On the relationship between the non-photochemical quenching of the chlorophyll fluorescence and the Photosystem II light harvesting efficiency. A repetitive flash fluorescence induction study

. 2001 ; 68 (2) : 141-52.

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid16228337

Plants respond to excess light by a photoprotective reduction of the light harvesting efficiency. The notion that the non-photochemical quenching of chlorophyll fluorescence can be reliably used as an indicator of the photoprotection is put to a test here. The technique of the repetitive flash fluorescence induction is employed to measure in parallel the non-photochemical quenching of the maximum fluorescence and the functional cross-section (sigma(PS II)) which is a product of the photosystem II optical cross-section a(PS II) and of its photochemical yield Phi(PS II) (sigma (PS II) = a(PS II) Phi(PS II)). The quenching is measured for both, the maximum fluorescence found in a single-turnover flash (F(M) (ST)) and in a multiple turnover light pulse (F(M) (MT)). The experiment with the diatom Phaeodactylum tricornutum confirmed that, in line with the prevalent model, the PS II functional cross-section sigma (PS II) is reduced in high light and restored in the dark with kinetics and amplitude that are closely matching the changes of the F(M) (ST) and F(M) (MT) quenching. In contrast, a poor correlation between the light-induced changes in the PS II functional cross-section sigma (PS II) and the quenching of the multiple-turnover F(M) (MT) fluorescence was found in the green alga Scenedesmus quadricauda. The non-photochemical quenching in Scenedesmus quadricauda was further investigated using series of single-turnover flashes given with different frequencies. Several mechanisms that modulate the fluorescence emission in parallel to the Q(A) redox state and to the membrane energization were resolved and classified in relation to the light harvesting capacity of Photosystem II.

Zobrazit více v PubMed

Photosynth Res. 1992 Dec;34(3):375-85 PubMed

Photosynth Res. 1986 Jan;10(1-2):51-62 PubMed

Biochim Biophys Acta. 1973 Oct 19;325(1):138-48 PubMed

Biophys J. 1995 Jun;68(6):2474-92 PubMed

Plant Physiol. 1994 Oct;106(2):415-420 PubMed

Photosynth Res. 1986 Jan;10(3):303-8 PubMed

Biochemistry. 1997 Jan 28;36(4):749-55 PubMed

C R Hebd Seances Acad Sci. 1964 May 4;258:4622-5 PubMed

Plant Physiol. 1959 May;34(3):204-9 PubMed

Photosynth Res. 1994 Aug;41(2):357-70 PubMed

Biochim Biophys Acta. 1966 Nov 8;126(3):413-32 PubMed

Biochim Biophys Acta. 1998 Oct 5;1367(1-3):88-106 PubMed

Biochemistry. 1998 Aug 4;37(31):11046-54 PubMed

Biochim Biophys Acta. 1967 Jul 5;143(1):108-28 PubMed

Photochem Photobiol. 1970 Jun;11(6):457-75 PubMed

Biochim Biophys Acta. 1979 Dec 6;548(3):616-35 PubMed

Proc Natl Acad Sci U S A. 1972 Jun;69(6):1358-62 PubMed

FEBS Lett. 1996 Nov 18;397(2-3):131-5 PubMed

FEBS Lett. 1998 Jun 5;429(1):49-52 PubMed

Planta. 1999 Jul;209(1):126-35 PubMed

Photosynth Res. 1990 Dec;26(3):181-93 PubMed

Biochim Biophys Acta. 1981 Mar 12;635(1):38-52 PubMed

Biochemistry. 1997 Sep 23;36(38):11351-9 PubMed

Biochim Biophys Acta. 1999 May 26;1412(1):1-28 PubMed

Biophys J. 1969 Jan;9(1):1-21 PubMed

Plant Physiol. 1989 Jun;90(2):765-72 PubMed

Biophys J. 1991 Feb;59(2):397-408 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace