Role of Ions in the Regulation of Light-Harvesting
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu přehledy, časopisecké články
PubMed
28018387
PubMed Central
PMC5160696
DOI
10.3389/fpls.2016.01849
Knihovny.cz E-zdroje
- Klíčová slova
- ions, light-harvesting protein complexes, non-photochemical quenching, photoprotection, photosynthesis, state transitions,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Regulation of photosynthetic light harvesting in the thylakoids is one of the major key factors affecting the efficiency of photosynthesis. Thylakoid membrane is negatively charged and influences both the structure and the function of the primarily photosynthetic reactions through its electrical double layer (EDL). Further, there is a heterogeneous organization of soluble ions (K+, Mg2+, Cl-) attached to the thylakoid membrane that, together with fixed charges (negatively charged amino acids, lipids), provides an electrical field. The EDL is affected by the valence of the ions and interferes with the regulation of "state transitions," protein interactions, and excitation energy "spillover" from Photosystem II to Photosystem I. These effects are reflected in changes in the intensity of chlorophyll a fluorescence, which is also a measure of photoprotective non-photochemical quenching (NPQ) of the excited state of chlorophyll a. A triggering of NPQ proceeds via lumen acidification that is coupled to the export of positive counter-ions (Mg2+, K+) to the stroma or/and negative ions (e.g., Cl-) into the lumen. The effect of protons and anions in the lumen and of the cations (Mg2+, K+) in the stroma are, thus, functionally tightly interconnected. In this review, we discuss the consequences of the model of EDL, proposed by Barber (1980b) Biochim Biophys Acta 594:253-308) in light of light-harvesting regulation. Further, we explain differences between electrostatic screening and neutralization, and we emphasize the opposite effect of monovalent (K+) and divalent (Mg2+) ions on light-harvesting and on "screening" of the negative charges on the thylakoid membrane; this effect needs to be incorporated in all future models of photosynthetic regulation by ion channels and transporters.
Zobrazit více v PubMed
Adams W. W., Muller O., Cohu C. M., Demmig-Adams B. (2014). Photosystem II efficiency and non-photochemical fluorescence quenching in the context of source-sink balance, in Non-Photochemical Quenching and Energy Dissipation in Plants, Algae, and Cyanobacteria, eds Demmig-Adams B., Garab G., Adams W., III, Govindjee (Dordrecht: Springer Netherlands; ), 503–529.
Åkerlund H.-E., Andersson B., Persson A., Albertsson P.-Å. (1979). Isoelectric points of spinach thylakoid membrane surfaces as determined by cross partition. Biochim. Biophys. Acta 552, 238–246. 10.1016/0005-2736(79)90280-3 PubMed DOI
Allen J. F., Bennett J., Steinback K. E., Arntzen C. J. (1981). Chloroplast protein-phosphorylation couples plastoquinone redox state to distribution of excitation-energy between photosystems. Nature 291, 25–29. 10.1038/291025a0 DOI
Allen J. F., Mullineaux C. W. (2004). Probing the mechanism of state transitions in oxygenic photosynthesis by chlorophyll fluorescence spectroscopy, kinetics and imaging, in Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, eds Papageorgiou G. C., Govindjee (Dordrecht: Springer; ), 663–678.
Antal T. K., Osipov V., Matorin D. N., Rubin A. B. (2011). Membrane potential is involved in regulation of photosynthetic reactions in the marine diatom Thalassiosira weissflogii. J. Photochem. Photobiol. B. 102, 169–173. 10.1016/j.jphotobiol.2010.11.005 PubMed DOI
Armbruster U., Carrillo L. R., Venema K., Pavlovic L., Schmidtmann E., Kornfeld A., et al. . (2014). Ion antiport accelerates photosynthetic acclimation in fluctuating light environments. Nat. Commun. 5:5439. 10.1038/ncomms6439 PubMed DOI PMC
Barber J. (1976). Ionic regulation in intact chloroplasts and its effect on primary photosynthetic processes, in The Intact Chloroplas, ed Barber J. (Amsterdam: Elsevier; ), 89–134.
Barber J. (1980a). An explanation for the relationship between salt-induced thylakoid stacking and the chlorophyll fluorescence changes associated with changes in spillover of energy from photosystem-II to photosystem-I. FEBS Lett. 118, 1–10. 10.1016/0014-5793(80)81207-5 DOI
Barber J. (1980b). Membrane-surface charges and potentials in relation to photosynthesis. Biochim. Biophys. Acta 594, 253–308. 10.1016/0304-4173(80)90003-8 PubMed DOI
Barber J. (1982). Influence of surface-charges on thylakoid structure and function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 33, 261–295. 10.1146/annurev.pp.33.060182.001401 DOI
Barber J. (1986). Regulation of thylakoid membrane structure by surface electrical charge, in Ion Interactions in Energy Transfer Biomembranes, eds Papageorgiou G. C., Barber J., Papa S. (New York, NY: Springer; ), 15–27.
Barber J. (1989). Regulation of thylakoid membrane structure and function by surface electrical charge, in Techniques and New Developments in Photosynthesis Research, eds Barber J., Malkin R. (New York, NY: Springer; ), 159–171.
Barber J., Chow W. S., Scoufflaire C., Lannoye R. (1980). The relationship between thylakoid stacking and salt induced chlorophyll fluorescence changes. Biochim. Biophys. Acta 591, 92–103. 10.1016/0005-2728(80)90223-6 PubMed DOI
Barber J., Mills J. (1976). Control of chlorophyll fluorescence by diffuse double-layer. FEBS Lett. 68, 288–292. 10.1016/0014-5793(76)80455-3 PubMed DOI
Barber J., Mills J., Love A. (1977). Electrical diffuse layers and their influence on photosynthetic processes. FEBS Lett. 74, 174–181. 10.1016/0014-5793(77)80841-7 PubMed DOI
Barber J., Mills J., Nicolson J. (1974). Studies with cation specific ionophores show that within intact chloroplast Mg++ acts as main exchange cation for H+ pumping. FEBS Lett. 49, 106–110. 10.1016/0014-5793(74)80643-5 PubMed DOI
Barber J., Searle G. F. W. (1978). Cation induced increase in chlorophyll fluorescence yield and effect of electrical charge. FEBS Lett. 92, 5–8. 10.1016/0014-5793(78)80708-X DOI
Behrens C., Hartmann K., Sunderhaus S., Braun H. P., Eubel H. (2013). Approximate calculation and experimental derivation of native isoelectric points of membrane protein complexes of Arabidopsis chloroplasts and mitochondria. Biochim. Biophys. Acta Biomembranes 1828, 1036–1046. 10.1016/j.bbamem.2012.11.028 PubMed DOI
Belgio E., Duffy C. D. P., Ruban A. V. (2013). Switching light harvesting complex II into photoprotective state involves the lumen-facing apoprotein loop. Phys. Chem. Chem. Phys. 15, 12253–12261. 10.1039/c3cp51925b PubMed DOI
Belgio E., Johnson M. P., Juric S., Ruban A. V. (2012). Higher plant photosystem II light-harvesting antenna, not the reaction center, determines the excited-state lifetime-both the maximum and the nonphotochemically quenched. Biophys. J. 102, 2761–2771. 10.1016/j.bpj.2012.05.004 PubMed DOI PMC
Belgio E., Santabarbara S., Bína D., Trsková E., Herbstová M., Kaňa R., et al. . (2017). High photochemical trapping efficiency in Photosystem I from the red clade algae Chromera velia and Phaeodactylum tricornutum. Biochim. Biophys. Acta. 1858, 56–63. 10.1016/j.bbabio.2016.10.002 PubMed DOI
Bellafiore S., Barneche F., Peltier G., Rochaix J. D. (2005). State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433, 892–895. 10.1038/nature03286 PubMed DOI
Ben-Hayyim G. (1978). Mg2+ translocation across the thylakoid membrane: studies using the ionophore A 23187. Eur. J. Biochem. 83, 99–104. 10.1111/j.1432-1033.1978.tb12072.x PubMed DOI
Berg S., Dodge S., Krogmann D. W., Dilley R. A. (1974). Chloroplast grana membrane carboxyl groups - their involvement in membrane association. Plant Physiol. 53, 619–627. 10.1104/pp.53.4.619 PubMed DOI PMC
Bilger W. (2014). Desiccation-induced quenching of chlorophyll fluorescence in cryptogams, in Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria, eds Demmig-Adams B., Garab G., Adams W., Govindjee (Dordrecht: Springer; ), 409–420.
