Antenna Protein Clustering In Vitro Unveiled by Fluorescence Correlation Spectroscopy
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GAČR 17-02363Y; GAČR 19-11494S to R.K.; CZ.1.05/2.1.00/19.0392
Czech Science Foundation
PubMed
33804002
PubMed Central
PMC8000295
DOI
10.3390/ijms22062969
PII: ijms22062969
Knihovny.cz E-zdroje
- Klíčová slova
- antenna proteins, detergent critical micelle concentration, fluorescence correlation spectroscopy, non-photochemical quenching, photoprotection, photosynthesis, protein oligomerization,
- MeSH
- chlorofyl chemie genetika účinky záření MeSH
- fluorescence MeSH
- fluorescenční spektrometrie MeSH
- fotosyntéza genetika MeSH
- fotosystém II (proteinový komplex) genetika účinky záření MeSH
- fototrofní procesy genetika MeSH
- homeodoménový protein Antennapedia chemie genetika MeSH
- koncentrace vodíkových iontů MeSH
- proteinové agregáty genetika MeSH
- shluková analýza MeSH
- světlo škodlivé účinky MeSH
- světlosběrné proteinové komplexy chemie genetika MeSH
- tylakoidy chemie genetika účinky záření MeSH
- zeaxanthiny genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl MeSH
- fotosystém II (proteinový komplex) MeSH
- homeodoménový protein Antennapedia MeSH
- proteinové agregáty MeSH
- světlosběrné proteinové komplexy MeSH
- zeaxanthiny MeSH
Antenna protein aggregation is one of the principal mechanisms considered effective in protecting phototrophs against high light damage. Commonly, it is induced, in vitro, by decreasing detergent concentration and pH of a solution of purified antennas; the resulting reduction in fluorescence emission is considered to be representative of non-photochemical quenching in vivo. However, little is known about the actual size and organization of antenna particles formed by this means, and hence the physiological relevance of this experimental approach is questionable. Here, a quasi-single molecule method, fluorescence correlation spectroscopy (FCS), was applied during in vitro quenching of LHCII trimers from higher plants for a parallel estimation of particle size, fluorescence, and antenna cluster homogeneity in a single measurement. FCS revealed that, below detergent critical micelle concentration, low pH promoted the formation of large protein oligomers of sizes up to micrometers, and therefore is apparently incompatible with thylakoid membranes. In contrast, LHCII clusters formed at high pH were smaller and homogenous, and yet still capable of efficient quenching. The results altogether set the physiological validity limits of in vitro quenching experiments. Our data also support the idea that the small, moderately quenching LHCII oligomers found at high pH could be relevant with respect to non-photochemical quenching in vivo.
Zobrazit více v PubMed
Liu Z., Yan H., Wang K., Kuang T., Zhang J., Gui L., An X., Chang W. Crystal structure of spinach major light-harvesting complex at 2.72 A resolution. Nature. 2004;428:287–292. doi: 10.1038/nature02373. PubMed DOI
Standfuss R., van Scheltinga A.C.T., Lamborghini M., Kuhlbrandt W. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 A resolution. EMBO J. 2005;24:919–928. doi: 10.1038/sj.emboj.7600585. PubMed DOI PMC
Kana R., Vass I. Thermoimaging as a tool for studying light-induced heating of leaves Correlation of heat dissipation with the efficiency of photosystem II photochemistry and non-photochemical quenching. Environ. Exp. Bot. 2008;64:90–96. doi: 10.1016/j.envexpbot.2008.02.006. DOI
Holt N.E., Fleming G.R., Niyogi K.K. Toward an understanding of the mechanism of nonphotochemical quenching in green plants. Biochemistry. 2004;43:8281–8289. doi: 10.1021/bi0494020. PubMed DOI
Goss R., Lepetit B. Biodiversity of NPQ. J. Plant Physiol. 2015;172:13–32. doi: 10.1016/j.jplph.2014.03.004. PubMed DOI
Horton P., Ruban A.V., Rees D., Pascal A.A., Noctor G., Young A.J. Control of the light-harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll-protein complex. FEBS Lett. 1991;292:1–4. PubMed
Horton P., Wentworth M., Ruban A. Control of the light harvesting function of chloroplast membranes: The LHCII-aggregation model for non-photochemical quenching. FEBS Lett. 2005;579:4201–4206. doi: 10.1016/j.febslet.2005.07.003. PubMed DOI
Li X.P., Gilmore A.M., Caffarri S., Bassi R., Golan T., Kramer D., Niyogi K.K. Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J. Biol. Chem. 2004;279:22866–22874. doi: 10.1074/jbc.M402461200. PubMed DOI
Ahn T.K., Avenson T.J., Ballottari M., Cheng Y.C., Niyogi K.K., Bassi R., Fleming G.R. Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science. 2008;320:794–797. doi: 10.1126/science.1154800. PubMed DOI
Belgio E., Duffy C.D., Ruban A.V. Switching light harvesting complex II into photoprotective state involves the lumen-facing apoprotein loop. Phys. Chem. Chem. Phys. 2013;15:12253–12261. doi: 10.1039/c3cp51925b. PubMed DOI
Ruban A.V., Horton P. Mechanism of DeltapH-Dependent Dissipation of Absorbed Excitation Energy by Photosynthetic Membranes. 1. Spectroscopic Analysis of Isolated Light-Harvesting Complexes. Biochim. Biophys. Acta. 1992;1102:30–38. doi: 10.1016/0005-2728(92)90061-6. DOI
Ruban A.V., Rees D., Pascal A.A., Horton P. Mechanism of DeltapH-Dependent Dissipation of Absorbed Excitation Energy by Photosynthetic Membranes. 2. The Relationship Between LHCII Aggregation Invitro and qE in Isolated Thylakoids. Biochim. Biophys. Acta. 1992;1102:39–44. doi: 10.1016/0005-2728(92)90062-7. DOI
Johnson M.P., Ruban A.V. Restoration of rapidly reversible photoprotective energy dissipation in the absence of PsbS protein by enhanced DeltapH. J. Biol. Chem. 2011;286:19973–19981. doi: 10.1074/jbc.M111.237255. PubMed DOI PMC
Kuthanova Trskova E., Belgio E., Yeates A.M., Sobotka R., Ruban A.V., Kana R. Antenna proton sensitivity determines photosynthetic light harvesting strategy. J. Exp. Bot. 2018;69:4483–4493. doi: 10.1093/jxb/ery240. PubMed DOI PMC
Tian L., Nawrocki W.J., Liu X., Polukhina I., van Stokkum I.H.M., Croce R. pH dependence, kinetics and light-harvesting regulation of nonphotochemical quenching in Chlamydomonas. Proc Natl. Acad. Sci. USA. 2019;116:8320–8325. doi: 10.1073/pnas.1817796116. PubMed DOI PMC
Siffel P., Vacha F. Aggregation of the light-harvesting complex in intact leaves of tobacco plants stressed by CO2 deficit. Photochem. Photobiol. 1998;67:304–311. doi: 10.1562/0031-8655(1998)067<0304:AOTLHC>2.3.CO;2. DOI
Tang Y.L., Wen X.G., Lu Q.T., Yang Z.P., Cheng Z.K., Lu C.M. Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. Plant Physiol. 2007;143:629–638. doi: 10.1104/pp.106.090712. PubMed DOI PMC
Miloslavina Y., Wehner A., Lambrev P.H., Wientjes E., Reus M., Garab G., Croce R., Holzwarth A.R. Far-red fluorescence: A direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. FEBS Lett. 2008;582:3625–3631. doi: 10.1016/j.febslet.2008.09.044. PubMed DOI
Johnson M.P., Ruban A.V. Photoprotective energy dissipation in higher plants involves alteration of the excited state energy of the emitting chlorophyll(s) in the light harvesting antenna II (LHCII) J. Biol. Chem. 2009;284:23592–23601. doi: 10.1074/jbc.M109.013557. PubMed DOI PMC
Janik E., Bednarska J., Zubik M., Puzio M., Luchowski R., Grudzinski W., Mazur R., Garstka M., Maksymiec W., Kulik A., et al. Molecular architecture of plant thylakoids under physiological and light stress conditions: A study of lipid-light-harvesting complex II model membranes. Plant Cell. 2013;25:2155–2170. doi: 10.1105/tpc.113.113076. PubMed DOI PMC
Natali A., Gruber J.M., Dietzel L., Stuart M.C., van Grondelle R., Croce R. Light-harvesting Complexes (LHCs) Cluster Spontaneously in Membrane Environment Leading to Shortening of Their Excited State Lifetimes. J. Biol. Chem. 2016;291:16730–16739. doi: 10.1074/jbc.M116.730101. PubMed DOI PMC
Ruban A.V., Horton P., Robert B. Resonance Raman spectroscopy of the photosystem II light- harvesting complex of green plants: A comparison of trimeric and aggregated. Biochemistry. 1995;34:2333–2337. doi: 10.1021/bi00007a029. PubMed DOI
Barzda V., Peterman E.J.G., van Grondelle R., Van Amerongen H. The influence of aggregation on triplet formation in light- harvesting chlorophyll a/b pigment-protein complex II of green plants. Biochemistry. 1998;37:546–551. doi: 10.1021/bi972123a. PubMed DOI
Van Oort B., van Hoek A., Ruban A.V., van Amerongen H. Aggregation of light-harvesting complex II leads to formation of efficient excitation energy traps in monomeric and trimeric complexes. FEBS Lett. 2007;581:3528–3532. doi: 10.1016/j.febslet.2007.06.070. PubMed DOI
Petrou K., Belgio E., Ruban A.V. pH sensitivity of chlorophyll fluorescence quenching is determined by the detergent/protein ratio and the state of LHCII aggregation. Biochim. Biophys. Acta. 2014;1837:1533–1539. doi: 10.1016/j.bbabio.2013.11.018. PubMed DOI
Schaller S., Richter K., Wilhelm C., Goss R. Influence of pH, Mg2+, and lipid composition on the aggregation state of the diatom FCP in comparison to the LHCII of vascular plants. Photosynth. Res. 2014;119:305–317. doi: 10.1007/s11120-013-9951-x. PubMed DOI
Kana R., Kotabova E., Sobotka R., Prasil O. Non-photochemical quenching in cryptophyte alga Rhodomonas salina is located in chlorophyll a/c antennae. PLoS ONE. 2012;7:e29700. doi: 10.1371/journal.pone.0029700. PubMed DOI PMC
Lambrev P.H., Schmitt F.J., Kussin S., Schoengen M., Varkonyi Z., Eichler H.J., Garab G., Renger G. Functional domain size in aggregates of light-harvesting complex II and thylakoid membranes. Biochim. Biophys. Acta. 2011;1807:1022–1031. doi: 10.1016/j.bbabio.2011.05.003. PubMed DOI
Magdaong N.M., Enriquez M.M., LaFountain A.M., Rafka L., Frank H.A. Effect of protein aggregation on the spectroscopic properties and excited state kinetics of the LHCII pigment-protein complex from green plants. Photosynth. Res. 2013;118:259–276. doi: 10.1007/s11120-013-9924-0. PubMed DOI
Enriquez M.M., Akhtar P., Zhang C., Garab G., Lambrev P.H., Tan H.S. Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy. J. Chem. Phys. 2015;142:212432. doi: 10.1063/1.4919239. PubMed DOI
Kramer D.M., Avenson T.J., Edwards G.E. Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci. 2004;9:349–357. doi: 10.1016/j.tplants.2004.05.001. PubMed DOI
Joliot P., Johnson G.N. Regulation of cyclic and linear electron flow in higher plants. Proc. Natl. Acad. Sci. USA. 2011;108:13317–13322. doi: 10.1073/pnas.1110189108. PubMed DOI PMC
Jarvi S., Gollan P.J., Aro E.M. Understanding the roles of the thylakoid lumen in photosynthesis regulation. Front. Plant Sci. 2013;4:434. doi: 10.3389/fpls.2013.00434. PubMed DOI PMC
Kramer D.M., Sacksteder C.A., Cruz J.A. How acidic is the lumen? Photosynth. Res. 1999;60:151–163. doi: 10.1023/A:1006212014787. DOI
Kramer D.M., Cruz J.A., Kanazawa A. Balancing the central roles of the thylakoid proton gradient. Trends Plant Sci. 2003;8:27–32. doi: 10.1016/S1360-1385(02)00010-9. PubMed DOI
Perozeni F., Cazzaniga S., Ballottari M. In vitro and in vivo investigation of chlorophyll binding sites involved in non-photochemical quenching in Chlamydomonas reinhardtii. Plant Cell Environ. 2019;42:2522–2535. doi: 10.1111/pce.13566. PubMed DOI PMC
Levenberg K. A method for the solution of certain non-linear problems in least squares. Quart. Appl. Math. 1944;2:164–168. doi: 10.1090/qam/10666. DOI
Sengupta P., Garai K., Balaji J., Periasamy N., Maiti S. Measuring size distribution in highly heterogeneous systems with fluorescence correlation spectroscopy. Biophys. J. 2003;84:1977–1984. doi: 10.1016/S0006-3495(03)75006-1. PubMed DOI PMC
Goins A.B., Sanabria H., Waxham M.N. Macromolecular crowding and size effects on probe microviscosity. Biophys. J. 2008;95:5362–5373. doi: 10.1529/biophysj.108.131250. PubMed DOI PMC
David L., Prado M., Arteni A.A., Elmlund D.A., Blankenship R.E., Adir N. Structural studies show energy transfer within stabilized phycobilisomes independent of the mode of rod-core assembly. Biochim. Biophys. Acta. 2014;1837:385–395. doi: 10.1016/j.bbabio.2013.12.014. PubMed DOI
Iwai M., Pack C.G., Takenaka Y., Sako Y., Nakano A. Photosystem II antenna phosphorylation-dependent protein diffusion determined by fluorescence correlation spectroscopy. Sci. Rep. 2013;3:2833. doi: 10.1038/srep02833. PubMed DOI PMC
Janik E., Bednarska J., Sowinski K., Luchowski R., Zubik M., Grudzinski W., Gruszecki W.I. Light-induced formation of dimeric LHCII. Photosynth. Res. 2017;132:265–276. doi: 10.1007/s11120-017-0387-6. PubMed DOI PMC
Kana R., Steinbach G., Sobotka R., Vamosi G., Komenda J. Fast Diffusion of the Unassembled PetC1-GFP Protein in the Cyanobacterial Thylakoid Membrane. Life. 2020;11:15. doi: 10.3390/life11010015. PubMed DOI PMC
Jennings R.C., Garlaschi F.M., Zucchelli G. Light-induced fluorescence quenching in the light-harvesting chlorophyll a/b protein complex. Photosynth. Res. 1991;27:57–64. doi: 10.1007/BF00029976. PubMed DOI
