins (e.g., IsiA, LHCII-light-harvesting complexes of PSII) naturally associated with larger thylakoid membrane complexes like photosystems. Our results thus demonstrate the ability of free thylakoid-membrane proteins to move very fast, revealing the crucial role of protein-protein interactions in the mobility restrictions for large thylakoid protein complexes.

Zobrazit více v PubMed

Busch K.B., Deckers-Hebestreit G., Hanke G.T., Mulkidjanian A.Y. Dynamics of bioenergetic microcompartments. Biol. Chem. 2013;394:163–188. doi: 10.1515/hsz-2012-0254. PubMed DOI

Liu H., Zhang H., Niedzwiedzki D.M., Prado M., He G., Gross M.L., Blankenship R.E. Phycobilisomes Supply Excitations to Both Photosystems in a Megacomplex in Cyanobacteria. Science. 2013;342:1104–1107. doi: 10.1126/science.1242321. PubMed DOI PMC

Kirchhoff H. Diffusion of molecules and macromolecules in thylakoid membranes. Biochim. Biophys. Acta Bioenerg. 2014;1837:495–502. doi: 10.1016/j.bbabio.2013.11.003. PubMed DOI

Steinbeck J., Ross I.L., Rothnagel R., Gabelein P., Schulze S., Giles N., Ali R., Drysdale R., Sierecki E., Gambin Y., et al. Structure of a PSI-LHCI-cyt b6f supercomplex in Chlamydomonas reinhardtii promoting cyclic electron flow under anaerobic conditions. Proc. Natl. Acad. Sci. USA. 2018;115:10517–10522. doi: 10.1073/pnas.1809973115. PubMed DOI PMC

Zhao L.S., Huokko T., Wilson S., Simpson D.M., Wang Q., Ruban A.V., Mullineaux C.W., Zhang Y.Z., Liu L.N. Structural variability, coordination and adaptation of a native photosynthetic machinery. Nat. Plants. 2020;6:869–882. doi: 10.1038/s41477-020-0694-3. PubMed DOI

Sacharz J., Bryan S.J., Yu J., Burroughs N.J., Spence E.M., Nixon P.J., Mullineaux C.W. Sub-cellular location of FtsH proteases in the cyanobacterium Synechocystis sp. PCC 6803 suggests localised PSII repair zones in the thylakoid membranes. Mol. Microbiol. 2015;96:448–462. doi: 10.1111/mmi.12940. PubMed DOI PMC

Liu L.N., Bryan S.J., Huang F., Yu J.F., Nixon P.J., Rich P.R., Mullineaux C.W. Control of electron transport routes through redox-regulated redistribution of respiratory complexes. Proc. Natl. Acad. Sci. USA. 2012;109:11431–11436. doi: 10.1073/pnas.1120960109. PubMed DOI PMC

MacGregor-Chatwin C., Sener M., Barnett S.F.H., Hitchcock A., Barnhart-Dailey M.C., Maghlaoui K., Barber J., Timlin J.A., Schulten K., Hunter C.N. Lateral Segregation of Photosystem I in Cyanobacterial Thylakoids. Plant Cell. 2017;29:1119–1136. doi: 10.1105/tpc.17.00071. PubMed DOI PMC

Heinz S., Rast A., Shao L., Gutu A., Gugel I.L., Heyno E., Labs M., Rengstl B., Viola S., Nowaczyk M.M., et al. Thylakoid Membrane Architecture in Synechocystis Depends on CurT, a Homolog of the Granal CURVATURE THYLAKOID1 Proteins. Plant Cell. 2016;28:2238–2260. doi: 10.1105/tpc.16.00491. PubMed DOI PMC

Schottkowski M., Peters M., Zhan Y., Rifai O., Zhang Y., Zerges W. Biogenic membranes of the chloroplast in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA. 2012;109:19286–19291. doi: 10.1073/pnas.1209860109. PubMed DOI PMC

Rexroth S., Mullineaux C.W., Ellinger D., Sendtko E., Rogner M., Koenig F. The Plasma Membrane of the Cyanobacterium Gloeobacter violaceus Contains Segregated Bioenergetic Domains. Plant Cell. 2011;23:2379–2390. doi: 10.1105/tpc.111.085779. PubMed DOI PMC

Strašková A., Steinbach G., Konert G., Kotabová E., Komenda J., Tichý M., Kaňa R. Pigment-protein complexes are organized into stable microdomains in cyanobacterial thylakoids. Biochim. Biophys. Acta (BBA) Bioenerg. 2019;1860:148053. doi: 10.1016/j.bbabio.2019.07.008. PubMed DOI

Konert G., Steinbach G., Canonico M., Kaňa R. Protein arrangement factor: A new photosynthetic parameter characterizing the organization of thylakoid membrane proteins. Physiol. Plant. 2019;166:264–277. doi: 10.1111/ppl.12952. PubMed DOI

Steinbach G., Schubert F., Kana R. Cryo-imaging of photosystems and phycobilisomes in Anabaena sp PCC 7120 cells. J. Photochem. Photobiol. B Biol. 2015;152:395–399. doi: 10.1016/j.jphotobiol.2015.10.003. PubMed DOI

Canonico M., Konert G., Kaňa R. Plasticity of cyanobacterial thylakoid microdomains under variable light conditions. Front. Plant Sci. 2020;11:586543. doi: 10.3389/fpls.2020.586543. PubMed DOI PMC

Albertsson P.-Å. A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci. 2001;6:349–354. doi: 10.1016/S1360-1385(01)02021-0. PubMed DOI

Pribil M., Labs M., Leister D. Structure and dynamics of thylakoids in land plants. J. Exp. Bot. 2014;65:1955–1972. doi: 10.1093/jxb/eru090. PubMed DOI

Kirchhoff H. Molecular crowding and order in photosynthetic membranes. Trends Plant Sci. 2008;13:201–207. doi: 10.1016/j.tplants.2008.03.001. PubMed DOI

Hallermayer G., Neupert W. Lipid-composition of mitochondrial outer and inner membranes of neurospora-crassa. Hoppe Seylers Z. Physiol. Chem. 1974;355:279–288. doi: 10.1515/bchm2.1974.355.1.279. PubMed DOI

Kirchhoff H., Haferkamp S., Allen J.F., Epstein D.B.A., Mullineaux C.W. Protein diffusion and macromolecular crowding in thylakoid membranes. Plant Physiol. 2008;146:1571–1578. doi: 10.1104/pp.107.115170. PubMed DOI PMC

Kaňa R. Mobility of photosynthetic proteins. Photosynth. Res. 2013;116:465–479. doi: 10.1007/s11120-013-9898-y. PubMed DOI

Mullineaux C.W. Factors Controlling the Mobility of Photosynthetic Proteins. Photochem. Photobiol. 2008;84:1310–1316. doi: 10.1111/j.1751-1097.2008.00420.x. PubMed DOI

Sarcina M., Bouzovitis N., Mullineaux C.W. Mobilization of photosystem II induced by intense red light in the cyanobacterium Synechococcus sp PCC7942. Plant Cell. 2006;18:457–464. doi: 10.1105/tpc.105.035808. PubMed DOI PMC

Casella S., Huang F., Mason D., Zhao G.Y., Johnson G.N., Mullineaux C.W., Liu L.N. Dissecting the Native Architecture and Dynamics of Cyanobacterial Photosynthetic Machinery. Mol. Plant. 2017;10:1434–1448. doi: 10.1016/j.molp.2017.09.019. PubMed DOI PMC

Sarcina M., Mullineaux C.W. Mobility of the IsiA chlorophyll-binding protein in cyanobacterial thylakoid membranes. J. Biol. Chem. 2004;279:36514–36518. doi: 10.1074/jbc.M405881200. PubMed DOI

Aldridge C., Spence E., Kirkilionis M.A., Frigerio L., Robinson C. Tat-dependent targeting of Rieske iron-sulphur proteins to both the plasma and thylakoid membranes in the cyanobacterium Synechocystis PCC6803. Mol. Microbiol. 2008;70:140–150. doi: 10.1111/j.1365-2958.2008.06401.x. PubMed DOI

Capoulade J., Wachsmuth M., Hufnagel L., Knop M. Quantitative fluorescence imaging of protein diffusion and interaction in living cells. Nat. Biotechnol. 2011;29:835–842. doi: 10.1038/nbt.1928. PubMed DOI

Wachsmuth M. Molecular diffusion and binding analyzed with FRAP. Protoplasma. 2014;251:373–382. doi: 10.1007/s00709-013-0604-x. PubMed DOI

Mullineaux C.W., Kirchhoff H. Role of Lipids in the Dynamics of Thylakoid Membranes. In: Wada H., Murata N., editors. Lipids in Photosynthesis: Essential and Regulatory Functions. Volume 30. Springer; Dordrecht, The Netherlands: 2009. pp. 283–294.

