Influencing fatty acid composition of yeasts by lanthanides

. 2016 Aug ; 32 (8) : 126. [epub] 20160623

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27339307
Odkazy

PubMed 27339307
DOI 10.1007/s11274-016-2093-5
PII: 10.1007/s11274-016-2093-5
Knihovny.cz E-zdroje

The growth of microorganisms is affected by cultivation conditions, concentration of carbon and nitrogen sources and the presence of trace elements. One of the new possibilities of influencing the production of cell mass or lipids is the use of lanthanides. Lanthanides are biologically non-essential elements with wide applications in technology and industry and their concentration as environmental contaminants is therefore increasing. Although non-essential, lanthanides have been proposed (and even used) to produce beneficial effects in plants but their mechanisms of action are unclear. Recently, it was suggested that they may replace essential elements or operate as potent blockers of Ca(2+) channels. We tested the effect of low concentrations of lanthanides on traditional biotechnologically useful yeast species (Kluyveromyces polysporus, Saccharomyces cerevisiae, Torulospora delbrueckii), and species capable of high accumulation of lipids (Rhodotorula glutinis, Trichosporon cutaneum, Candida sp., Yarrowia lipolytica). Low concentrations of lanthanum and monazite were conducive to an increase in cell mass and lipids and also higher production of palmitoleic acid, commonly used in cosmetics and medicine, and ω6-linoleic acid which is a precursor of thromboxanes, prostaglandins and leucotrienes.

Zobrazit více v PubMed

FEMS Yeast Res. 2015 Nov;15(7):null PubMed

Chemosphere. 2010 Nov;81(10):1320-7 PubMed

Appl Microbiol Biotechnol. 2013 Jul;97(14):6581-8 PubMed

Front Microbiol. 2015 Jan 28;6:2 PubMed

Environ Sci Technol. 2011 May 1;45(9):4096-101 PubMed

Folia Microbiol (Praha). 2016 Jul;61(4):329-35 PubMed

Bioresour Technol. 2004 Dec;95(3):287-91 PubMed

Bioresour Technol. 2015 Sep;192:726-34 PubMed

Bioresour Technol. 2013 Sep;143:18-24 PubMed

J Appl Microbiol. 2013 May;114(5):1357-68 PubMed

Plant J. 1993 Jan;3(1):83-110 PubMed

Appl Microbiol Biotechnol. 2004 Feb;63(6):635-46 PubMed

Bioresour Technol. 2011 May;102(10):6134-40 PubMed

Biochim Biophys Acta. 2001 Dec 1;1515(2):189-201 PubMed

Bioresour Technol. 2012 Jun;114:443-9 PubMed

Eur J Biochem. 2002 Aug;269(15):3821-30 PubMed

Appl Microbiol Biotechnol. 2011 May;90(4):1219-27 PubMed

Biotechnol Prog. 2012 May-Jun;28(3):715-22 PubMed

Bioresour Technol. 2011 Feb;102(3):2695-701 PubMed

Environ Sci Pollut Res Int. 2002;9(2):143-8 PubMed

Bioresour Technol. 2013 Sep;144:360-9 PubMed

Appl Microbiol Biotechnol. 2015 Feb;99(4):1911-22 PubMed

Can J Biochem Physiol. 1959 Aug;37(8):911-7 PubMed

J Plant Physiol. 2014 Jan 15;171(2):154-63 PubMed

Bioresour Technol. 2013 Jun;137:124-31 PubMed

Dalton Trans. 2008 Jun 7;(21):2832-8 PubMed

Biotechnol Adv. 2013 Mar-Apr;31(2):129-39 PubMed

J Dairy Sci. 2000 May;83(5):1016-27 PubMed

Sci Total Environ. 2002 Jul 3;293(1-3):97-105 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...