Functional Divergence of Microtubule-Associated TPX2 Family Members in Arabidopsis thaliana
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32235723
PubMed Central
PMC7139753
DOI
10.3390/ijms21062183
PII: ijms21062183
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, aurora kinase 1, in vivo co-localization, kinase assay, phylogeny, targeting protein for Xklp2,
- MeSH
- Arabidopsis cytologie genetika metabolismus MeSH
- kinasy Aurora metabolismus MeSH
- mikrotubuly metabolismus MeSH
- proteinové domény MeSH
- proteiny asociované s mikrotubuly analýza genetika metabolismus MeSH
- proteiny huseníčku analýza genetika metabolismus MeSH
- rostlinné geny MeSH
- sekvence aminokyselin MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kinasy Aurora MeSH
- proteiny asociované s mikrotubuly MeSH
- proteiny huseníčku MeSH
- TPX2 protein, Arabidopsis MeSH Prohlížeč
TPX2 (Targeting Protein for Xklp2) is an evolutionary conserved microtubule-associated protein important for microtubule nucleation and mitotic spindle assembly. The protein was described as an activator of the mitotic kinase Aurora A in humans and the Arabidopsis AURORA1 (AUR1) kinase. In contrast to animal genomes that encode only one TPX2 gene, higher plant genomes encode a family with several TPX2-LIKE gene members (TPXL). TPXL genes of Arabidopsis can be divided into two groups. Group A proteins (TPXL2, 3, 4, and 8) contain Aurora binding and TPX2_importin domains, while group B proteins (TPXL1, 5, 6, and 7) harbor an Xklp2 domain. Canonical TPX2 contains all the above-mentioned domains. We confirmed using in vitro kinase assays that the group A proteins contain a functional Aurora kinase binding domain. Transient expression of Arabidopsis TPX2-like proteins in Nicotiana benthamiana revealed preferential localization to microtubules and nuclei. Co-expression of AUR1 together with TPX2-like proteins changed the localization of AUR1, indicating that these proteins serve as targeting factors for Aurora kinases. Taken together, we visualize the various localizations of the TPX2-LIKE family in Arabidopsis as a proxy to their functional divergence and provide evidence of their role in the targeted regulation of AUR1 kinase activity.
Center for Plant Systems Biology VIB 9052 Ghent Belgium
Department of Plant Biotechnology and Bioinformatics Ghent University 9052 Ghent Belgium
Zobrazit více v PubMed
Willems E., Dedobbeleer M., Digregorio M., Lombard A., Lumapat P.N., Rogister B. The functional diversity of Aurora kinases: A comprehensive review. Cell Div. 2018;13:1–17. doi: 10.1186/s13008-018-0040-6. PubMed DOI PMC
Weimer A.K., Demidov D., Lermontova I., Beeckman T., Van Damme D. Aurora kinases throughout plant development. Trends Plant Sci. 2016;21:69–79. doi: 10.1016/j.tplants.2015.10.001. PubMed DOI
Demidov D. Identification and dynamics of two classes of aurora-like kinases in arabidopsis and other plants. Plant Cell. 2005;17:836–848. doi: 10.1105/tpc.104.029710. PubMed DOI PMC
Kawabe A., Matsunaga S., Nakagawa K., Kurihara D., Yoneda A., Hasezawa S., Uchiyama S., Fukui K. Characterization of plant Aurora kinases during mitosis. Plant Mol. Biol. 2005;58:1–13. doi: 10.1007/s11103-005-3454-x. PubMed DOI
Van Damme D., De Rybel B., Gudesblat G., Demidov D., Grunewald W., De Smet I., Houben A., Beeckman T., Russinova E. Arabidopsis α Aurora kinases function in formative cell division plane orientation. Plant Cell. 2011;23:4013–4024. doi: 10.1105/tpc.111.089565. PubMed DOI PMC
Bayliss R., Sardon T., Vernos I., Conti E. Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol. Cell. 2003;12:851–862. doi: 10.1016/S1097-2765(03)00392-7. PubMed DOI
Fu J., Bian M., Liu J., Jiang Q., Zhang C. A single amino acid change converts Aurora-A into Aurora-B-like kinase in terms of partner specificity and cellular function. Proc. Natl. Acad. Sci. USA. 2009;106:6939–6944. doi: 10.1073/pnas.0900833106. PubMed DOI PMC
Petrovská B., Cenklová V., Pochylová Ž., Kourová H., Doskočilová A., Plíhal O., Binarová L., Binarová P. Plant Aurora kinases play a role in maintenance of primary meristems and control of endoreduplication. New Phytol. 2012;193:590–604. doi: 10.1111/j.1469-8137.2011.03989.x. PubMed DOI
Demidov D., Lermontova I., Weiss O., Fuchs J., Rutten T., Kumke K., Sharbel T.F., Van Damme D., De Storme N., Geelen D., et al. Altered expression of Aurora kinases in Arabidopsis results in aneu- and polyploidization. Plant J. 2014;80:449–461. doi: 10.1111/tpj.12647. PubMed DOI
Boruc J., Weimer A.K., Stoppin-Mellet V., Mylle E., Kosetsu K., Cedeño C., Jaquinod M., Njo M., De Milde L., Tompa P., et al. Phosphorylation of MAP65-1 by Arabidopsis Aurora kinases is required for efficient cell cycle progression. Plant Physiol. 2017;173:582–599. doi: 10.1104/pp.16.01602. PubMed DOI PMC
Smertenko A.P., Chang H.-Y., Sonobe S., Fenyk S.I., Weingartner M., Bögre L., Hussey P.J. Control of the AtMAP65-1 interaction with microtubules through the cell cycle. J. Cell Sci. 2006;119:3227–3237. doi: 10.1242/jcs.03051. PubMed DOI
Gruss O.J., Wittmann M., Yokoyama H., Pepperkok R., Kufer T., Silljé H., Karsenti E., Mattaj I.W., Vernos I. Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells. Nat. Cell Biol. 2002;4:871–879. doi: 10.1038/ncb870. PubMed DOI
Gruss O.J., Vernos I. The mechanism of spindle assembly: Functions of Ran and its target TPX2. J. Cell Biol. 2004;166:949–955. doi: 10.1083/jcb.200312112. PubMed DOI PMC
Vos J.W., Pieuchot L., Evrard J.-L., Janski N., Bergdoll M., de Ronde D., Perez L.H., Sardon T., Vernos I., Schmit A.C. The plant TPX2 protein regulates prospindle assembly before nuclear envelope breakdown. Plant Cell. 2008;20:2783–2797. doi: 10.1105/tpc.107.056796. PubMed DOI PMC
Tomaštíková E., Demidov D., Jeřábková H., Binarová P., Houben A., Doležel J., Petrovská B. TPX2 protein of Arabidopsis activates Aurora kinase 1, but not Aurora kinase 3 in vitro. Plant Mol. Biol. Report. 2015;33 doi: 10.1007/s11105-015-0890-x. DOI
Petrovská B., Jeřábková H., Kohoutová L., Cenklová V., Pochylová Ž., Gelová Z., Kočárová G., Váchová L., Kurejová M., Tomaštíková E., et al. Overexpressed TPX2 causes ectopic formation of microtubular arrays in the nuclei of acentrosomal plant cells. J. Exp. Bot. 2013;64 doi: 10.1093/jxb/ert271. PubMed DOI PMC
Evrard J., Pieuchot L., Vos J.W., Vernos I., Schmit A. Plant TPX2 and related proteins. Plant Signal Behav. 2009;4:69–72. doi: 10.4161/psb.4.1.7409. PubMed DOI PMC
Boruc J., Deng X.-G., Mylle E., Besbrugge N., Van Durme M., Demidov D., Tomaštíková E.D., Tan T.R.C., Vandorpe M., Eeckhout D., et al. TPX2-LIKE PROTEIN 3 is the primary activator of α Aurora kinases and is essential for embryogenesis. Plant Physiol. 2019;180:1389–1405. doi: 10.1104/pp.18.01515. PubMed DOI PMC
Du P., Kumar M., Yao Y., Xie Q., Wang J., Zhang B., Gan S., Wang Y., Wu A.M. Genome-wide analysis of the TPX2 family proteins in Eucalyptus grandis. BMC Genom. 2016;17:967. doi: 10.1186/s12864-016-3303-0. PubMed DOI PMC
Huerta-Cepas J., Szklarczyk D., Forslund K., Cook H., Heller D., Walter M.C., Rattei T., Mende D.R., Sunagawa S., Kuhn M., et al. EGGNOG 4.5: A hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44:286–293. doi: 10.1093/nar/gkv1248. PubMed DOI PMC
Liu X., Qin T., Ma Q., Sun J., Liu Z., Yuan M., Mao T. Light-Regulated Hypocotyl Elongation Involves Proteasome-Dependent Degradation of the Microtubule Regulatory Protein WDL3 in Arabidopsis. Plant Cell. 2013;25:1740–1755. doi: 10.1105/tpc.113.112789. PubMed DOI PMC
Yuen C.Y.L., Pearlman R.S., Silo-Suh L., Hilson P., Carroll K.L., Masson P.H. WVD2 and WDL1 modulate helical organ growth and anisotropic cell expansion in Arabidopsis. Plant Physiol. 2014;131:493–506. doi: 10.1104/pp.015966. PubMed DOI PMC
Perrin R.M., Wang Y., Yuen C.Y.L., Will J., Masson P.H. WVD2 is a novel microtubule-associated protein in Arabidopsis thaliana. Plant J. 2007;49:961–971. doi: 10.1111/j.1365-313X.2006.03015.x. PubMed DOI
Bailey T.L., Boden M., Buske F.A., Frith M., Grant C.E., Clementi L., Ren J., Li W.W., Noble W.S. MEME Suite: Tools for motif discovery and searching. Nucleic Acids Res. 2009;37:202–208. doi: 10.1093/nar/gkp335. PubMed DOI PMC
Demidov D., Hesse S., Tewes A., Rutten T., Fuchs J., Karimi Ashtiyani R., Lein S., Fischer A., Reuter G., Houben A. Aurora1 phosphorylation activity on histone H3 and its cross-talk with other post-translational histone modifications in Arabidopsis. Plant J. 2009;59:221–230. doi: 10.1111/j.1365-313X.2009.03861.x. PubMed DOI
Klepikova A.V., Kasianov A.S., Gerasimov E.S., Logacheva M.D., Penin A.A. A high resolution map of the arabidopsis thaliana developmental transcriptome based on RNA-seq profiling. Plant J. 2016;88:1058–1070. doi: 10.1111/tpj.13312. PubMed DOI
Schatz C., Santarella R., Hoenger A., Karsenti E., Mattaj I.W., Gruss O.J., Carazo--Salas R.E. Importin alpha-regulated nucleation of microtubules by TPX2. EMBO J. 2003;22:2060–2070. doi: 10.1093/emboj/cdg195. PubMed DOI PMC
Neumayer G., Nguyen M.D. TPX2 impacts acetylation of histone H4 at lysine16: Implications for DNA damage response. PLoS ONE. 2014;9:1–9. doi: 10.1371/journal.pone.0110994. PubMed DOI PMC
Neumayer G., Belzil C., Gruss O.J., Nguyen M.D. TPX2: Of spindle assembly, DNA damage response, and cancer. Cell Mol. Life Sci. 2014;71:3027–3047. doi: 10.1007/s00018-014-1582-7. PubMed DOI PMC
Yamada M., Goshima G. Mitotic spindle assembly in land plants: Molecules and mechanisms. Biology. 2017;6:6. doi: 10.3390/biology6010006. PubMed DOI PMC
Gicking A.M., Swentowsky K.W., Dawe R.K., Qiu W. Functional diversification of the kinesin-14 family in land plants. FEBS Lett. 2018;592:1918–1928. doi: 10.1002/1873-3468.13094. PubMed DOI
Zhu C., Dixit R. Functions of the Arabidopsis kinesin superfamily of microtubule-based motor proteins. Protoplasma. 2012;249:887–899. doi: 10.1007/s00709-011-0343-9. PubMed DOI
Takagi M., Sakamoto T., Suzuki R., Nemoto K., Obayashi T., Hirakawa T., Matsunaga T.M., Kurihara D., Nariai Y., Urano T., et al. Plant Aurora kinases interact with and phosphorylate transcription factors. J. Plant Res. 2016;129:1165–1178. doi: 10.1007/s10265-016-0860-x. PubMed DOI
Demidov D., Heckmann S., Weiss O., Rutten T., Dvořák Tomaštíková E., Kuhlmann M., Patrick Scholl P., Municio C.M., Lermontova I., Houben A. Deregulated Phosphorylation of CENH3 at Ser65 Affects the Development of Floral Meristems in Arabidopsis thaliana. Front Plant Sci. 2019;10:928. doi: 10.3389/fpls.2019.00928. PubMed DOI PMC
Kufer T.A., Silljé H.H.W., Körner R., Gruss O.J., Meraldi P., Nigg E.A. Human TPX2 is required for targeting aurora-a kinase to the spindle. J. Cell Biol. 2002;158:617–623. doi: 10.1083/jcb.200204155. PubMed DOI PMC
Bird A.W., Hyman A.A. Building a spindle of the correct length in human cells requires the interaction between TPX2 and Aurora A. J. Cell Biol. 2008;182:289–300. doi: 10.1083/jcb.200802005. PubMed DOI PMC
Iyer J., Tsai M.Y. A novel role for TPX2 as a scaffold and co-activator protein of the Chromosomal Passenger Complex. Cell Signal. 2012;24:1677–1689. doi: 10.1016/j.cellsig.2012.04.014. PubMed DOI PMC
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Finn R.D., Tate J., Mistry J., Coggill P.C., Sammut S.J., Hotz H.-R. The Pfam protein families database. Nucleic Acids Res. 2008;36:281–288. doi: 10.1093/nar/gkm960. PubMed DOI PMC
Letunic I., Doerks T., Bork P. SMART 7: Recent updates to the protein domain annotation resource. Nucleic Acids Res. 2011:1–4. doi: 10.1093/nar/gkr931. PubMed DOI PMC
Edgar R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Miller M.A. Creating the CIPRES Science gateway; Proceedings of the 2010 Gateway Computing Environments Workshop (GCE); New Orleans, LA, USA. 14 November 2010; pp. 1–7.
Hoang D.T., Chernomor O., von Haeseler A., Minh B.Q., Vinh L.S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular biology and evolution. Mol. Biol. Evol. 2018;35:518–522. doi: 10.1093/molbev/msx281. PubMed DOI PMC
IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC
Conesa A., Madrigal P., Tarazona S., Gomez-Cabrero D., Cervera A., McPherson A., Szcześniak M.W., Gaffney D.J., Elo L.L., Zhang X., et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17 doi: 10.1186/s13059-016-0881-8. PubMed DOI PMC
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2017. [(accessed on 9 February 2019)]. Available online: https://www.R-project.org.
Tomaštíková E., Cenklová V., Kohoutová L., Petrovská B., Váchová L., Halada P., Kočárová G., Binarová P. Interactions of an Arabidopsis RanBPM homologue with LisH-CTLH domain proteins revealed high conservation of CTLH complexes in eukaryotes. BMC Plant Biol. 2012;12 doi: 10.1186/1471-2229-12-83. PubMed DOI PMC
Phan H.T., Conrad U. Vaccine Technologies for Veterinary Viral Diseases. Volume 1349. Humana Press; New York, NY, USA: 2016. pp. 35–47. DOI