Sarcina M., Murata N., Tobin M.J., Mullineaux C.W. Lipid diffusion in the thylakoid membranes of the cyanobacterium Synechococcus sp.: Effect of fatty acid desaturation. FEBS Lett. 2003;553:295–298. doi: 10.1016/S0014-5793(03)01031-7. PubMed DOI

Tichy M., Beckova M., Kopecna J., Noda J., Sobotka R., Komenda J. Strain of Synechocystis PCC 6803 with Aberrant Assembly of Photosystem NN Contains Tandem Duplication of a Large Chromosomal Region. Front. Plant Sci. 2016:7. doi: 10.3389/fpls.2016.00648. PubMed DOI PMC

Komenda J., Barber J. Comparison of psbO and psbH deletion mutants of Synechocystis PCC-6803 indicates that degradation of D1 protein is regulated by the Q(B) site and dependent on protein-synthesis. Biochemistry. 1995;34:9625–9631. doi: 10.1021/bi00029a040. PubMed DOI

Wittig I., Karas M., Schagger H. High resolution clear native electrophoresis for In-gel functional assays and fluorescence studies of membrane protein complexes. Mol. Cell. Proteom. 2007;6:1215–1225. doi: 10.1074/mcp.M700076-MCP200. PubMed DOI

Dobakova M., Sobotka R., Tichy M., Komenda J. Psb28 Protein Is Involved in the Biogenesis of the Photosystem II Inner Antenna CP47 (PsbB) in the Cyanobacterium Synechocystis sp PCC 6803. Plant Physiol. 2009;149:1076–1086. doi: 10.1104/pp.108.130039. PubMed DOI PMC

Wachsmuth M., Conrad C., Bulkescher J., Koch B., Mahen R., Isokane M., Pepperkok R., Ellenberg J. High-throughput fluorescence correlation spectroscopy enables analysis of proteome dynamics in living cells. Nat. Biotechnol. 2015;33:384–389. doi: 10.1038/nbt.3146. PubMed DOI

Schneider D., Skrzypczak S., Anemüller S., Schmidt C., Seidler A., Rögner M. Heterogeneous Rieske Proteins in the Cytochromeb 6 f Complex of Synechocystis PCC6803? J. Biol. Chem. 2002;277:10949–10954. doi: 10.1074/jbc.M104076200. PubMed DOI

Karnauchov I., Herrmann R.G., Klosgen R.B. Transmembrane topology of the Rieske Fe/S protein of the cytochrome b(6)/f complex from spinach chloroplasts. FEBS Lett. 1997;408:206–210. doi: 10.1016/S0014-5793(97)00427-4. PubMed DOI

Kurisu G., Zhang H.M., Smith J.L., Cramer W.A. Structure of the cytochrome b(6)f complex of oxygenic photosynthesis: Tuning the cavity. Science. 2003;302:1009–1014. doi: 10.1126/science.1090165. PubMed DOI

Schneider D., Berry S., Volkmer T., Seidler A., Rögner M. PetC1 is the major Rieske iron-sulfur protein in the cytochrome b6f complex of Synechocystis sp. PCC 6803. J. Biol. Chem. 2004;279:39383–39388. doi: 10.1074/jbc.M406288200. PubMed DOI

Komenda J., Reisinger V., Muller B.C., Dobakova M., Granvogl B., Eichacker L.A. Accumulation of the D2 protein is a key regulatory step for assembly of the photosystem II reaction center complex in Synechocystis PCC 6803. J. Biol. Chem. 2004;279:48620–48629. doi: 10.1074/jbc.M405725200. PubMed DOI

Knoppova J., Yu J.F., Konik P., Nixon P.J., Komenda J. CyanoP is Involved in the Early Steps of Photosystem II Assembly in the Cyanobacterium Synechocystis sp PCC 6803. Plant Cell Physiol. 2016;57:1921–1931. doi: 10.1093/pcp/pcw115. PubMed DOI

Dobakova M., Tichy M., Komenda J. Role of the PsbI protein in photosystem II assembly and repair in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol. 2007;145:1681–1691. doi: 10.1104/pp.107.107805. PubMed DOI PMC

Kim S.A., Heinze K.G., Schwille P. Fluorescence correlation spectroscopy in living cells. Nat. Methods. 2007;4:963–973. doi: 10.1038/nmeth1104. PubMed DOI

Schultze M., Forberich B., Rexroth S., Dyczmons N.G., Roegner M., Appel J. Localization of cytochrome b(6)f complexes implies an incomplete respiratory chain in cytoplasmic membranes of the cyanobacterium Synechocystis sp. PCC 6803. Biochim. Biophys. Acta Bioenerg. 2009;1787:1479–1485. doi: 10.1016/j.bbabio.2009.06.010. PubMed DOI

