On the relationship between the non-photochemical quenching of the chlorophyll fluorescence and the Photosystem II light harvesting efficiency. A repetitive flash fluorescence induction study
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print
Typ dokumentu časopisecké články
PubMed
16228337
DOI
10.1023/a:1011830015167
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Plants respond to excess light by a photoprotective reduction of the light harvesting efficiency. The notion that the non-photochemical quenching of chlorophyll fluorescence can be reliably used as an indicator of the photoprotection is put to a test here. The technique of the repetitive flash fluorescence induction is employed to measure in parallel the non-photochemical quenching of the maximum fluorescence and the functional cross-section (sigma(PS II)) which is a product of the photosystem II optical cross-section a(PS II) and of its photochemical yield Phi(PS II) (sigma (PS II) = a(PS II) Phi(PS II)). The quenching is measured for both, the maximum fluorescence found in a single-turnover flash (F(M) (ST)) and in a multiple turnover light pulse (F(M) (MT)). The experiment with the diatom Phaeodactylum tricornutum confirmed that, in line with the prevalent model, the PS II functional cross-section sigma (PS II) is reduced in high light and restored in the dark with kinetics and amplitude that are closely matching the changes of the F(M) (ST) and F(M) (MT) quenching. In contrast, a poor correlation between the light-induced changes in the PS II functional cross-section sigma (PS II) and the quenching of the multiple-turnover F(M) (MT) fluorescence was found in the green alga Scenedesmus quadricauda. The non-photochemical quenching in Scenedesmus quadricauda was further investigated using series of single-turnover flashes given with different frequencies. Several mechanisms that modulate the fluorescence emission in parallel to the Q(A) redox state and to the membrane energization were resolved and classified in relation to the light harvesting capacity of Photosystem II.
Zobrazit více v PubMed
Photosynth Res. 1992 Dec;34(3):375-85 PubMed
Photosynth Res. 1986 Jan;10(1-2):51-62 PubMed
Biochim Biophys Acta. 1973 Oct 19;325(1):138-48 PubMed
Biophys J. 1995 Jun;68(6):2474-92 PubMed
Plant Physiol. 1994 Oct;106(2):415-420 PubMed
Photosynth Res. 1986 Jan;10(3):303-8 PubMed
Biochemistry. 1997 Jan 28;36(4):749-55 PubMed
C R Hebd Seances Acad Sci. 1964 May 4;258:4622-5 PubMed
Plant Physiol. 1959 May;34(3):204-9 PubMed
Photosynth Res. 1994 Aug;41(2):357-70 PubMed
Biochim Biophys Acta. 1966 Nov 8;126(3):413-32 PubMed
Biochim Biophys Acta. 1998 Oct 5;1367(1-3):88-106 PubMed
Biochemistry. 1998 Aug 4;37(31):11046-54 PubMed
Biochim Biophys Acta. 1967 Jul 5;143(1):108-28 PubMed
Photochem Photobiol. 1970 Jun;11(6):457-75 PubMed
Biochim Biophys Acta. 1979 Dec 6;548(3):616-35 PubMed
Proc Natl Acad Sci U S A. 1972 Jun;69(6):1358-62 PubMed
FEBS Lett. 1996 Nov 18;397(2-3):131-5 PubMed
FEBS Lett. 1998 Jun 5;429(1):49-52 PubMed
Planta. 1999 Jul;209(1):126-35 PubMed
Photosynth Res. 1990 Dec;26(3):181-93 PubMed
Biochim Biophys Acta. 1981 Mar 12;635(1):38-52 PubMed
Biochemistry. 1997 Sep 23;36(38):11351-9 PubMed
Biochim Biophys Acta. 1999 May 26;1412(1):1-28 PubMed
Biophys J. 1969 Jan;9(1):1-21 PubMed
Plant Physiol. 1989 Jun;90(2):765-72 PubMed
Biophys J. 1991 Feb;59(2):397-408 PubMed
Role of Ions in the Regulation of Light-Harvesting