Antenna proton sensitivity determines photosynthetic light harvesting strategy
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
29955883
PubMed Central
PMC6093471
DOI
10.1093/jxb/ery240
PII: 5046136
Knihovny.cz E-zdroje
- MeSH
- Alveolata fyziologie MeSH
- bílkoviny řas metabolismus MeSH
- fotosyntéza * MeSH
- protony * MeSH
- protozoální proteiny metabolismus MeSH
- rostlinné proteiny metabolismus MeSH
- Spinacia oleracea fyziologie MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- bílkoviny řas MeSH
- protony * MeSH
- protozoální proteiny MeSH
- rostlinné proteiny MeSH
- světlosběrné proteinové komplexy MeSH
Photoprotective non-photochemical quenching (NPQ) represents an effective way to dissipate the light energy absorbed in excess by most phototrophs. It is often claimed that NPQ formation/relaxation kinetics are determined by xanthophyll composition. We, however, found that, for the alveolate alga Chromera velia, this is not the case. In the present paper, we investigated the reasons for the constitutive high rate of quenching displayed by the alga by comparing its light harvesting strategies with those of a model phototroph, the land plant Spinacia oleracea. Experimental results and in silico studies support the idea that fast quenching is due not to xanthophylls, but to intrinsic properties of the Chromera light harvesting complex (CLH) protein, related to amino acid composition and protein folding. The pKa for CLH quenching was shifted by 0.5 units to a higher pH compared with higher plant antennas (light harvesting complex II; LHCII). We conclude that, whilst higher plant LHCIIs are better suited for light harvesting, CLHs are 'natural quenchers' ready to switch into a dissipative state. We propose that organisms with antenna proteins intrinsically more sensitive to protons, such as C. velia, carry a relatively high concentration of violaxanthin to improve their light harvesting. In contrast, higher plants need less violaxanthin per chlorophyll because LHCII proteins are more efficient light harvesters and instead require co-factors such as zeaxanthin and PsbS to accelerate and enhance quenching.
Zobrazit více v PubMed
Akhtar P, Dorogi M, Pawlak K, Kovács L, Bóta A, Kiss T, Garab G, Lambrev PH. 2015. Pigment interactions in light-harvesting complex II in different molecular environments. The Journal of Biological Chemistry 290, 4877–4886. PubMed PMC
Ballottari M, Truong TB, De Re E, Erickson E, Stella GR, Fleming GR, Bassi R, Niyogi KK. 2016. Identification of pH-sensing sites in the light harvesting complex stress-related 3 protein essential for triggering non-photochemical quenching in Chlamydomonas reinhardtii. The Journal of Biological Chemistry 291, 7334–7346. PubMed PMC
Bassi R, Dainese P. 1992. A supramolecular light-harvesting complex from chloroplast photosystem-II membranes. European Journal of Biochemistry 204, 317–326. PubMed
Behrenfeld MJ, Prášil O, Kolber ZS, Babin M, Falkowski PG. 1998. Compensatory changes in Photosystem II electron turnover rates protect photosynthesis from photoinhibition. Photosynthesis Research 58, 259–268.
Belgio E, Duffy CD, Ruban AV. 2013. Switching light harvesting complex II into photoprotective state involves the lumen-facing apoprotein loop. Physical Chemistry Chemical Physics 15, 12253–12261. PubMed
Belgio E, Johnson MP, Jurić S, Ruban AV. 2012. Higher plant photosystem II light-harvesting antenna, not the reaction center, determines the excited-state lifetime—both the maximum and the nonphotochemically quenched. Biophysical Journal 102, 2761–2771. PubMed PMC
Belgio E, Kapitonova E, Chmeliov J, Duffy CD, Ungerer P, Valkunas L, Ruban AV. 2014. Economic photoprotection in photosystem II that retains a complete light-harvesting system with slow energy traps. Nature Communications 5, 4433. PubMed
Belgio E, Trsková E, Kotabová E, Ewe D, Prášil O, Kaňa R. 2018. High light acclimation of Chromera velia points to photoprotective NPQ. Photosynthesis Research 135, 263–274. PubMed
Betterle N, Ballottari M, Zorzan S, de Bianchi S, Cazzaniga S, Dall’osto L, Morosinotto T, Bassi R. 2009. Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. The Journal of Biological Chemistry 284, 15255–15266. PubMed PMC
Büchel C. 2015. Evolution and function of light harvesting proteins. Journal of Plant Physiology 172, 62–75. PubMed
Crisafi E, Pandit A. 2017. Disentangling protein and lipid interactions that control a molecular switch in photosynthetic light harvesting. Biochimica et Biophysica Acta 1859, 40–47. PubMed
Crouchman S, Ruban A, Horton P. 2006. PsbS enhances nonphotochemical fluorescence quenching in the absence of zeaxanthin. FEBS Letters 580, 2053–2058. PubMed
Dall’Osto L, Cazzaniga S, Havaux M, Bassi R. 2010. Enhanced photoprotection by protein-bound vs free xanthophyll pools: a comparative analysis of chlorophyll b and xanthophyll biosynthesis mutants. Molecular Plant 3, 576–593. PubMed
Dekker JP, Boekema EJ. 2005. Supramolecular organization of thylakoid membrane proteins in green plants. Biochimica et Biophysica Acta 1706, 12–39. PubMed
Demmig-Adams B. 1990. Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochimica et Biophysica Acta 1020, 1–24.