Elson E.L. Fluorescence correlation spectroscopy: Past, present, future. Biophys. J. 2011;101:2855–2870. doi: 10.1016/j.bpj.2011.11.012. PubMed DOI PMC

David L., Prado M., Arteni A.A., Elmlund D.A., Blankenship R.E., Adir N. Structural studies show energy transfer within stabilized phycobilisomes independent of the mode of rod–core assembly. Biochim. Biophys. Acta (BBA) Bioenerg. 2014;1837:385–395. doi: 10.1016/j.bbabio.2013.12.014. PubMed DOI

Iwai M., Pack C.G., Takenaka Y., Sako Y., Nakano A. Photosystem II antenna phosphorylation-dependent protein diffusion determined by fluorescence correlation spectroscopy. Sci. Rep. 2013:3. doi: 10.1038/srep02833. PubMed DOI PMC

Janik E., Bednarska J., Sowinski K., Luchowski R., Zubik M., Grudzinski W., Gruszecki W.I. Light-induced formation of dimeric LHCII. Photosynth. Res. 2017;132:265–276. doi: 10.1007/s11120-017-0387-6. PubMed DOI PMC

Crepin A., Semanat E.C., Trsková E.K., Belgio E., Kaňa R. Fluorescence Correlation Spectroscopy sets the validity limits of the in vitro method for antenna fluorescence quenching. Phys. Chem. Chem. Phys. 2020 submitted.

Dix J.A., Verkman A.S. Annual Review of Biophysics. Volume 37. Annual Reviews; Palo Alto, CA, USA: 2008. Crowding effects on diffusion in solutions and cells; pp. 247–263. PubMed

Wang B., Kuo J., Bae S.C., Granick S. When Brownian diffusion is not Gaussian. Nat. Mater. 2012;11:481–485. doi: 10.1038/nmat3308. PubMed DOI

Nicolson G.L. The Fluid-Mosaic Model of Membrane Structure: Still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim. Biophys. Acta Biomembr. 2014;1838:1451–1466. doi: 10.1016/j.bbamem.2013.10.019. PubMed DOI

Vámosi G., Friedländer-Brock E., Ibrahim S.M., Brock R., Szöllősi J., Vereb G. EGF Receptor Stalls upon Activation as Evidenced by Complementary Fluorescence Correlation Spectroscopy and Fluorescence Recovery after Photobleaching Measurements. Int. J. Mol. Sci. 2019;20:3370. doi: 10.3390/ijms20133370. PubMed DOI PMC

Wilkens V., Kohl W., Busch K. Restricted diffusion of OXPHOS complexes in dynamic mitochondria delays their exchange between cristae and engenders a transitory mosaic distribution. J. Cell Sci. 2013;126:103–116. doi: 10.1242/jcs.108852. PubMed DOI

Kirchhoff H., Sharpe R.M., Herbstova M., Yarbrough R., Edwards G.E. Differential Mobility of Pigment-Protein Complexes in Granal and Agranal Thylakoid Membranes of C3 and C4 Plants. Plant Physiol. 2013;161:497–507. doi: 10.1104/pp.112.207548. PubMed DOI PMC

Mullineaux C.W., Tobin M.J., Jones G.R. Mobility of photosynthetic complexes in thylakoid membranes. Nature. 1997;390:421–424. doi: 10.1038/37157. DOI

Kana R., Prasil O., Mullineaux C. Immobility of phycobilins in the thylakoid lumen of a cryptophyte suggests that protein diffusion in the lumen is very restricted. FEBS Lett. 2009;583:670–674. doi: 10.1016/j.febslet.2009.01.016. PubMed DOI

Kaňa R., Kotabová E., Lukeš M., Papáček Š., Matonoha C., Liu L.-N., Prášil O., Mullineaux C.W. Phycobilisome Mobility and Its Role in the Regulation of Light Harvesting in Red Algae. Plant Physiol. 2014;165:1618–1631. doi: 10.1104/pp.114.236075. PubMed DOI PMC

Mueller F., Mazza D., Stasevich T.J., McNally J.G. FRAP and kinetic modeling in the analysis of nuclear protein dynamics: What do we really know? Curr. Opin. Cell Biol. 2010;22:403–411. doi: 10.1016/j.ceb.2010.03.002. PubMed DOI PMC

Sankaran J., Wohland T. Fluorescence strategies for mapping cell membrane dynamics and structures. APL Bioeng. 2020;4:020901. doi: 10.1063/1.5143945. PubMed DOI PMC

Meddens M.B.M., de Keijzer S., Cambi A. Chapter 4—High Spatiotemporal Bioimaging Techniques to Study the Plasma Membrane Nanoscale Organization. In: Cornea A., Conn P.M., editors. Fluorescence Microscopy. Academic Press; Boston, MA, USA: 2014. pp. 49–63. DOI