Bonaventura C., Myers J. (1969). Fluorescence and oxygen evolution from chlorella pyrenoidosa. Biochim. Biophys. Acta 189, 366–383. 10.1016/0005-2728(69)90168-6 PubMed DOI
Briantais J. M., Vernotte C., Picaud M., Krause G. H. (1979). Quantitative study of the slow decline of chlorophyll alpha-fluorescence in isolated-chloroplasts. Biochim. Biophys. Acta 548, 128–138. 10.1016/0005-2728(79)90193-2 PubMed DOI
Carraretto L., Formentin E., Teardo E., Checchetto V., Tomizioli M., Morosinotto T., et al. . (2013). A thylakoid-located two-pore K+ channel controls photosynthetic light utilization in plants. Science 342, 114–118. 10.1126/science.1242113 PubMed DOI
Carraretto L., Teardo E., Checchetto V., Finazzi G., Uozumi N., Szabo I. (2016). Ion channels in plant bioenergetic organelles, chloroplasts and mitochondria: from molecular identification to function. Mol. Plant 9, 371–395. 10.1016/j.molp.2015.12.004 PubMed DOI
Cevc G. (1990). Membrane electrostatics. Biochim. Biophys. Acta 1031, 311–382. 10.1016/0304-4157(90)90015-5 PubMed DOI
Checchetto V., Teardo E., Carraretto L., Formentin E., Bergantino E., Giacometti G. M., et al. . (2013). Regulation of photosynthesis by ion channels in cyanobacteria and higher plants. Biophys. Chem. 182, 51–57. 10.1016/j.bpc.2013.06.006 PubMed DOI
Cheregi O., Kotabová E., Prášil O., Schröder W. P., Kaňa R., Funk C. (2015). Presence of state transitions in the cryptophyte alga Guillardia theta. J. Exp. Bot. 66, 6461–6470. 10.1093/jxb/erv362 PubMed DOI PMC
Chow W. S., Barber J. (1980). 9-aminoacridine fluorescence changes as a measure of surface-charge density of the thylakoid membrane. Biochim. Biophys. Acta 589, 346–352. 10.1016/0005-2728(80)90050-X PubMed DOI
Chow W. S., Wagner A. G., Hope A. B. (1976). Light-dependent redistribution of ions in isolated spinach chloroplasts. Aust. J. Plant Physiol. 3, 853–861. 10.1071/PP9760853 DOI
Consoli E., Croce R., Dunlap D. D., Finzi L. (2005). Diffusion of light-harvesting complex II in the thylakoid membranes. EMBO Rep. 6, 782–786. 10.1038/sj.embor.7400464 PubMed DOI PMC
Croce R., Van Amerongen H. (2014). Natural strategies for photosynthetic light harvesting. Nat. Chem. Biol. 10, 492–501. 10.1038/nchembio.1555 PubMed DOI
Cruz J. A., Sacksteder C. A., Kanazawa A., Kramer D. M. (2001). Contribution of electric field (Delta psi) to steady-state transthylakoid proton motive force (pmf) in vitro and in vivo. Control of pmf parsing into Delta psi and Delta pH by ionic strength. Biochemistry 40, 1226–1237. 10.1021/bi0018741 PubMed DOI
Dau H., Sauer K. (1991). Electric-field effect on chlorophyll fluorescence and its relation to photosystem-ii charge separation reactions studied by a salt-jump technique. Biochim. Biophys. Acta 1098, 49–60. 10.1016/0005-2728(91)90008-C DOI
Demmig-Adams B., Garab G., Adams W. W., III Govindjee. (2014). Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Dordrecht: Springer.
Dilley R. A. (2004). On why thylakoids energize ATP formation using either delocalized or localized proton gradients - a Ca2+ mediated role in thylakoid stress responses. Photosyn. Res. 80, 245–263. 10.1023/B:PRES.0000030436.32486.aa PubMed DOI
Dilley R. A., Vernon L. P. (1965). Ion and water transport processes related to the light-dependent shrinkage of spinach chloroplasts. Arch. Biochem. Biophys. 111, 365–375. 10.1016/0003-9861(65)90198-0 PubMed DOI
Drummond R. S. M., Tutone A., Li Y. C., Gardner R. C. (2006). A putative magnesium transporter AtMRS2-11 is localized to the plant chloroplast envelope membrane system. Plant Sci. 170, 78–89. 10.1016/j.plantsci.2005.08.018 DOI
Duysens L. N. M. (1972). 3-(3,4-dichlorophenyl)-1,1-dimethylurea (dcmu) inhibition of system II and light-induced regulatory changes in energy-transfer efficiency. Biophys. J. 12, 858–863. 10.1016/S0006-3495(72)86129-0 PubMed DOI PMC
Enz C., Steinkamp T., Wagner R. (1993). Ion channels in the thylakoid membrane (a patch-clamp study). Biochim. Biophys. Acta 1143, 67–76. 10.1016/0005-2728(93)90217-4 DOI
Finazzi G., Petroutsos D., Tomizioli M., Flori S., Sautron E., Villanova V., et al. . (2015). Ions channels/transporters and chloroplast regulation. Cell Calcium 58, 86–97. 10.1016/j.ceca.2014.10.002 PubMed DOI
Fristedt R., Granath P., Vener A. V. (2010). A protein phosphorylation threshold for functional stacking of plant photosynthetic membranes. PLoS ONE 5:e10963. 10.1371/journal.pone.0010963 PubMed DOI PMC
Gerola P. D., Jennings R. C., Forti G., Garlaschi F. M. (1979). Influence of protons on thylakoid membrane stacking. Plant Sci. Lett. 16, 249–254. 10.1016/0304-4211(79)90035-X DOI
Gilmore A. M., Hazlett T. L., Govindjee (1995). Xanthophyll cycle-dependent quenching of photosystem-ii chlorophyll-a fluorescence - formation of a quenching complex with a short fluorescence lifetime. Proc. Natl. Acad. Sci. U.S.A. 92, 2273–2277. 10.1073/pnas.92.6.2273 PubMed DOI PMC
Gilmore A. M., Yamasaki H. (1998). 9-aminoacridine and dibucaine exhibit competitive interactions and complicated inhibitory effects that interfere with measurements of Delta pH and xanthophyll cycle-dependent photosystem II energy dissipation. Photosyn. Res. 57, 159–174. 10.1023/A:1006065931183 DOI
Giovagnetti V., Ware M. A., Ruban A. V. (2015). Assessment of the impact of photosystem I chlorophyll fluorescence on the pulse-amplitude modulated quenching analysis in leaves of Arabidopsis thaliana. Photosyn. Res. 125, 179–189. 10.1007/s11120-015-0087-z PubMed DOI
Goldschmidt-Clermont M., Bassi R. (2015). Sharing light between two photosystems: mechanism of state transitions. Curr. Opin. Plant Biol. 25, 71–78. 10.1016/j.pbi.2015.04.009 PubMed DOI
Govindjee (2004). Chlorophyll a fluorescence: a bit of basics and history, in Chlorophyll a Fluorescence: A Signature of Photosynthesis, eds Papageorgiou G. C., Govindjee (Dordrecht: Springer Netherlands; ), 1–41.