Demmig-Adams B, Adams WW. 1992. Carotenoid composition in sun and shade leaves of plants with different life forms. Plant Cell and Environment 15, 411–419.
Erickson E, Wakao S, Niyogi KK. 2015. Light stress and photoprotection in Chlamydomonas reinhardtii. The Plant Journal 82, 449–465. PubMed
Garcia-Mendoza E, Ocampo-Alvarez H, Govindjee. 2011. Photoprotection in the brown alga Macrocystis pyrifera: evolutionary implications. Journal of Photochemistry and Photobiology. B, Biology 104, 377–385. PubMed
Gilmore AM, Yamamoto HY. 1992. Dark induction of zeaxanthin-dependent nonphotochemical fluorescence quenching mediated by ATP. Proceedings of the National Academy of Sciences, USA 89, 1899–1903. PubMed PMC
Goss R, Jakob T. 2010. Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynthesis Research 106, 103–122. PubMed
Goss R, Lepetit B. 2015. Biodiversity of NPQ. Journal of Plant Physiology 172, 13–32. PubMed
Grossman AR, Karpowicz SJ, Heinnickel M, et al. . 2010. Phylogenomic analysis of the Chlamydomonas genome unmasks proteins potentially involved in photosynthetic function and regulation. Photosynthesis Research 106, 3–17. PubMed PMC
Grouneva I, Jakob T, Wilhelm C, Goss R. 2008. A new multicomponent NPQ mechanism in the diatom Cyclotella meneghiniana. Plant & Cell Physiology 49, 1217–1225. PubMed
Guillard RR, Ryther JH. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Canadian Journal of Microbiology 8, 229–239. PubMed
Gundermann K, Büchel C. 2008. The fluorescence yield of the trimeric fucoxanthin-chlorophyll-protein FCPa in the diatom Cyclotella meneghiniana is dependent on the amount of bound diatoxanthin. Photosynthesis Research 95, 229–235. PubMed
Gundermann K, Büchel C. 2012. Factors determining the fluorescence yield of fucoxanthin-chlorophyll complexes (FCP) involved in non-photochemical quenching in diatoms. Biochimica et Biophysica Acta 1817, 1044–1052. PubMed
Horton P, Johnson MP, Perez-Bueno ML, Kiss AZ, Ruban AV. 2008. Photosynthetic acclimation: does the dynamic structure and macro-organisation of photosystem II in higher plant grana membranes regulate light harvesting states?The FEBS Journal 275, 1069–1079. PubMed
Horton P, Ruban AV, Walters RG. 1996. Regulation of light harvesting in green plants. Annual Review of Plant Physiology and Plant Molecular Biology 47, 655–684. PubMed
Horton P, Ruban AV, Wentworth M. 2000. Allosteric regulation of the light-harvesting system of photosystem II. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 355, 1361–1370. PubMed PMC
Jahns P, Holzwarth AR. 2012. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochimica et Biophysica Acta 1817, 182–193. PubMed
Jennings RC, Engelmann E, Garlaschi F, Casazza AP, Zucchelli G. 2005. Photosynthesis and negative entropy production. Biochimica et Biophysica Acta 1709, 251–255. PubMed
Johnson MP, Goral TK, Duffy CD, Brain AP, Mullineaux CW, Ruban AV. 2011. Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts. The Plant Cell 23, 1468–1479. PubMed PMC
Johnson MP, Pérez-Bueno ML, Zia A, Horton P, Ruban AV. 2009. The zeaxanthin-independent and zeaxanthin-dependent qE components of nonphotochemical quenching involve common conformational changes within the photosystem II antenna in Arabidopsis. Plant Physiology 149, 1061–1075. PubMed PMC
Johnson MP, Ruban AV. 2011. Restoration of rapidly reversible photoprotective energy dissipation in the absence of PsbS protein by enhanced ΔpH. The Journal of Biological Chemistry 286, 19973–19981. PubMed PMC
Johnson MP, Zia A, Horton P, Ruban AV. 2010. Effect of xanthophyll composition on the chlorophyll excited state lifetime in plant leaves and isolated LHCII. Chemical Physics 373, 23–32.