Daskalakis V., Papadatos S., Kleinekathöfer U. Fine tuning of the photosystem II major antenna mobility within the thylakoid membrane of higher plants. Biochim. Biophys. Acta (BBA) Biomembr. 2019;1861:183059. doi: 10.1016/j.bbamem.2019.183059. PubMed DOI

Seiwert D., Witt H., Janshoff A., Paulsen H. The non-bilayer lipid MGDG stabilizes the major light-harvesting complex (LHCII) against unfolding. Sci. Rep. 2017;7:5158. doi: 10.1038/s41598-017-05328-7. PubMed DOI PMC

Kern J., Zouni A., Guskov A., Krauß N. Lipids in the Structure of Photosystem I, Photosystem II and the Cytochrome b6f Complex. In: Wada H., Murata N., editors. Lipids in Photosynthesis. Springer; Dordrecht, The Netherlands: 2009. pp. 203–242. DOI

Garab G., Ughy B., de Waard P., Akhtar P., Javornik U., Kotakis C., Sket P., Karlicky V., Materova Z., Spunda V., et al. Lipid polymorphism in chloroplast thylakoid membranes—As revealed by P-31-NMR and timeresolved merocyanine fluorescence spectroscopy. Sci. Rep. 2017:7. doi: 10.1038/s41598-017-13574-y. PubMed DOI PMC

Wilhelm C., Goss R., Garab G. The fluid-mosaic membrane theory in the context of photosynthetic membranes: Is the thylakoid membrane more like a mixed crystal or like a fluid? J. Plant Physiol. 2020;252:17. doi: 10.1016/j.jplph.2020.153246. PubMed DOI

Li L., Aro E.M., Millar A.H. Mechanisms of Photodamage and Protein Turnover in Photoinhibition. Trends Plant Sci. 2018;23:667–676. doi: 10.1016/j.tplants.2018.05.004. PubMed DOI

Kirilovsky D., Kaňa R., Prášil O. Mechanisms Modulating Energy Arriving at Reaction Centers in Cyanobacteria. In: Demmig-Adams B., Garab G., Adams W.W. III, Govindjee U., editors. Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Volume 40. Springer; Heidelberg, Germany: 2014. pp. 471–501.

Calzadilla P.I., Kirilovsky D. Revisiting cyanobacterial state transitions. Photochem. Photobiol. Sci. 2020;19:585–603. doi: 10.1039/C9PP00451C. PubMed DOI

Consoli E., Croce R., Dunlap D.D., Finzi L. Diffusion of light-harvesting complex II in the thylakoid membranes. EMBO Rep. 2005;6:782–786. doi: 10.1038/sj.embor.7400464. PubMed DOI PMC

El Bissati K., Delphin E., Murata N., Etienne A.L., Kirilovsky D. Photosystem II fluorescence quenching in the cyanobacterium Synechocystis PCC 6803: Involvement of two different mechanisms. Biochim. Biophys. Acta Bioenerg. 2000;1457:229–242. doi: 10.1016/S0005-2728(00)00104-3. PubMed DOI

Joshua S., Mullineaux C.W. Phycobilisome diffusion is required for light-state transitions in cyanobacterial. Plant Physiol. 2004;135:2112–2119. doi: 10.1104/pp.104.046110. PubMed DOI PMC

Gwizdala M., Botha J.L., Wilson A., Kirilovsky D., van Grondelle R., Krüger T.P.J. Switching an Individual Phycobilisome Off and On. J. Phys. Chem. Lett. 2018;9:2426–2432. doi: 10.1021/acs.jpclett.8b00767. PubMed DOI

Mueller F., Morisaki T., Mazza D., McNally J.G. Minimizing the Impact of Photoswitching of Fluorescent Proteins on FRAP Analysis. Biophys. J. 2012;102:1656–1665. doi: 10.1016/j.bpj.2012.02.029. PubMed DOI PMC

Liu L.N., Aartsma T.J., Thomas J.C., Zhou B.C., Zhang Y.Z. FRAP Analysis on Red Alga Reveals the Fluorescence Recovery Is Ascribed to Intrinsic Photoprocesses of Phycobilisomes than Large-Scale Diffusion. PLoS ONE. 2009;4:e5295. doi: 10.1371/journal.pone.0005295. PubMed DOI PMC

Sinnecker D., Voigt P., Hellwig N., Schaefer M. Reversible photobleaching of enhanced green fluorescent proteins. Biochemistry. 2005;44:7085–7094. doi: 10.1021/bi047881x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace