Use of lanthanides to alleviate the effects of metal ion-deficiency in Desmodesmus quadricauda (Sphaeropleales, Chlorophyta)

. 2015 ; 6 () : 2. [epub] 20150128

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid25674079

Lanthanides are biologically non-essential elements with wide applications in technology and industry. Their concentration as environmental contaminants is, therefore, increasing. Although non-essential, lanthanides have been proposed (and even used) to produce beneficial effects in plants, even though their mechanisms of action are unclear. Recently, it was suggested that they may replace essential elements. We tested the effect of low concentrations of lanthanides on the common freshwater microalga Desmodesmus quadricauda, grown under conditions of metal ion-deficiency (lower calcium or manganese concentrations). Our goal was to test if lanthanides can replace essential metals in their functions. Physiological stress was recorded by studying growth and photosynthetic activity using a pulse amplitude modulation (PAM) fluorimeter. We found that nutrient stress reduced parameters of growth and photosynthesis, such as maximal quantum yield, relative electron transport rate, photon capturing efficiency and light saturation irradiance. After adding low concentrations of five lanthanides, we confirmed that they can produce a stimulatory effect on microalgae, depending on the nutrient (metal) deprivation. In the case of a calcium deficit, the addition of lanthanides partly alleviated the adverse effects, probably by a partial substitution of the element. In contrast, with manganese deprivation (and at even lower concentrations), lanthanides enhanced the deleterious effect on cellular growth and photosynthetic competence. These results show that lanthanides can replace essential elements, but their effects on microalgae depend on stress and the nutritional state of the microalgae, raising the possibility of environmental impacts at even low concentrations.

Zobrazit více v PubMed

Adam M. S., Issa A. A. (2000). Effect of manganese and calcium deficiency on the growth and oxygen exchange of PubMed DOI

Allen M. D., Kropat J., Tottey S., Del Campo J. A., Merchant S. S. (2007). Manganese deficiency in PubMed DOI PMC

Baker N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis PubMed DOI

Bakou A., Buser C., Dandulakis G., Brudvig G., Ghanotakis D. F. (1992). Calcium binding site(s) of photosystem II as probed by lanthanides. Biochim. Biophys. Acta 1099, 131–136.

Bakou A., Ghanotakis D. F. (1993). Substitution of lanthanides at the calcium site(s) in photosystem II affects electron transport from tyrosine Z to P680 DOI

Blaise C., Vasseur P. (2005). Algal microplate toxicity test. in Small-Scale Freshwater Toxicity Investigations, Toxicity test methods. Vol. 1, eds Blaise C., Jean-François F. (Dortrecht: Springer; ), 137–179.

Brand J. J., Becker D. W. (1984). Evidence for direct roles of calcium in photosynthesis. J. Bioenerg. Biomembr. 16, 239–249. 10.1007/BF00744278 PubMed DOI

Brand L. E., Sunda W. G., Guillard R. R. L. (1983). Limitation of marine phytoplankton reproductive rates by zinc, manganese, and iron. Limnol. Oceanogr. 28, 1182–1198 10.4319/lo.1983.28.6.1182 DOI

Brown P. H., Rathjen R. A. H., Graham D., Tribe D. E. (1990). Rare earth elements in biological systems. in Handbook on the Physics and Chemistry of Rare Earths, Vol. 13, eds Gschneidner K. A., Jr., Eyring L. (Amsterdam: Elsevier Science Publishers; ), 423–452.

Cao C., Sun S., Wang X., Liu W., Liang Y. (2011). Effects of manganese on the growth, photosystem II and SOD activity of the dinoflagellate DOI

Chen W. J., Gu Y. H., Zhao G. W., Tao Y., Luo J. P., Hu T. D. (2000). Effects of rare earth ions on activity of RuBPcase in tobacco. Plant Sci. 152, 145–151 10.1016/S0168-9452(99)00235-6 DOI

Constantopoulos G. (1970). Lipid metabolism of manganese-deficient algae. 1. Effect of manganese deficiency on the greening and the lipid composition of PubMed DOI PMC

De la Fuente R. K. (1984). Role of calcium in the polar secretion of indoleacetic acid. Plant Physiol. 76, 342–346. 10.1104/pp.76.2.342 PubMed DOI PMC

Dvořáková-Hladká J. (1976). The effect of calcium on the growth of DOI

Eilers P. H. C., Peeters J. C. H. (1988). A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol. Model. 42, 199–215 10.1016/0304-3800(88)90057-9 DOI

Figueroa F. L., Jerez C. G., Korbee N. (2013). Use of DOI

Figueroa F. L., Nygård C., Ekelund N., Gómez I. (2003). Photobiological characteristics and photosynthetic UV responses in two PubMed DOI

Galon Y., Finkler A., Fromm H. (2010). Calcium-regulated transcription in plants. Mol. Plant. 3, 653–669. 10.1093/mp/ssq019 PubMed DOI

Ghanotakis D. F., Babcock G. T., Yocum C. F. (1985). Structure of the oxygen-evolving complex of photosystem II: calcium and lanthanum compete for sites on the oxidizing side of photosystem II which control the binding of water-soluble polypeptides and regulate the activity of the manganese complex. Biochim. Biophys. Acta 809, 173–180 10.1016/0005-2728(85)90060-X DOI

Giovanardi M., Baldisserotto C., Ferroni L., Longoni P., Cella R., Pancaldi S. (2014). Growth and lipid synthesis promotion in mixotrophic PubMed DOI

Gong X., Hong M., Wang Y., Zhou M., Cai J., Liu C., et al. (2011). Cerium relieves the inhibition of photosynthesis of maize caused by manganese deficiency. Biol. Trace Elem. Res. 141, 305–316. 10.1007/s12011-010-8716-z PubMed DOI

Hou X., Hou H. J. M. (2013). Roles of manganese in photosystem II dynamics to irradiations and temperatures. Front. Biol. 8, 312–322 10.1007/s11515-012-1214-2 DOI

Hsieh S. I., Castruita M., Malasarn D., Urzica E., Erde J., Page M. D., et al. (2013). The proteome of copper, iron, zinc, and manganese micronutrient deficiency in PubMed DOI PMC

Hu G., Fan Y., Zhang L., Yuan C., Wang J., Li W., et al. (2013). Enhanced lipid productivity and photosynthesis efficiency in a PubMed DOI PMC

Hu Q. H., Zheng S. P., Tang S. M., Guan L. (2001). Effects of Sm and Y on growth of

Hu Z. H., Richter H., Sparovek G., Schnug E. (2004). Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: a review. J. Plant Nutr. 27, 183–220 10.1081/PLN-120027555 DOI

Huang H., Chen L., Liu X. Q., Liu C., Cao W., Lu Y., et al. (2008b). Absorption and transfer of light and photoreduction activities of spinach chloroplasts under calcium deficiency: promotion by cerium. Biol. Trace Elem. Res. 122, 157–167. 10.1007/s12011-007-8068-5 PubMed DOI

Huang H., Liu X. Q., Qu C. X., Liu C., Chen L., Hong F. S. (2008a). Influences of calcium deficiency and cerium on the conversion efficiency of light energy of spinach. Biometals 21, 553–561. 10.1007/s10534-008-9141-z PubMed DOI

Jin X., Chu Z., Yan F., Zeng Q. (2009). Effects of lanthanum(III) and EDTA on the growth and competition of DOI

Jones L. A., Ricciardi A. (2005). Influence of physicochemical factors on the distribution and biomass of invasive mussels ( DOI

Karsten U., Lembcke S., Schumann R. (2007). The effects of ultraviolet radiation on photosynthetic performance, growth and sunscreen compounds in aeroterrestrial biofilm algae isolated from building facades. Planta 225, 991–1000. 10.1007/s00425-006-0406-x PubMed DOI

Kastori R. R., Maksimović I. V., Putnik-Delić M. I., Zeremski-Škorić T. M. (2010). Rare earth elements: yttrium and higher plants. Matica Srpska Proc. Nat. Sci. U.S.A. 118, 87–98 10.2298/ZMSPN1018087K DOI

Koblížek M., Kaftan D., Nedbal L. (2001). On the relationship between the non-photochemical quenching of the chlorophyll fluorescence and the photosystem II light harvesting efficiency. A repetitive flash fluorescence induction study. Photosynth. Res. 68, 141–152. 10.1023/A:1011830015167 PubMed DOI

Komenda J. (1998). Photosystem II photoinactivation and repair in DOI

Kruk J., Burda K., Jemiola-Rzemińska M., Strzalka K. (2003). The 33kDa protein of photosystem II is a low-affinity calcium- and lanthanide-binding protein. Biochemistry 42, 14862–14867. 10.1021/bi0351413 PubMed DOI

Li J., Hong M., Yin X., Liu J. (2010). Effects of the accumulation of the rare earth elements on soil macrofauna community. J. Rare Earths 28, 957–964 10.1016/S1002-0721(09)60233-7 DOI

Li Z., Zhang Z., Yu M., Zhou Y., Zhao Y. (2011). Effects of lanthanum on calcium and magnesium contents and cytoplasmic streaming of internodal cells of PubMed DOI

Liu C., Cao W. Q., Lu Y., Huang H., Chen L., Liu X. Q., et al. (2009). Cerium under calcium deficiency - influence on the antioxidative defense system in spinach plants. Plant Soil 323, 285–294 10.1007/s11104-009-9937-9 DOI

Liu C., Pan B., Cao W. Q., Lu Y., Huang H., Chen L., et al. (2008). Influences of calcium deficiency and cerium on growth of spinach plants. Biol. Trace Elem. Res. 121:266–275. 10.1007/s12011-007-8054-y PubMed DOI

Loell M., Reiher W., Felix-Henningsen P. (2011). Contents and bioavailability of rare earth elements in agricultural soils in Hesse (Germany). J. Plant Nutr. Soil Sci. 174, 644–654 10.1002/jpln.201000265 DOI

Mallick N., Mohn F. H. (2003). Use of chlorophyll fluorescence in metal-stress research: a case study with the green microalga PubMed DOI

Ni T., Wei Y., Diao W. (2004). Relation between neodymium and calcium in rape under Ca-deficiency. J. Rare Earths 22, 301–305.

Ono T. (2000). Effects of lanthanide substitution at Ca2+-site on the properties of the oxygen evolving center of photosystem II. J. Inorg. Biochem. 82, 85–91. 10.1016/S0162-0134(00)00144-6 PubMed DOI

Pakrasi H., Ogawa T., Bhattacharrya-Pakrasi M. (2001). Transport of metals: a key process in oxygenic photosynthesis, Chapter 14, in Regulation of Photosynthesis, eds Aro E. M., Andersson B. (Dortrecht: Kluwer Academic Publishers; ), 253–264.

Qu C. X., Gong X., Liu C., Hong M., Wang L., Hong F. S. (2012). Effects of manganese deficiency and added cerium on photochemical efficiency of maize chloroplasts. Biol. Trace Elem. Res. 146, 94–100. 10.1007/s12011-011-9218-3 PubMed DOI

Samorí G., Samorí C., Guerrini F., Pistocchin R. (2013). Growth and nitrogen removal capacity of PubMed DOI

Schreiber U., Endo T., Mi H. L., Asada K. (1995a). Quenching analysis of chlorophyll fluorescence by the saturation pulse method - particular aspects relating to the study of eukaryotic algae and cyanobacteria. Plant Cell Physiol. 36, 873–882.

Schreiber U., Hormann H., Neubauer C., Klughammer C. (1995b). Assessment of photosystem-II photochemical quantum yield by chlorophyll fluorescence quenching analysis. Aust. J. Plant Physiol. 22, 209–220. 10.1071/PP9950209 DOI

Schreiber U., Schliwa U., Bilger W. (1986). Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res. 10, 51–62. 10.1007/BF00024185 PubMed DOI

Squier T. C., Bigelow D. J., Fernandez-Belda F. J., de Meis L., Inesi G. (1990). Calcium and lanthanide binding in the sarcoplasmic reticulum ATPase. J. Biol. Chem. 265, 13713–13720. PubMed

Tai P., Zhao Q., Su D., Li P., Stagnitti F. (2010). Biological toxicity of lanthanide elements on algae. Chemosphere 80, 1031–1035. 10.1016/j.chemosphere.2010.05.030 PubMed DOI

Tyler G. (2004). Rare earth elements in soil and plant systems - A review. Plant Soil 267, 191–206 10.1007/s11104-005-4888-2 DOI

Underwood A. J. (1997). Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance. Cambridge: Cambridge University Press.

Vítová M., Bišová K., Hlavová M., Zachleder V., Rucki M., Čížková M. (2011). Glutathione peroxidase activity in the selenium-treated alga PubMed DOI

Wang K., Cheng Y., Yang X., Li R. (2003). Cell responses to lanthanides and potential pharmacological actions of lanthanides, in Metal ions in Biological Systems, The lanthanides and their interrelations with biosystems, Vol. 40, eds Sigel A., Sigel H. (New York; Basel: Marcel Dekker Inc.), 707–751. PubMed

Wang L. F., Ji H. B., Tian W. M. (2011). Photosystem 2 photochemistry and pigment composition of DOI

Wei Y. Z., Zhou X. B. (2000). Effect of neodymium on physiological activities in oilseed rape during calcium starvation. J. Rare Earths 18, 57–61.

White S., Anandraj A., Bux F. (2011). PAM fluorometry as a tool to assess microalgal nutrient stress and monitor cellular neutral lipids. Bioresour. Technol. 102, 1675–1682. 10.1016/j.biortech.2010.09.097 PubMed DOI

Yachandra V. K., Yano J. (2011). Calcium in the oxygen-evolving complex: structural and mechanistic role determinated by X-ray spectroscopy. J. Photochem. Photobiol. B 104, 51–59. 10.1016/j.jphotobiol.2011.02.019 PubMed DOI PMC

Yin S., Ze Y., Liu C., Li N., Zhou M., Duan Y., et al. (2009). Cerium relieves the inhibition of nitrogen metabolism of spinach caused by magnesium deficiency. Biol. Trace Elem. Res. 132, 247–258. 10.1007/s12011-009-8392-z PubMed DOI

Yocum C. F. (2008). The calcium and chloride requirements of the O DOI

Zachleder V., Šetlik I. (1982). Effect of irradiance on the course of RNA synthesis in the cell cycle of DOI

Ze Y., Yin S., Ji Z., Luo L., Liu C., Hong F. S. (2009a). Influences of magnesium deficiency and cerium on antioxidant system of spinach chloroplasts. Biometals 22, 941–949. 10.1007/s10534-009-9246-z PubMed DOI

Ze Y., Zhou M., Luo L., Ji Z., Liu C., Yin S., et al. (2009b). Effects of cerium on key enzymes of carbon assimilation of spinach under magnesium deficiency. Biol. Trace Elem. Res. 131, 154–164. 10.1007/s12011-009-8354-5 PubMed DOI

Zhao H., Zhou Q., Zhou M., Li C. X., Gong X., Liu C., et al. (2012). Magnesium deficiency results in damage of nitrogen and carbon cross-talk of maize and improvement by cerium addition. Biol. Trace Elem. Res. 148, 102–109. 10.1007/s12011-012-9340-x PubMed DOI

Zhou M., Gong X., Wang Y., Liu C., Hong M., Wang L., et al. (2011). Cerium relieves the inhibition of chlorophyll biosynthesis of maize caused by magnesium deficiency. Biol. Trace Elem. Res. 143, 468–477. 10.1007/s12011-010-8830-y PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...