Johnson MP, Zia A, Ruban AV. 2012. Elevated ΔpH restores rapidly reversible photoprotective energy dissipation in Arabidopsis chloroplasts deficient in lutein and xanthophyll cycle activity. Planta 235, 193–204. PubMed
Kaňa R, Govindjee 2016. Role of ions in the regulation of light-harvesting. Frontiers in Plant Science 7, 1–17. PubMed PMC
Kaňa R, Kotabová E, KopeČná J, Trsková E, Belgio E, Sobotka R, Ruban AV. 2016. Violaxanthin inhibits nonphotochemical quenching in light-harvesting antenna of Chromera velia. FEBS Letters 590, 1076–1085. PubMed
Kaňa R, Kotabová E, Sobotka R, Prášil O. 2012. Non-photochemical quenching in cryptophyte alga Rhodomonas salina is located in chlorophyll a/c antennae. PLoS One 7, e29700. PubMed PMC
Kaňa R, Vass I. 2008. Thermoimaging as a tool for studying light-induced heating of leaves: Correlation of heat dissipation with the efficiency of photosystem II photochemistry and non-photochemical quenching. Environmental and Experimental Botany 64, 90–96.
Kirchhoff H, Haferkamp S, Allen JF, Epstein DB, Mullineaux CW. 2008. Protein diffusion and macromolecular crowding in thylakoid membranes. Plant Physiology 146, 1571–1578. PubMed PMC
Kotabová E, Kaňa R, Jarešová J, Prášil O. 2011. Non-photochemical fluorescence quenching in Chromera velia is enabled by fast violaxanthin de-epoxidation. FEBS Letters 585, 1941–1945. PubMed
Kouřil R, Wientjes E, Bultema JB, Croce R, Boekema EJ. 2013. High-light vs. low-light: effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana. Biochimica et Biophysica Acta 1827, 411–419. PubMed
Lavaud J, Kroth PG. 2006. In diatoms, the transthylakoid proton gradient regulates the photoprotective non-photochemical fluorescence quenching beyond its control on the xanthophyll cycle. Plant & Cell Physiology 47, 1010–1016. PubMed
Lavaud J, Lepetit B. 2013. An explanation for the inter-species variability of the photoprotective non-photochemical chlorophyll fluorescence quenching in diatoms. Biochimica et Biophysica Acta 1827, 294–302. PubMed
Lavaud J, Rousseau B, van Gorkom HJ, Etienne AL. 2002. Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Plant Physiology 129, 1398–1406. PubMed PMC
Lepetit B, Volke D, Gilbert M, Wilhelm C, Goss R. 2010. Evidence for the existence of one antenna-associated, lipid-dissolved and two protein-bound pools of diadinoxanthin cycle pigments in diatoms. Plant Physiology 154, 1905–1920. PubMed PMC
Li XP, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK. 2000. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403, 391–395. PubMed
Li XP, Gilmore AM, Caffarri S, Bassi R, Golan T, Kramer D, Niyogi KK. 2004. Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. The Journal of Biological Chemistry 279, 22866–22874. PubMed
Liguori N, Roy LM, Opacic M, Durand G, Croce R. 2013. Regulation of light harvesting in the green alga Chlamydomonas reinhardtii: the C-terminus of LHCSR is the knob of a dimmer switch. Journal of the American Chemical Society 135, 18339–18342. PubMed
Lokstein H, Tian L, Polle JE, DellaPenna D. 2002. Xanthophyll biosynthetic mutants of Arabidopsis thaliana: altered nonphotochemical quenching of chlorophyll fluorescence is due to changes in Photosystem II antenna size and stability. Biochimica et Biophysica Acta 1553, 309–319. PubMed
Mann M, Hoppenz P, Jakob T, Weisheit W, Mittag M, Wilhelm C, Goss R. 2014. Unusual features of the high light acclimation of Chromera velia. Photosynthesis Research 122, 159–169. PubMed
Miloslavina Y, Wehner A, Lambrev PH, Wientjes E, Reus M, Garab G, Croce R, Holzwarth AR. 2008. Far-red fluorescence: a direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. FEBS Letters 582, 3625–3631. PubMed
Moya I, Silvestri M, Vallon O, Cinque G, Bassi R. 2001. Time-resolved fluorescence analysis of the photosystem II antenna proteins in detergent micelles and liposomes. Biochemistry 40, 12552–12561. PubMed
Natali A, Gruber JM, Dietzel L, Stuart MC, van Grondelle R, Croce R. 2016. Light-harvesting complexes (LHCs) cluster spontaneously in membrane environment leading to shortening of their excited state lifetimes. The Journal of Biological Chemistry 291, 16730–16739. PubMed PMC
Nitschke U, Connan S, Stengel DB. 2012. Chlorophyll a fluorescence responses of temperate Phaeophyceae under submersion and emersion regimes: a comparison of rapid and steady-state light curves. Photosynthesis Research 114, 29–42. PubMed
Niyogi KK. 1999. Photoprotection revisited: genetic and molecular approaches. Annual Review of Plant Physiology and Plant Molecular Biology 50, 333–359. PubMed
Noctor G, Rees D, Young A, Horton P. 1991. The relationship between zeaxanthin, energy-dependent quenching of chlorophyll fluorescence, and trans-thylakoid pH gradient in isolated chloroplasts. Biochimica et Biophysica Acta 1057, 320–330.
Oborník M, KruČinská J, Esson H. 2016. Life cycles of chromerids resemble those of colpodellids and apicomplexan parasites. Perspectives in Phycology 3, 21–27.
Obornik M, Lukes J. 2013. Cell biology of chromerids: autotrophic relatives to apicomplexan parasites. International Review of Cell and Molecular Biology 306, 333–369. PubMed
Oborník M, Vancová M, Lai DH, Janouškovec J, Keeling PJ, Lukeš J. 2011. Morphology and ultrastructure of multiple life cycle stages of the photosynthetic relative of apicomplexa, Chromera velia. Protist 162, 115–130. PubMed
Ocampo-Alvarez H, García-Mendoza E, Govindjee. 2013. Antagonist effect between violaxanthin and de-epoxidated pigments in nonphotochemical quenching induction in the qE deficient brown alga Macrocystis pyrifera. Biochimica et Biophysica Acta 1827, 427–437. PubMed
Pan H, Slapeta J, Carter D, Chen M. 2012. Phylogenetic analysis of the light-harvesting system in Chromera velia. Photosynthesis research 111, 19–28. PubMed
Pan X, Li M, Wan T, Wang L, Jia C, Hou Z, Zhao X, Zhang J, Chang W. 2011. Structural insights into energy regulation of light-harvesting complex CP29 from spinach. Nature Structural & Molecular Biology 18, 309–315. PubMed
Peers G, Truong TB, Ostendorf E, Busch A, Elrad D, Grossman AR, Hippler M, Niyogi KK. 2009. An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462, 518–521. PubMed
Peltier JB, Emanuelsson O, Kalume DE, et al. . 2002. Central functions of the lumenal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide prediction. The Plant Cell 14, 211–236. PubMed PMC
Petrou K, Belgio E, Ruban AV. 2014. pH sensitivity of chlorophyll fluorescence quenching is determined by the detergent/protein ratio and the state of LHCII aggregation. Biochimica et Biophysica Acta 1837, 1533–1539. PubMed
Pinnola A, Dall’Osto L, Gerotto C, Morosinotto T, Bassi R, Alboresi A. 2013. Zeaxanthin binds to light-harvesting complex stress-related protein to enhance nonphotochemical quenching in Physcomitrella patens. The Plant Cell 25, 3519–3534. PubMed PMC
Porra R, Thompson W, Kriedemann P. 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectrometry. Biochimica et Biophysica Acta 975, 384–394.
Quigg A, Kotabová E, Jarešová J, Kaňa R, Setlík J, Sedivá B, Komárek O, Prášil O. 2012. Photosynthesis in Chromera velia represents a simple system with high efficiency. PLoS One 7, e47036. PubMed PMC
Ruban A. 2013. The photosynthetic membrane. Molecular mechanisms and biophysics of light harvesting. Chichester, UK: John Wiley & Sons, Ltd.
