Use of lanthanides to alleviate the effects of metal ion-deficiency in Desmodesmus quadricauda (Sphaeropleales, Chlorophyta)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
25674079
PubMed Central
PMC4309186
DOI
10.3389/fmicb.2015.00002
Knihovny.cz E-zdroje
- Klíčová slova
- algae, calcium, manganese, metal requirements, rare earth elements, toxicity,
- Publikační typ
- časopisecké články MeSH
Lanthanides are biologically non-essential elements with wide applications in technology and industry. Their concentration as environmental contaminants is, therefore, increasing. Although non-essential, lanthanides have been proposed (and even used) to produce beneficial effects in plants, even though their mechanisms of action are unclear. Recently, it was suggested that they may replace essential elements. We tested the effect of low concentrations of lanthanides on the common freshwater microalga Desmodesmus quadricauda, grown under conditions of metal ion-deficiency (lower calcium or manganese concentrations). Our goal was to test if lanthanides can replace essential metals in their functions. Physiological stress was recorded by studying growth and photosynthetic activity using a pulse amplitude modulation (PAM) fluorimeter. We found that nutrient stress reduced parameters of growth and photosynthesis, such as maximal quantum yield, relative electron transport rate, photon capturing efficiency and light saturation irradiance. After adding low concentrations of five lanthanides, we confirmed that they can produce a stimulatory effect on microalgae, depending on the nutrient (metal) deprivation. In the case of a calcium deficit, the addition of lanthanides partly alleviated the adverse effects, probably by a partial substitution of the element. In contrast, with manganese deprivation (and at even lower concentrations), lanthanides enhanced the deleterious effect on cellular growth and photosynthetic competence. These results show that lanthanides can replace essential elements, but their effects on microalgae depend on stress and the nutritional state of the microalgae, raising the possibility of environmental impacts at even low concentrations.
Zobrazit více v PubMed
Adam M. S., Issa A. A. (2000). Effect of manganese and calcium deficiency on the growth and oxygen exchange of Scenedesmus intermedius cultured for successive generations. Folia Microbiol. 45, 353–358. 10.1007/BF02817561 PubMed DOI
Allen M. D., Kropat J., Tottey S., Del Campo J. A., Merchant S. S. (2007). Manganese deficiency in Chlamydomonas results in loss of photosystem II and MnSOD function, sensitivity to peroxides, and secondary phosphorus and iron deficiency. Plant Physiol. 143, 263–277. 10.1104/pp.106.088609 PubMed DOI PMC
Baker N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Ann. Rev. Plant Biol. 59, 89–113. 10.1146/annurev.arplant.59.032607.092759 PubMed DOI
Bakou A., Buser C., Dandulakis G., Brudvig G., Ghanotakis D. F. (1992). Calcium binding site(s) of photosystem II as probed by lanthanides. Biochim. Biophys. Acta 1099, 131–136.
Bakou A., Ghanotakis D. F. (1993). Substitution of lanthanides at the calcium site(s) in photosystem II affects electron transport from tyrosine Z to P680+. Biochim. Biophys. Acta 1141, 303–308 10.1016/0005-2728(93)90057-M DOI
Blaise C., Vasseur P. (2005). Algal microplate toxicity test. in Small-Scale Freshwater Toxicity Investigations, Toxicity test methods. Vol. 1, eds Blaise C., Jean-François F. (Dortrecht: Springer; ), 137–179.
Brand J. J., Becker D. W. (1984). Evidence for direct roles of calcium in photosynthesis. J. Bioenerg. Biomembr. 16, 239–249. 10.1007/BF00744278 PubMed DOI
Brand L. E., Sunda W. G., Guillard R. R. L. (1983). Limitation of marine phytoplankton reproductive rates by zinc, manganese, and iron. Limnol. Oceanogr. 28, 1182–1198 10.4319/lo.1983.28.6.1182 DOI
Brown P. H., Rathjen R. A. H., Graham D., Tribe D. E. (1990). Rare earth elements in biological systems. in Handbook on the Physics and Chemistry of Rare Earths, Vol. 13, eds Gschneidner K. A., Jr., Eyring L. (Amsterdam: Elsevier Science Publishers; ), 423–452.
Cao C., Sun S., Wang X., Liu W., Liang Y. (2011). Effects of manganese on the growth, photosystem II and SOD activity of the dinoflagellate Amphidinium sp. J. Appl. Phycol. 23, 1039–1043 10.1007/s10811-010-9637-0 DOI
Chen W. J., Gu Y. H., Zhao G. W., Tao Y., Luo J. P., Hu T. D. (2000). Effects of rare earth ions on activity of RuBPcase in tobacco. Plant Sci. 152, 145–151 10.1016/S0168-9452(99)00235-6 DOI
Constantopoulos G. (1970). Lipid metabolism of manganese-deficient algae. 1. Effect of manganese deficiency on the greening and the lipid composition of Euglena gracilis Z. Plant. Physiol. 45, 76–80. 10.1104/pp.45.1.76 PubMed DOI PMC
De la Fuente R. K. (1984). Role of calcium in the polar secretion of indoleacetic acid. Plant Physiol. 76, 342–346. 10.1104/pp.76.2.342 PubMed DOI PMC
Dvořáková-Hladká J. (1976). The effect of calcium on the growth of Chlorella and Scenedesmus. Biol. Plant. 18, 214–220. 10.1007/BF02922808 PubMed DOI
Eilers P. H. C., Peeters J. C. H. (1988). A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol. Model. 42, 199–215 10.1016/0304-3800(88)90057-9 DOI
Figueroa F. L., Jerez C. G., Korbee N. (2013). Use of in vivo chlorophyll fluorescence to estimate photosynthetic activity and biomass productivity in microalgae grown in different culture systems. Lat. Am. J. Aquat. Res. 41, 801–819 10.3856/vol41-issue5-fulltext-1 DOI
Figueroa F. L., Nygård C., Ekelund N., Gómez I. (2003). Photobiological characteristics and photosynthetic UV responses in two Ulva species (Chlorophyta) from southern Spain. J. Photochem. Photobiol. B Biol. 72, 35–44. 10.1016/j.jphotobiol.2003.09.002 PubMed DOI
Galon Y., Finkler A., Fromm H. (2010). Calcium-regulated transcription in plants. Mol. Plant. 3, 653–669. 10.1093/mp/ssq019 PubMed DOI
Ghanotakis D. F., Babcock G. T., Yocum C. F. (1985). Structure of the oxygen-evolving complex of photosystem II: calcium and lanthanum compete for sites on the oxidizing side of photosystem II which control the binding of water-soluble polypeptides and regulate the activity of the manganese complex. Biochim. Biophys. Acta 809, 173–180 10.1016/0005-2728(85)90060-X DOI
Giovanardi M., Baldisserotto C., Ferroni L., Longoni P., Cella R., Pancaldi S. (2014). Growth and lipid synthesis promotion in mixotrophic Neochloris oleoabundans (Chlorophyta) cultivated with glucose. Protoplasma 251, 115–125. 10.1007/s00709-013-0531-x PubMed DOI
Gong X., Hong M., Wang Y., Zhou M., Cai J., Liu C., et al. . (2011). Cerium relieves the inhibition of photosynthesis of maize caused by manganese deficiency. Biol. Trace Elem. Res. 141, 305–316. 10.1007/s12011-010-8716-z PubMed DOI
Hou X., Hou H. J. M. (2013). Roles of manganese in photosystem II dynamics to irradiations and temperatures. Front. Biol. 8, 312–322 10.1007/s11515-012-1214-2 DOI
Hsieh S. I., Castruita M., Malasarn D., Urzica E., Erde J., Page M. D., et al. . (2013). The proteome of copper, iron, zinc, and manganese micronutrient deficiency in Chlamydomonas reinhardtii. Mol. Cell Proteomics 12, 65–86. 10.1074/mcp.M112.021840 PubMed DOI PMC
Hu G., Fan Y., Zhang L., Yuan C., Wang J., Li W., et al. . (2013). Enhanced lipid productivity and photosynthesis efficiency in a Desmodesmus sp. mutant induced by heavy carbon ions. PLoS ONE 8:e60700. 10.1371/journal.pone.0060700 PubMed DOI PMC
Hu Q. H., Zheng S. P., Tang S. M., Guan L. (2001). Effects of Sm and Y on growth of Chlorella ellipsoidea. Agro Environ. Prot. (Chin.) 20, 398–404.
Hu Z. H., Richter H., Sparovek G., Schnug E. (2004). Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: a review. J. Plant Nutr. 27, 183–220 10.1081/PLN-120027555 DOI
Huang H., Chen L., Liu X. Q., Liu C., Cao W., Lu Y., et al. . (2008b). Absorption and transfer of light and photoreduction activities of spinach chloroplasts under calcium deficiency: promotion by cerium. Biol. Trace Elem. Res. 122, 157–167. 10.1007/s12011-007-8068-5 PubMed DOI
Huang H., Liu X. Q., Qu C. X., Liu C., Chen L., Hong F. S. (2008a). Influences of calcium deficiency and cerium on the conversion efficiency of light energy of spinach. Biometals 21, 553–561. 10.1007/s10534-008-9141-z PubMed DOI
Jin X., Chu Z., Yan F., Zeng Q. (2009). Effects of lanthanum(III) and EDTA on the growth and competition of Microcystis aeruginosa and Scenedesmus quadricauda. Limnologica 39, 86–93 10.1016/j.limno.2008.03.002 DOI
Jones L. A., Ricciardi A. (2005). Influence of physicochemical factors on the distribution and biomass of invasive mussels (Dreissena polymorpha and Dreissena bugensis) in the St. Lawrence River. Can. J. Fish Aquat. Sci. 62, 1953–1962 10.1139/f05-096 DOI
Karsten U., Lembcke S., Schumann R. (2007). The effects of ultraviolet radiation on photosynthetic performance, growth and sunscreen compounds in aeroterrestrial biofilm algae isolated from building facades. Planta 225, 991–1000. 10.1007/s00425-006-0406-x PubMed DOI
Kastori R. R., Maksimović I. V., Putnik-Delić M. I., Zeremski-Škorić T. M. (2010). Rare earth elements: yttrium and higher plants. Matica Srpska Proc. Nat. Sci. U.S.A. 118, 87–98 10.2298/ZMSPN1018087K DOI
Koblížek M., Kaftan D., Nedbal L. (2001). On the relationship between the non-photochemical quenching of the chlorophyll fluorescence and the photosystem II light harvesting efficiency. A repetitive flash fluorescence induction study. Photosynth. Res. 68, 141–152. 10.1023/A:1011830015167 PubMed DOI
Komenda J. (1998). Photosystem II photoinactivation and repair in Scenedesmus cells treated with herbicides DCMU and BNT and exposed to high irradiance. Photosynthetica 35, 477–480 10.1023/A:1006984906965 DOI
Kruk J., Burda K., Jemiola-Rzemińska M., Strzalka K. (2003). The 33kDa protein of photosystem II is a low-affinity calcium- and lanthanide-binding protein. Biochemistry 42, 14862–14867. 10.1021/bi0351413 PubMed DOI
Li J., Hong M., Yin X., Liu J. (2010). Effects of the accumulation of the rare earth elements on soil macrofauna community. J. Rare Earths 28, 957–964 10.1016/S1002-0721(09)60233-7 DOI
Li Z., Zhang Z., Yu M., Zhou Y., Zhao Y. (2011). Effects of lanthanum on calcium and magnesium contents and cytoplasmic streaming of internodal cells of Chara corallina. Biol. Trace Elem. Res. 143, 555–561. 10.1007/s12011-010-8854-3 PubMed DOI
Liu C., Cao W. Q., Lu Y., Huang H., Chen L., Liu X. Q., et al. (2009). Cerium under calcium deficiency - influence on the antioxidative defense system in spinach plants. Plant Soil 323, 285–294 10.1007/s11104-009-9937-9 DOI
Liu C., Pan B., Cao W. Q., Lu Y., Huang H., Chen L., et al. . (2008). Influences of calcium deficiency and cerium on growth of spinach plants. Biol. Trace Elem. Res. 121:266–275. 10.1007/s12011-007-8054-y PubMed DOI
Loell M., Reiher W., Felix-Henningsen P. (2011). Contents and bioavailability of rare earth elements in agricultural soils in Hesse (Germany). J. Plant Nutr. Soil Sci. 174, 644–654 10.1002/jpln.201000265 DOI
Mallick N., Mohn F. H. (2003). Use of chlorophyll fluorescence in metal-stress research: a case study with the green microalga Scenedesmus. Ecotox. Environ. Safe. 55, 64–69. 10.1016/S0147-6513(02)00122-7 PubMed DOI
Ni T., Wei Y., Diao W. (2004). Relation between neodymium and calcium in rape under Ca-deficiency. J. Rare Earths 22, 301–305.
Ono T. (2000). Effects of lanthanide substitution at Ca2+-site on the properties of the oxygen evolving center of photosystem II. J. Inorg. Biochem. 82, 85–91. 10.1016/S0162-0134(00)00144-6 PubMed DOI
Pakrasi H., Ogawa T., Bhattacharrya-Pakrasi M. (2001). Transport of metals: a key process in oxygenic photosynthesis, Chapter 14, in Regulation of Photosynthesis, eds Aro E. M., Andersson B. (Dortrecht: Kluwer Academic Publishers; ), 253–264.
Qu C. X., Gong X., Liu C., Hong M., Wang L., Hong F. S. (2012). Effects of manganese deficiency and added cerium on photochemical efficiency of maize chloroplasts. Biol. Trace Elem. Res. 146, 94–100. 10.1007/s12011-011-9218-3 PubMed DOI
Samorí G., Samorí C., Guerrini F., Pistocchin R. (2013). Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: part I. Water Res. 47, 791–801. 10.1016/j.watres.2012.11.006 PubMed DOI
Schreiber U., Endo T., Mi H. L., Asada K. (1995a). Quenching analysis of chlorophyll fluorescence by the saturation pulse method - particular aspects relating to the study of eukaryotic algae and cyanobacteria. Plant Cell Physiol. 36, 873–882.
Schreiber U., Hormann H., Neubauer C., Klughammer C. (1995b). Assessment of photosystem-II photochemical quantum yield by chlorophyll fluorescence quenching analysis. Aust. J. Plant Physiol. 22, 209–220. 10.1071/PP9950209 PubMed DOI
Schreiber U., Schliwa U., Bilger W. (1986). Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res. 10, 51–62. 10.1007/BF00024185 PubMed DOI
Squier T. C., Bigelow D. J., Fernandez-Belda F. J., de Meis L., Inesi G. (1990). Calcium and lanthanide binding in the sarcoplasmic reticulum ATPase. J. Biol. Chem. 265, 13713–13720. PubMed
Tai P., Zhao Q., Su D., Li P., Stagnitti F. (2010). Biological toxicity of lanthanide elements on algae. Chemosphere 80, 1031–1035. 10.1016/j.chemosphere.2010.05.030 PubMed DOI
Tyler G. (2004). Rare earth elements in soil and plant systems - A review. Plant Soil 267, 191–206 10.1007/s11104-005-4888-2 DOI
Underwood A. J. (1997). Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance. Cambridge: Cambridge University Press.
Vítová M., Bišová K., Hlavová M., Zachleder V., Rucki M., Čížková M. (2011). Glutathione peroxidase activity in the selenium-treated alga Scenedesmus quadricauda. Aquat. Toxicol. 102, 87–94. 10.1016/j.aquatox.2011.01.003 PubMed DOI
Wang K., Cheng Y., Yang X., Li R. (2003). Cell responses to lanthanides and potential pharmacological actions of lanthanides, in Metal ions in Biological Systems, The lanthanides and their interrelations with biosystems, Vol. 40, eds Sigel A., Sigel H. (New York; Basel: Marcel Dekker Inc.), 707–751. PubMed
Wang L. F., Ji H. B., Tian W. M. (2011). Photosystem 2 photochemistry and pigment composition of Dicranopteris dichotoma Bernh under different irradiances. Afr. J. Biotechnol. 10, 13453–13460 10.5897/AJB11.1886 DOI
Wei Y. Z., Zhou X. B. (2000). Effect of neodymium on physiological activities in oilseed rape during calcium starvation. J. Rare Earths 18, 57–61.
White S., Anandraj A., Bux F. (2011). PAM fluorometry as a tool to assess microalgal nutrient stress and monitor cellular neutral lipids. Bioresour. Technol. 102, 1675–1682. 10.1016/j.biortech.2010.09.097 PubMed DOI
Yachandra V. K., Yano J. (2011). Calcium in the oxygen-evolving complex: structural and mechanistic role determinated by X-ray spectroscopy. J. Photochem. Photobiol. B 104, 51–59. 10.1016/j.jphotobiol.2011.02.019 PubMed DOI PMC
Yin S., Ze Y., Liu C., Li N., Zhou M., Duan Y., et al. . (2009). Cerium relieves the inhibition of nitrogen metabolism of spinach caused by magnesium deficiency. Biol. Trace Elem. Res. 132, 247–258. 10.1007/s12011-009-8392-z PubMed DOI
Yocum C. F. (2008). The calcium and chloride requirements of the O2 evolving complex. Coord. Chem. Rev. 252, 296–305 10.1016/j.ccr.2007.08.010 DOI
Zachleder V., Šetlik I. (1982). Effect of irradiance on the course of RNA synthesis in the cell cycle of Scendesmus quadricauda. Biol. Plant. 24, 341–353 10.1007/BF02909100 DOI
Ze Y., Yin S., Ji Z., Luo L., Liu C., Hong F. S. (2009a). Influences of magnesium deficiency and cerium on antioxidant system of spinach chloroplasts. Biometals 22, 941–949. 10.1007/s10534-009-9246-z PubMed DOI
Ze Y., Zhou M., Luo L., Ji Z., Liu C., Yin S., et al. . (2009b). Effects of cerium on key enzymes of carbon assimilation of spinach under magnesium deficiency. Biol. Trace Elem. Res. 131, 154–164. 10.1007/s12011-009-8354-5 PubMed DOI
Zhao H., Zhou Q., Zhou M., Li C. X., Gong X., Liu C., et al. . (2012). Magnesium deficiency results in damage of nitrogen and carbon cross-talk of maize and improvement by cerium addition. Biol. Trace Elem. Res. 148, 102–109. 10.1007/s12011-012-9340-x PubMed DOI
Zhou M., Gong X., Wang Y., Liu C., Hong M., Wang L., et al. . (2011). Cerium relieves the inhibition of chlorophyll biosynthesis of maize caused by magnesium deficiency. Biol. Trace Elem. Res. 143, 468–477. 10.1007/s12011-010-8830-y PubMed DOI
Bio-mining of Lanthanides from Red Mud by Green Microalgae
Influencing fatty acid composition of yeasts by lanthanides