Ostroumov E.E., Gotze J.P., Reus M., Lambrev P.H., Holzwarth A.R. Characterization of fluorescent chlorophyll charge-transfer states as intermediates in the excited state quenching of light-harvesting complex II. Photosynth. Res. 2020;144:171–193. doi: 10.1007/s11120-020-00745-8. PubMed DOI
Gruszecki W.I., Zubik M., Luchowski R., Grudzinski W., Gospodarek M., Szurkowski J., Gryczynski Z., Gryczynski I. Investigation of the molecular mechanism of the blue-light-specific excitation energy quenching in the plant antenna complex LHCII. J. Plant Physiol. 2011;168:409–414. doi: 10.1016/j.jplph.2010.08.009. PubMed DOI
Ruban A.V., Young A., Horton P. Modulation of chlorophyll fluorescence quenching in isolated light harvesting complex of Photosystem II. Biochim. Biophys. Acta. 1994;1186:123–127. doi: 10.1016/0005-2728(94)90143-0. DOI
Schaller S., Latowski D., Jemiola-Rzeminska M., Dawood A., Wilhelm C., Strzalka K., Goss R. Regulation of LHCII aggregation by different thylakoid membrane lipids. BBA Bioenerg. 2011;1807:326–335. doi: 10.1016/j.bbabio.2010.12.017. PubMed DOI
Sahoo B., Goswami M., Nag S., Maiti S. Spontaneous formation of a protein corona prevents the loss of quantum dot fluorescence in physiological buffers. Chem. Phys. Lett. 2007;445:217–220. doi: 10.1016/j.cplett.2007.07.075. DOI
Sahoo B., Nag S., Sengupta P., Maiti S. On the Stability of the Soluble Amyloid Aggregates. Biophys. J. 2009;97:1454–1460. doi: 10.1016/j.bpj.2009.05.055. PubMed DOI PMC
Pal N., Verma S.D., Singh M.K., Sen S. Fluorescence Correlation Spectroscopy: An Efficient Tool for Measuring Size, Size-Distribution and Polydispersity of Microemulsion Droplets in Solution. Anal. Chem. 2011;83:7736–7744. doi: 10.1021/ac2012637. PubMed DOI
Wentworth M., Ruban A.V., Horton P. Kinetic analysis of nonphotochemical quenching of chlorophyll fluorescence. 2. Isolated light-harvesting complexes. Biochemistry. 2001;40:9902–9908. doi: 10.1021/bi0103718. PubMed DOI
Danaei M., Dehghankhold M., Ataei S., Hasanzadeh Davarani F., Javanmard R., Dokhani A., Khorasani S., Mozafari M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics. 2018;10:57. doi: 10.3390/pharmaceutics10020057. PubMed DOI PMC
Gruszecki W.I., Grudzinski W., Gospodarek M., Patyra M., Maksymiec W. Xanthophyll-induced aggregation of LHCII as a switch between light-harvesting and energy dissipation systems. Biochim. Biophys. Acta. 2006;1757:1504–1511. doi: 10.1016/j.bbabio.2006.08.002. PubMed DOI
Barzda V., Vengris M., Valkunas L., van Grondelle R., Van Amerongen H. Generation of fluorescence quenchers from the triplet states of chlorophylls in the major light-harvesting complex II from green plants. Biochemistry. 2000;39:10468–10477. doi: 10.1021/bi992826n. PubMed DOI
Barzda V., de Grauw C.J., Gerritsen H.C., Kleima F.J., Van Amerongen H., van Grondelle R., Vroom J. Fluorescence lifetime heterogeneity in aggregates of LHCII revealed by time-resolved microscopy. Biophys. J. 2001;81:538–546. doi: 10.1016/S0006-3495(01)75720-7. PubMed DOI PMC
Liu B.X., Chia D., Csizmok V., Farber P., Forman-Kay J.D., Gradinaru C.C. The Effect of Intrachain Electrostatic Repulsion on Conformational Disorder and Dynamics of the Sic1 Protein. J. Phys. Chem. B. 2014;118:4088–4097. doi: 10.1021/jp500776v. PubMed DOI
Vrandecic K., Ratsep M., Wilk L., Rusevich L., Golub M., Reppert M., Irrgang K.D., Kuhlbrandt W., Pieper J. Protein dynamics tunes excited state positions in light-harvesting complex II. J. Phys. Chem. B. 2015;119:3920–3930. doi: 10.1021/jp5112873. PubMed DOI
Kandula H.N., Jee A.Y., Granick S. Robustness of FCS (Fluorescence Correlation Spectroscopy) with Quenchers Present. J. Phys. Chem. A. 2019;123:10184–10189. doi: 10.1021/acs.jpca.9b08273. PubMed DOI
Dittrich P.S., Schwille P. Photobleaching and stabilization of fluorophores used for single-molecule analysis with one- and two-photon excitation. Appl. Phys. B Lasers Opt. 2001;73:829–837. doi: 10.1007/s003400100737. DOI
Zhang Z., Yomo D., Gradinaru C. Choosing the right fluorophore for single-molecule fluorescence studies in a lipid environment. BBA Biomembr. 2017;1859:1242–1253. doi: 10.1016/j.bbamem.2017.04.001. PubMed DOI
Gendron P.O., Avaltroni F., Wilkinson K.J. Diffusion coefficients of several rhodamine derivatives as determined by pulsed field gradient-nuclear magnetic resonance and fluorescence correlation spectroscopy. J. Fluoresc. 2008;18:1093–1101. doi: 10.1007/s10895-008-0357-7. PubMed DOI
Caffarri S., Tibiletti T., Jennings R.C., Santabarbara S. A comparison between plant photosystem I and photosystem II architecture and functioning. Curr. Protein Pept. Sci. 2014;15:296–331. doi: 10.2174/1389203715666140327102218. PubMed DOI PMC
Ruban A.V., Rees D., Noctor G.D., Young A., Horton P. Long-wavelength chlorophyll species are associated with amplification of high-energy-state excitation quenching in higher plants. Biochim. Biophys. Acta. 1991;1059:355–360. doi: 10.1016/S0005-2728(05)80221-X. DOI
Caffarri S., Kouril R., Kereiche S., Boekema E.J., Croce R. Functional architecture of higher plant photosystem II supercomplexes. EMBO J. 2009;28:3052–3063. doi: 10.1038/emboj.2009.232. PubMed DOI PMC
Su X., Ma J., Wei X., Cao P., Zhu D., Chang W., Liu Z., Zhang X., Li M. Structure and assembly mechanism of plant C2S2M2-type PSII-LHCII supercomplex. Science. 2017;357:815–820. doi: 10.1126/science.aan0327. PubMed DOI
Van Haeringen B., Dekker J.P., Bloemendal M., Rögner M., van Grondelle R., Van Amerongen H. Simultaneous measurement of electric birefringence and dichroism. A study on photosystem 1 particles. Biophys. J. 1994;67:411–417. doi: 10.1016/S0006-3495(94)80496-5. PubMed DOI PMC
Dekker J.P., van Roon H., Boekem E.J. Heptameric association of light-harvesting complex II trimers in partially solubilized photosystem II membranes. FEBS Lett. 1999;449:211–214. doi: 10.1016/S0014-5793(99)00442-1. PubMed DOI
Ruban A.V. Light harvesting control in plants. FEBS Lett. 2018;592:3030–3039. doi: 10.1002/1873-3468.13111. PubMed DOI
Ruban A.V., Johnson M.P., Duffy C.D. The photoprotective molecular switch in the photosystem II antenna. Biochim. Biophys. Acta. 2012;1817:167–181. doi: 10.1016/j.bbabio.2011.04.007. PubMed DOI
Belgio E., Johnson M.P., Juric S., Ruban A.V. Higher plant photosystem II light-harvesting antenna, not the reaction center, determines the excited-state lifetime-both the maximum and the nonphotochemically quenched. Biophys. J. 2012;102:2761–2771. doi: 10.1016/j.bpj.2012.05.004. PubMed DOI PMC
Ware M.A., Giovagnetti V., Belgio E., Ruban A.V. PsbS protein modulates non-photochemical chlorophyll fluorescence quenching in membranes depleted of photosystems. J. Photoch. Photobio. B. 2015;152:301–307. doi: 10.1016/j.jphotobiol.2015.07.016. PubMed DOI
Zaks J., Amarnath K., Sylak-Glassman E.J., Fleming G.R. Models and measurements of energy-dependent quenching. Photosynth. Res. 2013;116:389–409. doi: 10.1007/s11120-013-9857-7. PubMed DOI PMC
Daum B., Nicastro D., Il J.A., McIntosh J.R., Kuhlbrandt W. Arrangement of Photosystem II and ATP Synthase in Chloroplast Membranes of Spinach and Pea. Plant Cell. 2010;22:1299–1312. doi: 10.1105/tpc.109.071431. PubMed DOI PMC
Kirchhoff H. Chloroplast ultrastructure in plants. New Phytol. 2019;223:565–574. doi: 10.1111/nph.15730. PubMed DOI
Wood W.H.J., Barnett S.F.H., Flannery S., Hunter C.N., Johnson M.P. Dynamic Thylakoid Stacking Is Regulated by LHCII Phosphorylation but Not Its interaction with PSI. Plant Physiol. 2019;180:2152–2166. doi: 10.1104/pp.19.00503. PubMed DOI
Belgio E., Ungerer P., Ruban A.V. Light-harvesting superstructures of green plant chloroplasts lacking photosystems. Plant Cell Environ. 2015;38:2035–2047. doi: 10.1111/pce.12528. PubMed DOI
Tietz S., Leuenberger M., Hohner R., Olson A.H., Fleming G.R., Kirchhoff H. A proteoliposome-based system reveals how lipids control photosynthetic light harvesting. J. Biol. Chem. 2020;295:1857–1866. doi: 10.1074/jbc.RA119.011707. PubMed DOI PMC
Chmeliov J., Gelzinis A., Songaila E., Augulis R., Duffy C.D., Ruban A.V., Valkunas L. The nature of self-regulation in photosynthetic light-harvesting antenna. Nat. Plants. 2016;2:16045. doi: 10.1038/nplants.2016.45. PubMed DOI
Ruban A.V., Horton P. The xanthophyll cycle modulates the kinetics of nonphotochemical energy dissipation in isolated light-harvesting complexes, intact chloroplasts, and leaves of spinach. Plant Physiol. 1999;119:531–542. doi: 10.1104/pp.119.2.531. PubMed DOI PMC
Wentworth M., Ruban A.V., Horton P. Chlorophyll fluorescence quenching in isolated light harvesting complexes induced by zeaxanthin. FEBS Lett. 2000;471:71–74. doi: 10.1016/S0014-5793(00)01369-7. PubMed DOI
Banks D.S., Tressler C., Peters R.D., Hofling F., Fradin C. Characterizing anomalous diffusion in crowded polymer solutions and gels over five decades in time with variable-lengthscale fluorescence correlation spectroscopy. Soft Matter. 2016;12:4190–4203. doi: 10.1039/C5SM01213A. PubMed DOI
Krieger J.W., Langowski J. QuickFit 3.0: A Data Evaluation Application for Biophysics. [(accessed on 7 January 2019)];2015 Available online: http://www.dkfz.de/Macromol/quickfit/
Dertinger T., Pacheco V., von der Hocht I., Hartmann R., Gregor I., Enderlein J. Two-focus fluorescence correlation spectroscopy: A new tool for accurate and absolute diffusion measurements. Chem. Phys. Chem. 2007;8:433–443. doi: 10.1002/cphc.200600638. PubMed DOI
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Belgio E., Kapitonova E., Chmeliov J., Duffy C.D.P., Ungerer P., Valkunas L., Ruban A.V. Economic photoprotection in photosystem II that retains a complete light-harvesting system with slow energy traps. Nat. Commun. 2014;5 doi: 10.1038/ncomms5433. PubMed DOI