Ruban AV, Horton P. 1999. The xanthophyll cycle modulates the kinetics of nonphotochemical energy dissipation in isolated light-harvesting complexes, intact chloroplasts, and leaves of spinach. Plant Physiology 119, 531–542. PubMed PMC
Ruban AV, Johnson MP, Duffy CD. 2012. The photoprotective molecular switch in the photosystem II antenna. Biochimica et Biophysica Acta 1817, 167–181. PubMed
Ruban A, Lavaud J, Rousseau B, Guglielmi G, Horton P, Etienne AL. 2004. The super-excess energy dissipation in diatom algae: comparative analysis with higher plants. Photosynthesis Research 82, 165–175. PubMed
Ruban AV, Pesaresi P, Wacker U, Irrgang KD, Bassi R, Horton P. 1998. The relationship between the binding of dicyclohexylcarbodiimide and quenching of chlorophyll fluorescence in the light-harvesting proteins of photosystem II. Biochemistry 37, 11586–11591. PubMed
Ruban AV, Rees D, Noctor GD, Young A, Horton P. 1991. Long-wavelength chlorophyll species are associated with amplification of high-energy-state excitation quenching in higher-plants. Biochimica et Biophysica Acta 1059, 355–360.
Ruban AV, Young A, Horton P. 1994a Modulation of chlorophyll fluorescence quenching in isolated light-harvesting complex of Photosystem-II. Biochimica et Biophysica Acta 1186, 123–127.
Ruban AV, Young AJ, Pascal AA, Horton P. 1994b The effects of illumination on the xanthophyll composition of the photosystem II light-harvesting complexes of spinach thylakoid membranes. Plant Physiology 104, 227–234. PubMed PMC
Serôdio J, Lavaud J. 2011. A model for describing the light response of the nonphotochemical quenching of chlorophyll fluorescence. Photosynthesis Research 108, 61–76. PubMed
Schaller-Laudel S, Volke D, Redlich M, Kansy M, Hoffmann R, Wilhelm C, Goss R. 2015. The diadinoxanthin diatoxanthin cycle induces structural rearrangements of the isolated FCP antenna complexes of the pennate diatom Phaeodactylum tricornutum. Plant Physiology and Biochemistry 96, 364–376. PubMed
Sobotka R, Esson HJ, Koník P, Trsková E, Moravcová L, Horák A, Dufková P, Oborník M. 2017. Extensive gain and loss of photosystem I subunits in chromerid algae, photosynthetic relatives of apicomplexans. Scientific Reports 7, 13214. PubMed PMC
Standfuss J, Terwisscha van Scheltinga AC, Lamborghini M, Kühlbrandt W. 2005. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. The EMBO Journal 24, 919–928. PubMed PMC
Tichy J, Gardian Z, Bina D, Konik P, Litvin R, Herbstova M, Pain A, Vacha F. 2013. Light harvesting complexes of Chromera velia, photosynthetic relative of apicomplexan parasites. Biochimica et Biophysica Acta 1827, 723–729. PubMed
van Kooten O, Snel JF. 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research 25, 147–150. PubMed
Walters RG, Ruban AV, Horton P. 1994. Higher plant light-harvesting complexes LHCIIa and LHCIIc are bound by dicyclohexylcarbodiimide during inhibition of energy dissipation. European Journal of Biochemistry 226, 1063–1069. PubMed
Wentworth M, Ruban AV, Horton P. 2000. Chlorophyll fluorescence quenching in isolated light harvesting complexes induced by zeaxanthin. FEBS Letters 471, 71–74. PubMed
Wientjes E, van Amerongen H, Croce R. 2013. Quantum yield of charge separation in photosystem II: functional effect of changes in the antenna size upon light acclimation. The Journal of Physical Chemistry B 117, 11200–11208. PubMed
Xiao FG, Ji HF, Shen L. 2012. Insights into the region responding to ΔpH change in major light harvesting complex. Journal of Photochemistry and Photobiology. B, Biology 111, 35–38. PubMed
Xu P, Tian L, Kloz M, Croce R. 2015. Molecular insights into Zeaxanthin-dependent quenching in higher plants. Scientific Reports 5, 13679. PubMed PMC
Zaks J, Amarnath K, Sylak-Glassman EJ, Fleming GR. 2013. Models and measurements of energy-dependent quenching. Photosynthesis Research 116, 389–409. PubMed PMC
Size and Fluorescence Properties of Algal Photosynthetic Antenna Proteins Estimated by Microscopy
Antenna Protein Clustering In Vitro Unveiled by Fluorescence Correlation Spectroscopy