Govindjee Björn L. (2012). Dissecting oxygenic photosynthesis: the evolution of the “Z”-scheme for thylakoid reactions, in Photosynthesis: Overviews on Recent Progress and Future Perspective, eds Itoh S., Mohanty P., Guruprasad K. N. (New Delhi: I.K. Publishers; ), 1–27.
Govindjee Wong, D., Prezelin B. B., Sweeney B. M. (1979). Chlorophyll a fluorescence of Gonyaulax polydera grown on a light-dark cycle and after transfer to constant light. Photochem. Photobiol. 30, 405–411. PubMed
Gross E. L., Hess S. C. (1973). Monovalent cation-induced inhibition of chlorophyll a fluorescence: antagonism by divalent cations. Arch. Biochem. Biophys. 159, 832–836. 10.1016/0003-9861(73)90524-9 DOI
Hamamoto S., Uozumi N. (2014). Organelle-localized potassium transport systems in plants. J. Plant Physiol. 171, 743–747. 10.1016/j.jplph.2013.09.022 PubMed DOI
Hanikenne M., Bernal M., Urzica E. I. (2014). Ion homeostasis in the Chloroplast. New York, NY: Springer.
Herdean A., Teardo E., Nilsson A. K., Pfeil B. E., Johansson O. N., Ünnep R., et al. . (2016). A voltage-dependent chloride channel fine-tunes photosynthesis in plants. Nature Commun. 7:11654. 10.1038/ncomms11654 PubMed DOI PMC
Hind G., Nakatani H. Y., Izawa S. (1974). Light-dependent redistribution of ions in suspensions of chloroplast thylakoid membranes. Proc. Natl. Acad. Sci. U.S.A. 71, 1484–1488. 10.1073/pnas.71.4.1484 PubMed DOI PMC
Horton P. (2014). Developments in research on non-photochemical fluorescence quenching: emergence of key ideas, Theories and Experimental Approaches, in Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria, eds Demmig-Adams B., Garab G., Adams W., III, Govindjee (Dordrecht: Springer Netherlands; ), 73–95.
Horton P., Black M. T. (1980). Activation of adenosine 5'-triphosphate-induced quenching of chlorophyll fluorescence by reduced plastoquinone - the basis of state-i-state-ii transitions in chloroplasts. FEBS Lett. 119, 141–144. 10.1016/0014-5793(80)81016-7 DOI
Horton P., Ruban A. V., Rees D., Pascal A. A., Noctor G., Young A. J. (1991). Control of the light-harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll—protein complex. FEBS Letters 292, 1–4. PubMed
Horton P., Ruban A. V., Walters R. G. (1996). Regulation of light harvesting in green plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 655–684. 10.1146/annurev.arplant.47.1.655 PubMed DOI
Ioannidis N. E., Kotzabasis K. (2007). Effects of polyamines on the functionality of photosynthetic membrane in vivo and in vitro. Biochim. Biophys. Acta Bioenerg. 1767, 1372–1382. 10.1016/j.bbabio.2007.10.002 PubMed DOI
Ioannidis N. E., Lopera O., Santos M., Torne J. M., Kotzabasis K. (2012). Role of plastid transglutaminase in LHCII polyamination and thylakoid electron and proton flow. PLoS ONE 7:e41979. 10.1371/journal.pone.0041979 PubMed DOI PMC
Ioannidis N. E., Papadatos S., Daskalakis V. (2016). Energizing the light harvesting antenna: insight from CP29. Biochim. Biophys. Acta Bioenerg. 1857, 1643–1650. 10.1016/j.bbabio.2016.07.005 PubMed DOI
Ioannidis N. E., Sfichi-Duke L., Kotzabasis K. (2011). Polyamines stimulate non-photochemical quenching of chlorophyll a fluorescence in Scenedesmus obliquus. Photosyn. Res. 107, 169–175. 10.1007/s11120-010-9617-x PubMed DOI
Ishijima S., Uchlbori A., Takagi H., Maki R., Ohnishi M. (2003). Light-induced increase in free Mg2+ concentration in spinach chloroplasts: measurement of free Mg2+ by using a fluorescent probe and necessity of stromal alkalinization. Arch. Biochem. Biophys. 412, 126–132. 10.1016/S0003-9861(03)00038-9 PubMed DOI
Ivanov A. G., Sane P. V., Hurry V., Oquist G., Huner N. P. A. (2008). Photosystem II reaction centre quenching: mechanisms and physiological role. Photosyn. Res. 98, 565–574. 10.1007/s11120-008-9365-3 PubMed DOI
Izawa S., Good N. E. (1966). Effect of salts and electron transport on conformation of isolated chloroplasts.i. Light-scattering and volume changes. Plant Physiol. 41, 533–543. 10.1104/pp.41.3.533 PubMed DOI PMC
Jajoo A., Bharti S. (1999). Interaction of anions and cations in regulating energy distribution between the two photosystems. Photosynthetica 37, 529–535. 10.1023/A:1007159105734 DOI
Jajoo A., Bharti S., Govindjee (1998). Inorganic anions induce state changes in spinach thylakoid membranes. FEBS Lett. 434, 193–196. 10.1016/S0014-5793(98)00978-8 PubMed DOI
Jajoo A., Bharti S., Mohanty P. (2001). Evaluation of the specific roles of anions in electron transport and energy transfer reactions in photosynthesis. Photosynthetica 39, 321–337. 10.1023/A:1015125008028 DOI
Janik E., Bednarska J., Zubik M., Puzio M., Luchowski R., Grudzinski W., et al. . (2013). Molecular architecture of plant thylakoids under physiological and light stress conditions: a study of lipid-light-harvesting complex II model membranes. Plant Cell 25, 2155–2170. 10.1105/tpc.113.113076 PubMed DOI PMC
Jennings R. C., Garlaschi F. M., Gerola P. D., Etzionkatz R., Forti G. (1981a). Proton-induced grana formation in chloroplasts - distribution of chlorophyll-protein complexes and photosystem-ii photochemistry. Biochim. Biophys. Acta 638, 100–107. 10.1016/0005-2728(81)90191-2 DOI
Jennings R. C., Gerola P. D., Forti G., Garlaschi F. M. (1979). Influence of proton-induced grana formation on partial electron-transport reactions in chloroplasts. FEBS Lett. 106, 247–250. 10.1016/0014-5793(79)80738-3 DOI
Jennings R. C., Gerola P. D., Garlaschi F. M., Forti G. (1981b). Effects of trypsin and cations on chloroplast membranes. Plant Physiol. 67, 212–215. 10.1104/pp.67.2.212 PubMed DOI PMC
Jennings R. C., Gerola P. D., Garlaschi F. M., Forti G. (1982). Studies on the kinetics of cation-associated fluorescence changes in chloroplast membranes. FEBS Lett. 142, 167–170. 10.1016/0014-5793(82)80244-5 DOI
Johnson M. P., Ruban A. V. (2010). Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation. Plant J. 61, 283–289. 10.1111/j.1365-313X.2009.04051.x PubMed DOI
Johnson M. P., Ruban A. V. (2014). Rethinking the existence of a steady-state Delta psi component of the proton motive force across plant thylakoid membranes. Photosyn. Res. 119, 233–242. 10.1007/s11120-013-9817-2 PubMed DOI
Junge W. (2004). Protons, proteins and ATP. Photosyn. Res. 80, 198–221. 10.1023/B:PRES.0000030677.98474.74 PubMed DOI
Junge W. (2013). Half a century of molecular bioenergetics. Biochem. Soc. Trans. 41, 1207–1218. 10.1042/BST20130199 PubMed DOI
Junge W., Nelson N. (2015). ATP Synthase, in Annual Review of Biochemistry, Vol 84, ed Kornberg R. D. (Palo Alto, CA: Annual Reviews; ), 631–657. PubMed
Junge W., Reinwald E., Rumberg B., Siggel U., Witt H. T. (1968). Further evidence for a new function unit of photosynthesis. Naturwissenschaften 55, 36–37. 10.1007/BF00593410 PubMed DOI
Junge W., Rumberg B., Schroder H. (1970). Necessity of an electric potential difference and its use for photophosphorylation in short flash groups. Eur. J. Biochem. 14, 575–581. 10.1111/j.1432-1033.1970.tb00326.x PubMed DOI
Junge W., Witt H. T. (1968). On ion transport system of photosynthesis - investigations on a molecular level. Z. Naturforsch. B 23, 244–254. 10.1515/znb-1968-0222 PubMed DOI
Kaňa R. (2013). Mobility of photosynthetic proteins. Photosyn. Res. 116, 465–479. 10.1007/s11120-013-9898-y PubMed DOI
Kaňa R., Kotabová E., Komárek O., Šedivá B., Papageorgiou G. C., Govindjee, et al. . (2012a). The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition. Biochim. Biophys. Acta 1817, 1237–1247. 10.1016/j.bbabio.2012.02.024 PubMed DOI
Kaňa R., Kotabová E., Kopečná J., Trsková E., Belgio E., Sobotka R., et al. . (2016). Violaxanthin inhibits nonphotochemical quenching in light-harvesting antenna of Chromera velia. FEBS Lett. 590, 1076–1085. 10.1002/1873-3468.12130 PubMed DOI
Kaňa R., Kotabová E., Lukeš M., Papáček Š., Matonoha C., Liu L.-N., et al. . (2014). Phycobilisome mobility and its role in the regulation of light harvesting in Red Algae. Plant Physiol. 165, 1618–1631. 10.1104/pp.114.236075 PubMed DOI PMC
Kaňa R., Kotabová E., Prášil O. (2008). Acceleration of plastoquinone pool reduction by alternative pathways precedes a decrease in photosynthetic CO(2) assimilation in preheated barley leaves. Physiol. Plant. 133, 794–806. 10.1111/j.1399-3054.2008.01094.x PubMed DOI
Kaňa R., Kotabová E., Sobotka R., Prášil O. (2012b). Non-photochemical quenching in cryptophyte alga rhodomonas salina is located in chlorophyll a/c Antennae. PLoS ONE 7:e29700. 10.1371/journal.pone.0029700 PubMed DOI PMC
Kaňa R., Prášil O., Komárek O., Papageorgiou G. C., Govindjee (2009). Spectral characteristic of fluorescence induction in a model cyanobacterium, Synechococcus sp (PCC 7942). Biochim. Biophys. Acta 1787, 1170–1178. 10.1016/j.bbabio.2009.04.013 PubMed DOI
Kaňa R., Vass I. (2008). Thermoimaging as a tool for studying light-induced heating of leaves Correlation of heat dissipation with the efficiency of photosystem II photochemistry and non-photochemical quenching. Environ. Exp. Bot. 64, 90–96. 10.1016/j.envexpbot.2008.02.006 DOI
Karge O., Bondar A. N., Dau H. (2014). Cationic screening of charged surface groups (carboxylates) affects electron transfer steps in photosystem-II water oxidation and quinone reduction. Biochim. Biophys. Acta Bioenerg. 1837, 1625–1634. 10.1016/j.bbabio.2014.07.012 PubMed DOI
Kasumov E. A., Kasumov R. E., Kasumova I. V. (2015). A mechano-chemiosmotic model for the coupling of electron and proton transfer to ATP synthesis in energy-transforming membranes: a personal perspective. Photosyn. Res. 123, 1–22. 10.1007/s11120-014-0043-3 PubMed DOI PMC
Khan S., Sun J. S., Brudvig G. W. (2015). Cation effects on the electron-acceptor side of photosystem II. J. Phys. Chem. B 119, 7722–7728. 10.1021/jp513035u PubMed DOI
Kirchhoff H. (2014). Diffusion of molecules and macromolecules in thylakoid membranes. Biochim. Biophys. Acta Bioenerg. 1837, 495–502. 10.1016/j.bbabio.2013.11.003 PubMed DOI
Kirchhoff H., Borinski M., Lenhert S., Chi L. F., Buchel C. (2004). Transversal and lateral exciton energy transfer in grana thylakoids of spinach. Biochemistry 43, 14508–14516. 10.1021/bi048473w PubMed DOI
Kirchhoff H., Hall C., Wood M., Herbstova M., Tsabari O., Nevo R., et al. . (2011). Dynamic control of protein diffusion within the granal thylakoid lumen. Proc. Natl. Acad. Sci. U.S.A. 108, 20248–20253. 10.1073/pnas.1104141109 PubMed DOI PMC
Kirchhoff H., Hinz H. R., Rosgen J. (2003). Aggregation and fluorescence quenching of chlorophyll a of the light-harvesting complex II from spinach in vitro. Biochim. Biophys. Acta Bioenerg. 1606, 105–116. 10.1016/S0005-2728(03)00105-1 PubMed DOI
Kirilovsky D., Kaňa R., Prášil O. (2014). Mechanisms modulating energy arriving at reaction centers in cyanobacteria, in Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria, eds. Demmig-Adams B., Garab G., Adams W., III, Govindjee (Dordrecht: Springer Netherlands; ), 471–501.
Kiss A. Z., Ruban A. V., Horton P. (2008). The PsbS protein controls the organization of the photosystem II antenna in higher plant thylakoid membranes. J. Biol. Chem. 283, 3972–3978. 10.1074/jbc.M707410200 PubMed DOI
Koblížek M., Kaftan D., Nedbal L. (2001). On the relationship between the non-photochemical quenching of the chlorophyll fluorescence and the Photosystem II light harvesting efficiency. A repetitive flash fluorescence induction study. Photosyn. Res. 68, 141–152. 10.1023/A:1011830015167 PubMed DOI
Kodru S., Malavath T., Devadasu E., Nellaepalli S., Stirbet A., Subramanyam R., et al. . (2015). The slow S to M rise of chlorophyll a fluorescence reflects transition from state 2 to state 1 in the green alga Chlamydomonas reinhardtii. Photosynth. Res. 125, 219–231. 10.1007/s11120-015-0084-2 PubMed DOI
Kolber Z. S., Prášil O., Falkowski P. G. (1998). Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim. Biophys. Acta Bioenerg. 1367, 88–106. 10.1016/S0005-2728(98)00135-2 PubMed DOI
Kotabová E., Jarešová J., Kaňa R., Sobotka R., Bína D., Prášil O. (2014). Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. I. Physiological relevance and functional connection to photosystems. Biochim. Biophys. Acta 1837, 734–743. 10.1016/j.bbabio.2014.01.012 PubMed DOI
Kramer D. M., Avenson T. J., Edwards G. E. (2004). Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton reactions. Trends Plant Sci. 9, 349–357. 10.1016/j.tplants.2004.05.001 PubMed DOI
Kramer D. M., Sacksteder C. A., Cruz J. A. (1999). How acidic is the lumen? Photosyn. Res. 60, 151–163. 10.1023/A:1006212014787 DOI
Krause G. H. (1977). Light-induced movement of magnesium ions in intact chloroplasts. Spectroscopic determination with Eriochrome Blue SE. Biochim. Biophys. Acta 460, 500–510. 10.1016/0005-2728(77)90088-3 PubMed DOI
Krause G. H. (1988). Photoinhibition of photosynthesis - an evaluation of damaging and protective mechanisms. Physiol. Plant. 74, 566–574. 10.1111/j.1399-3054.1988.tb02020.x DOI
Krause G. H., Briantais J. M., Vernotte C. (1983). Characterization of chlorophyll fluorescence quenching in chloroplasts by fluorescence spectroscopy at 77-K.1. Delta-ph-dependent quenching. Biochim. Biophys. Acta 723, 169–175. 10.1016/0005-2728(83)90116-0 DOI
Krause G. H., Jahns P. (2004). Non-photochemical energy dissipation determined by chlorophyll fluorescence quenching: characterization and function, in Chlorophyll a Fluorescence: A Signature of Photosynthesis, eds Papageorgiou G. C., Govindjee (Dordrecht: Springer Netherlands; ), 463–495.
Krause G. H., Weis E. (1991). Chlorophyll fluorescence and photosynthesis - the basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 313–349. 10.1146/annurev.pp.42.060191.001525 DOI
Krupenina N. A., Bulychev A. A. (2007). Action potential in a plant cell lowers the light requirement for non-photochemical energy-dependent quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 1767, 781–788. 10.1016/j.bbabio.2007.01.004 PubMed DOI
Krupnik T., Kotabová E., Van Bezouwen L. S., Mazur R., Garstka M., Nixon P. J., et al. (2013). A reaction centre-dependent photoprotection mechanism in a highly robust photosystem II from an extremophilic red alga Cyanidioschyzon merolae. J. Biol. Chem. 288, 23529–23542. 10.1074/jbc.M113.484659 PubMed DOI PMC
Kunz H. H., Gierth M., Herdean A., Satoh-Cruz M., Kramer D. M., Spetea C., et al. . (2014). Plastidial transporters KEA1, -2, and -3 are essential for chloroplast osmoregulation, integrity, and pH regulation in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 111, 7480–7485. 10.1073/pnas.1323899111 PubMed DOI PMC
Lazár D. (1999). Chlorophyll a fluorescence induction. Biochim. Biophys. Acta Bioenerg. 1412, 1–28. PubMed
Lazár D. (2006). The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Funct. Plant Biol. 33, 9–30. 10.1071/FP05095 PubMed DOI
Li X. P., Bjorkman O., Shih C., Grossman A. R., Rosenquist M., Jansson S., et al. . (2000). A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403, 391–395. 10.1038/35000131 PubMed DOI
Lyu H., Lazár D. (2017). Modeling the light-induced electric potential difference (ΔΨ), the pH difference (ΔpH) and the proton motive force across the thylakoid membrane in C3 leaves. J. Theor. Biol. 413, 11–23. 10.1016/j.jtbi.2016.10.017 PubMed DOI
Malliarakis D., Tsiavos T., Ioannidis N. E., Kotzabasis K. (2015). Spermine and lutein quench chlorophyll fluorescence in isolated PSII antenna complexes. J. Plant Physiol. 183, 108–113. 10.1016/j.jplph.2015.06.006 PubMed DOI
Mills J. D., Barber J. (1978). Fluorescence changes in isolated broken chloroplasts and involvement of electrical double-layer. Biophys. J. 21, 257–272. 10.1016/S0006-3495(78)85523-4 PubMed DOI PMC
Mills J. D., Telfer A., Barber J. (1976). Cation control of chlorophyll-alpha fluorescence yield in chloroplasts - location of cation sensitive sites. Biochim. Biophys. Acta 440, 495–505. 10.1016/0005-2728(76)90037-2 PubMed DOI
Minagawa J. (2011). State transitions-The molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast. Biochim. Biophys. Acta Bioenerg. 1807, 897–905. 10.1016/j.bbabio.2010.11.005 PubMed DOI
Mirkovic T., Ostroumov E. E., Anna J. M., Van Grondelle R., Govindjee Scholes, G. D. (2016). Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem. Rev. [Epub ahead of print]. 10.1021/acs.chemrev.6b00002 PubMed DOI
Mitchell P. (1961). Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144–148. 10.1038/191144a0 PubMed DOI
Mitchell P. (1966). Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. Camb. Philos. Soc. 41, 445–502. 10.1111/j.1469-185X.1966.tb01501.x PubMed DOI
Mizusawa N., Wada H. (2012). The role of lipids in photosystem II. Biochim. Biophys. Acta Bioenerg. 1817, 194–208. 10.1016/j.bbabio.2011.04.008 PubMed DOI
Mohanty P., Braun B. Z., Govindje (1973). Light-induced slow changes in chlorophyll a fluorescence in isolated chloroplasts - effects of magnesium and phenazine methosulfate. Biochim. Biophys. Acta 292, 459–476. 10.1016/0005-2728(73)90051-0 PubMed DOI
Mohanty P., Govindje Wydrzynski, T. (1974). Salt-induced alterations of fluorescence yield and of emission-spectra in chlorella-pyrenoidosa. Plant Cell Physiol. 15, 213–224.
Mulkidjanian A. Y., Heberle J., Cherepanov D. A. (2006). Protons @ interfaces: implications for biological energy conversion. Biochim. Biophys. Acta Bioenerg. 1757, 913–930. 10.1016/j.bbabio.2006.02.015 PubMed DOI
Mullineaux C. W. (2008). Factors controlling the mobility of photosynthetic proteins. Photochem. Photobiol. 84, 1310–1316. 10.1111/j.1751-1097.2008.00420.x PubMed DOI
Mullineaux C. W., Allen J. F. (1986). The state-2 transition in the Cyanobacterium Synechococcus-6301 can be driven by respiratory electron flow into the plastoquinone pool. FEBS Lett. 205, 155–160. 10.1016/0014-5793(86)80885-7 DOI
Murata N. (1969a). Control of excitation transfer in photosynthesis.2. Magnesium ion-dependent distribution of excitation energy between 2 pigment systems in spinach chloroplasts. Biochim. Biophys. Acta 189, 171–181. 10.1016/0005-2728(69)90045-0 PubMed DOI
Murata N. (1969b). Control of excitation transfer in photosynthesis. I. Light-induced change of chlorophyll a fluorescence in Porphyridium cruentum. Biochim. Biophys. Acta 172, 242–251. 10.1016/0005-2728(69)90067-X PubMed DOI
Nagy G., Uennep R., Zsiros O., Tokutsu R., Takizawa K., Porcar L., et al. . (2014). Chloroplast remodeling during state transitions in Chlamydomonas reinhardtii as revealed by noninvasive techniques in vivo. Proc. Natl. Acad. Sci. U.S.A. 111, 5042–5047. 10.1073/pnas.1322494111 PubMed DOI PMC
Nakatani H. Y., Barber J. (1980). Further-studies of the thylakoid membrane-surface charges by particle electrophoresis. Biochim. Biophys. Acta 591, 82–91. 10.1016/0005-2728(80)90222-4 PubMed DOI
Nakatani H. Y., Barber J., Forrester J. A. (1978). Surface charges on chloroplast membranes as studied by particle electrophoresis. Biochim. Biophys. Acta 504, 215–225. 10.1016/0005-2728(78)90019-1 PubMed DOI
Nilkens M., Kress E., Lambrev P., Miloslavina Y., Muller M., Holzwarth A. R., et al. . (2010). Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Biochim. Biophys. Acta Bioenerg. 1797, 466–475. 10.1016/j.bbabio.2010.01.001 PubMed DOI
Niyogi K. K., Grossman A. R., Bjorkman O. (1998). Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10, 1121–1134. 10.1105/tpc.10.7.1121 PubMed DOI PMC
Nobel P. S. (1968). Chloroplast shrinkage and increased photophosphorylation in vitro upon illuminating intact plants of Pisum sativum. Biochim. Biophys. Acta 153, 170–182. 10.1016/0005-2728(68)90157-6 PubMed DOI
Noctor G., Ruban A. V., Horton P. (1993). Modulation of delta-ph-dependent nonphotochemical quenching of chlorophyll fluorescence in spinach-chloroplasts. Biochim. Biophys. Acta 1183, 339–344. 10.1016/0005-2728(93)90237-A DOI
Ocampo-Alvarez H., García-Mendoza E., Govindjee (2013). Antagonist effect between violaxanthin and de-epoxidated pigments in nonphotochemical quenching induction in the qE deficient brown alga Macrocystis pyrifera. Biochim. Biophys. Acta 1827, 427–437. 10.1016/j.bbabio.2012.12.006 PubMed DOI
Ogawa T., Grantz D., Boyer J., Govindjee (1982). Effects of cations and abscisic-acid on chlorophyll a fluorescence in guard-cells of Vicia-faba. Plant Physiol. 69, 1140–1144. 10.1104/pp.69.5.1140 PubMed DOI PMC
Ort D. R., Melandri B. A. (1982). 12 - Mechanism of ATP Synthesis*, in Photosynthesis: Energy Conversion by Plants and Bacteria (Cell Biology), ed Govindjee (New York, NY: Academic Press; ), 537–587.
Ostroumov E., Khan Y., Scholes G., Govindjee (2014). Photophysics of Photosynthetic Pigment-Protein Complexes, in Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria, eds Demmig-Adams B., Garab G., Adams W., III, Govindjee (Dordrecht: Springer Netherlands; ), 97–128.
Papageorgiou C. G., Stamatakis K. (2004). Water and solute transport in cyanobacteria as probed by chlorophyll fluorescence, in Chlorophyll a Fluorescence: A Signature of Photosynthesis, eds Papageorgiou G. C., Govindjee (Dordrecht: Springer; ), 663–678.
Papageorgiou G. C., Govindjee (2011). Photosystem II fluorescence: slow changes - Scaling from the past. J. Photochem. Photobiol. B Biol. 104, 258–270. 10.1016/j.jphotobiol.2011.03.008 PubMed DOI
Papageorgiou G., Govindjee (1968a). Light-induced changes in fluorescence yield of chlorophyll alpha in vivo.I. Anacystis nidulans. Biophys. J. 8, 1299–1315. 10.1016/S0006-3495(68)86557-9 PubMed DOI PMC
Papageorgiou G., Govindjee (1968b). Light-induced changes in the fluorescence yield of chlorophyll a in vivo: II. Chlorella pyrenoidosa. Biophys. J. 8, 1316–1328. 10.1016/S0006-3495(68)86558-0 PubMed DOI PMC
Papageorgiou G., Govindjee (2004). Chlorophyll a Fluorescence: A Signature of Photosynthesis. Dordrecht: Springer.
Pfeil B. E., Schoefs B., Spetea C. (2014). Function and evolution of channels and transporters in photosynthetic membranes. Cell. Mol. Life Sci. 71, 979–998. 10.1007/s00018-013-1412-3 PubMed DOI PMC
Phillip D., Ruban A. V., Horton P., Asato A., Young A. J. (1996). Quenching of chlorophyll fluorescence in the major light-harvesting complex of photosystem II: a systematic study of the effect of carotenoid structure. Proc. Natl. Acad. Sci. U.S.A. 93, 1492–1497. 10.1073/pnas.93.4.1492 PubMed DOI PMC
Portis A. R. (1981). Evidence of a low stromal mg concentration in intact chloroplasts in the dark: i. studies with the ionophore A23187. Plant Physiol. 67, 985–989. 10.1104/pp.67.5.985 PubMed DOI PMC
Pospíšil P., Dau H. (2002). Valinomycin sensitivity proves that light-induced thylakoid voltages result in millisecond phase of chlorophyll fluorescence transients. Biochim. Biophys. Acta Bioenerg. 1554, 94–100. 10.1016/S0005-2728(02)00216-5 PubMed DOI
Posselt D., Nagy G., Kirkensgaard J. J. K., Holm J. K., Aagaard T. H., Timmins P., et al. . (2012). Small-angle neutron scattering study of the ultrastructure of chloroplast thylakoid membranes — Periodicity and structural flexibility of the stroma lamellae. Biochim. Biophys. Acta 1817, 1220–1228. 10.1016/j.bbabio.2012.01.012 PubMed DOI
Prášil O., Adir N., Ohad I. (1992). Dynamics of Photosystem II: mechanism of photoinhibition and recovery processes, in The Photosystems: Structure, Function and Molecular Biology, ed Barber J. (Oxford: Elsevier Science; ), 295–348.
Quigg A., Kotabová E., Jarešová J., Kaňa R., Šetlik J., Šediva B., et al. . (2012). Photosynthesis in Chromera velia represents a simple system with high efficiency. PLoS ONE 7:e47036. 10.1371/journal.pone.0047036 PubMed DOI PMC
Ruban A. V., Horton P. (1995). An investigation of the sustained component of nonphotochemical quenching of chlorophyll fluorescence in isolated-chloroplasts and leaves of spinach. Plant Physiol. 108, 721–726. 10.1104/pp.108.2.721 PubMed DOI PMC
Ruban A. V., Johnson M. P. (2009). Dynamics of higher plant photosystem cross-section associated with state transitions. Photosyn. Res. 99, 173–183. 10.1007/s11120-008-9387-x PubMed DOI
Ruban A. V., Johnson M. P., Duffy C. D. P. (2012). The photoprotective molecular switch in the photosystem II antenna. Biochim. Biophys. Acta 1817, 167–181. 10.1016/j.bbabio.2011.04.007 PubMed DOI
Ruban A. V., Young A., Horton P. (1994). Modulation of chlorophyll fluorescence quenching in isolated light-harvesting complex of photosystem-II. Biochim. Biophys. Acta Bioenerg. 1186, 123–127. 10.1016/0005-2728(94)90143-0 DOI
Rubin B. T., Barber J. (1980). The role of membrane-surface charge in the control of photosynthetic processes and the involvement of electrostatic screening. Biochim. Biophys. Acta 592, 87–102. 10.1016/0005-2728(80)90116-4 PubMed DOI
Rumak I., Gieczewska K., Kierdaszuk B., Gruszecki W. I., Mostowska A., Mazur R., et al. . (2010). 3-D modelling of chloroplast structure under (Mg2+) magnesium ion treatment. Relationship between thylakoid membrane arrangement and stacking. Biochim. Biophys. Acta Bioenerg. 1797, 1736–1748. 10.1016/j.bbabio.2010.07.001 PubMed DOI
Samson G., Prasil O., Yaakoubd B. (1999). Photochemical and thermal phases of chlorophyll a fluorescence. Photosynthetica 37, 163–182. 10.1023/A DOI
Schaller S., Latowski D., Jemiola-Rzeminska M., Dawood A., Wilhelm C., Strzalka K., et al. . (2011). Regulation of LHCII aggregation by different thylakoid membrane lipids. Biochim. Biophys. Acta Bioenerg. 1807, 326–335. 10.1016/j.bbabio.2010.12.017 PubMed DOI
Schaller S., Richter K., Wilhelm C., Goss R. (2014). Influence of pH, Mg2+, and lipid composition on the aggregation state of the diatom FCP in comparison to the LHCII of vascular plants. Photosyn. Res. 119, 305–317. 10.1007/s11120-013-9951-x PubMed DOI
Schansker G., Toth S. Z., Holzwarth A. R., Garab G. (2014). Chlorophyll a fluorescence: beyond the limits of the Q(A) model. Photosyn. Res. 120, 43–58. 10.1007/s11120-013-9806-5 PubMed DOI
Schansker G., Toth S. Z., Kovacs L., Holzwarth A. R., Garab G. (2011). Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. Biochim. Biophys. Acta Bioenerg. 1807, 1032–1043. 10.1016/j.bbabio.2011.05.022 PubMed DOI
Schliephake W., Junge W., Witt H. T. (1968). Correlation between field formation proton translocation and light reactions in photosynthesis. Z. Naturforsch. B 23, 1571–1578. 10.1515/znb-1968-1203 PubMed DOI
Scoufflaire C., Lannoye R., Barber J. (1982). Chlorophyll fluorescence and thylakoid stacking changes - electrostatic screening versus charge neutralization. Photobiochem. Photobiophys. 4, 249–256.
Slavov C., Reus M., Holzwarth A. R. (2013). Two different mechanisms cooperate in the desiccation-induced excited state quenching in parmelia lichen. J. Phys. Chem. B 117, 11326–11336. 10.1021/jp402881f PubMed DOI
Sokolove P. M., Marsho T. V. (1979). Effect of valinomycin on electron-transport in intact spinach-chloroplasts. FEBS Lett. 100, 179–184. 10.1016/0014-5793(79)81159-X PubMed DOI
Staehelin L. A., Arntzen C. J. (1983). Regulation of chloroplast membrane-function - protein-phosphorylation changes the spatial-organization of membrane-components. J. Cell Biol. 97, 1327–1337. 10.1083/jcb.97.5.1327 PubMed DOI PMC
Stirbet A., Govindjee (2012). Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. Photosyn. Res. 113, 15–61. 10.1007/s11120-012-9754-5 PubMed DOI
Stoitchkova K., Busheva M., Apostolova E., Andreeva A. (2006). Changes in the energy distribution in mutant thylakoid membranes of pea with modified pigment content. II. Changes due to magnesium ions concentration. J. Photochem. Photobiol B Biol. 83, 11–20. 10.1016/j.jphotobiol.2005.11.011 PubMed DOI
Strasser R. J., Srivastava A., Govindjee (1995). Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem. Photobiol. 61, 32–42. 10.1111/j.1751-1097.1995.tb09240.x DOI
Stys D. (1995). Stacking and separation of photosystem I and photosystem II in plant thylakoid membranes: a physico-chemical view. Physiol. Plant. 95, 651–657. 10.1111/j.1399-3054.1995.tb05535.x DOI
Telfer A., Allen J. F., Barber J., Bennett J. (1983). Thylakoid protein-phosphorylation during state-1-state-2 transitions in osmotically shocked pea-chloroplasts. Biochim. Biophys. Acta 722, 176–181. 10.1016/0005-2728(83)90171-8 DOI
Tester M., Blatt M. R. (1989). Direct measurement of K+ channels in thylakoid membranes by incorporation of vesicles into planar lipid bilayers. Plant Physiol. 91, 249–252. 10.1104/pp.91.1.249 PubMed DOI PMC
Tikhonov A. N. (2013). pH-Dependent regulation of electron transport and ATP synthesis in chloroplasts. Photosyn. Res. 116, 511–534. 10.1007/s11120-013-9845-y PubMed DOI
Tikkanen M., Aro E.-M. (2012). Thylakoid protein phosphorylation in dynamic regulation of photosystem II in higher plants. Biochim. Biophys. Acta Bioenerg. 1817, 232–238. 10.1016/j.bbabio.2011.05.005 PubMed DOI
Tikkanen M., Nurmi M., Kangasjarvi S., Aro E. M. (2008). Core protein phosphorylation facilitates the repair of photodamaged photosystem II at high light. Biochim. Biophys. Acta Bioenerg. 1777, 1432–1437. 10.1016/j.bbabio.2008.08.004 PubMed DOI
Tsiavos T., Ioannidis N. E., Kotzabasis K. (2012). Polyamines induce aggregation of LHC II and quenching of fluorescence in vitro. Biochim. Biophys. Acta 1817, 735–743. 10.1016/j.bbabio.2012.01.007 PubMed DOI
Unlu C., Drop B., Croce R., Van Amerongen H. (2014). State transitions in Chlamydomonas reinhardtii strongly modulate the functional size of photosystem II but not of photosystem I. Proc. Natl. Acad. Sci. U.S.A. 111, 3460–3465. 10.1073/pnas.1319164111 PubMed DOI PMC
Vambutas V., Beattie D. S., Bittman R. (1984). Isolation of protein(s) containing chloride ion transport activity from thylakoid membranes. Arch. Biochem. Biophys. 232, 538–548. 10.1016/0003-9861(84)90571-X PubMed DOI
Vambutas V., Schechter S. (1983). Chloride ion transport and its inhibition in thylakoid membranes. Arch. Biochem. Biophys. 224, 442–448. 10.1016/0003-9861(83)90230-8 PubMed DOI
Vambutas V., Tamir H., Beattie D. S. (1994). Isolation and partial characterization of calcium-activated chloride ion channels from thylakoids. Arch. Biochem. Biophys. 312, 401–406. 10.1006/abbi.1994.1325 PubMed DOI
Vandermeulen D. L., Govindjee (1974). Relation of membrane structural-changes to energy spillover in oat and spinach-chloroplasts - use of fluorescence probes and light-scattering. Biochim. Biophys. Acta 368, 61–70. 10.1016/0005-2728(74)90097-8 PubMed DOI
Varkonyi Z., Nagy G., Lambrev P., Kiss A. Z., Szekely N., Rosta L., et al. . (2009). Effect of phosphorylation on the thermal and light stability of the thylakoid membranes. Photosyn. Res. 99, 161–171. 10.1007/s11120-008-9386-y PubMed DOI
Vener A. V. (2007). Environmentally modulated phosphorylation and dynamics of proteins in photosynthetic membranes. Biochim. Biophys. Acta Bioenerg. 1767, 449–457. 10.1016/j.bbabio.2006.11.007 PubMed DOI
Vener A. V., Harms A., Sussman M. R., Vierstra R. D. (2001). Mass spectrometric resolution of reversible protein phosphorylation in photosynthetic membranes of Arabidopsis thaliana. J. Biol. Chem. 276, 6959–6966. 10.1074/jbc.M009394200 PubMed DOI
Vredenberg W., Durchan M., Prasil O. (2009). Photochemical and photoelectrochemical quenching of chlorophyll fluorescence in photosystem II. Biochim. Biophys. Acta Bioenerg. 1787, 1468–1478. 10.1016/j.bbabio.2009.06.008 PubMed DOI
Vredenberg W., Durchan M., Prášil O. (2012). The analysis of PS II photochemical activity using single and multi-turnover excitations. J. Photochem. Photobiol. B 107, 45–54. 10.1016/j.jphotobiol.2011.11.009 PubMed DOI
Vredenberg W. J., Bulychev A. A. (2002). Photo-electrochemical control of photosystem II chlorophyll fluorescence in vivo. Bioelectrochemistry 57, 123–128. 10.1016/S1567-5394(02)00062-2 PubMed DOI
Walters R. G., Ruban A. V., Horton P. (1996). Identification of proton-active residues in a higher plant light-harvesting complex. Proc. Natl. Acad. Sci. U.S.A. 93, 14204–14209. 10.1073/pnas.93.24.14204 PubMed DOI PMC
Walz D., Schuldin S., Avron M. (1971). Photoreactions of chloroplasts in a glycine medium. Eur. J. Biochem. 22, 439–444. 10.1111/j.1432-1033.1971.tb01562.x PubMed DOI
Wollman F. A., Diner B. A. (1980). Cation control of fluorescence emission, light scatter, and membrane stacking in pigment mutants of Chlamydomonas Reinhardii. Arch. Biochem. Biophys. 201, 646–659. 10.1016/0003-9861(80)90555-X PubMed DOI
Wong D., Govindjee (1979). Antagonistic effects of mono-valent and divalent-cations on polarization of chlorophyll fluorescence in thylakoids and changes in excitation-energy transfer. FEBS Lett. 97, 373–377. 10.1016/0014-5793(79)80124-6 DOI
Wong D., Merkelo H., Govindjee (1979). Regulation of excitation transfer by cations - wavelength-resolved fluorescence lifetimes and intensities at 77-k in thylakoid membranes of pea-chloroplasts. FEBS Lett. 104, 223–226. 10.1016/0014-5793(79)80819-4 DOI
Wraight C. A., Crofts A. R. (1970). Energy-dependent quenching of chlorophyll-a fluorescence in isolated chloroplasts. Eur. J. Biochem. 17, 319–327. 10.1111/j.1432-1033.1970.tb01169.x PubMed DOI
Xiao F. G., Ji H. F., Shen L. (2012). Insights into the region responding to Delta pH change in major light harvesting complex. J. Photochem. Photobiol. B Biol. 111, 35–38. 10.1016/j.jphotobiol.2012.03.007 PubMed DOI
Xu H. X., Martinoia E., Szabo I. (2015). Organellar channels and transporters. Cell Calcium 58, 1–10. 10.1016/j.ceca.2015.02.006 PubMed DOI PMC
Yamakawa H., Fukushima Y., Itoh S., Heber U. (2012). Three different mechanisms of energy dissipation of a desiccation-tolerant moss serve one common purpose: to protect reaction centres against photo-oxidation. J. Exp. Bot. 63, 3765–3775. 10.1093/jxb/ers062 PubMed DOI PMC
Zaks J., Amarnath K., Sylak-Glassman E. J., Fleming G. R. (2013). Models and measurements of energy-dependent quenching. Photosyn. Res. 116, 389–409. 10.1007/s11120-013-9857-7 PubMed DOI PMC
Photosynthesis dynamics and regulation sensed in the frequency domain
Plasticity of Cyanobacterial Thylakoid Microdomains Under Variable Light Conditions
Photosynthesis: basics, history and modelling
Antenna proton sensitivity determines photosynthetic light harvesting strategy