Fullerene-Doped Poly(ionic liquids) as Small Molecular Gas Sensors-Control of Intermolecular Interactions
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
39829479
PubMed Central
PMC11740104
DOI
10.1021/acsomega.4c08941
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Here, we investigate the interactions between five representative gaseous analytes and two poly(ionic liquids) (PILs) based on the sulfopropyl acrylate polyanion in combination with the alkylphosphonium cations, P4,4,4,4 and P4,4,4,8, and their nanocomposites with fullerenes (C60, C70) to reveal the potential of PILs as sensitive layers for gas sensors. The gaseous analytes were chosen based on their molecular size (all of them containing two carbon atoms) and variation of functional groups: alcohol (ethanol), nitrile (acetonitrile), aldehyde (acetaldehyde), halogenated alkane (bromoethane), and carboxylic acid (acetic acid). The six variations of PILs-P4,4,4,4SPA (1), P4,4,4,4SPA + C60 (1 + C60), P4,4,4,4SPA + C70 (1 + C70), and P4,4,4,8SPA (2), P4,4,4,8SPA + C60 (2 + C60), P4,4,4,8SPA + C70 (2 + C70)-were characterized by UV-vis and Raman spectroscopy, and their interactions with each gaseous analyte were studied using electrochemical impedance spectroscopy. Exposure of all PIL samples to acetaldehyde, bromoethane, and ethanol leads to a decrease in the diffusion coefficient, while exposure to acetic acid reveals an increase. Fullerene-doping significantly enhances the response to the analyte. Semiempirical quantum mechanical xTB-GFN2 calculations revealed that hydrogen bonding and proton transfer events play an important role during the detection process.
See more in PubMed
Watanabe M.; Thomas M. L.; Zhang S.; Ueno K.; Yasuda T.; Dokko K. Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices. Chem. Rev. 2017, 117 (10), 7190–7239. 10.1021/acs.chemrev.6b00504. PubMed DOI
Forsyth M.; Porcarelli L.; Wang X.; Goujon N.; Mecerreyes D. Innovative Electrolytes Based on Ionic Liquids and Polymers for Next-Generation Solid-State Batteries. Acc. Chem. Res. 2019, 52 (3), 686–694. 10.1021/acs.accounts.8b00566. PubMed DOI
Yi M.; Wang M.; Wang Y.; Wang Y.; Chang J.; Kheirabad A. K.; He H.; Yuan J.; Zhang M. Poly(Ionic Liquid)-Armored MXene Membrane: Interlayer Engineering for Facilitated Water Transport. Angew. Chem., Int. Ed. 2022, 61 (27), e20220251510.1002/anie.202202515. PubMed DOI PMC
Takahashi T.; Yoshida T.; Tanaka M.; Ichikawa T.; Ohno H.; Nakamura N. Control of Phase Transition Temperature of Thermoresponsive Poly(Ionic Liquid) Gels and Application to a Water Purification System Using These Gels with Polydopamine. Sep. Purif. Technol. 2024, 337, 126433.10.1016/j.seppur.2024.126433. DOI
Hernández G.; Işik M.; Mantione D.; Pendashteh A.; Navalpotro P.; Shanmukaraj D.; Marcilla R.; Mecerreyes D. Redox-Active Poly(Ionic Liquid)s as Active Materials for Energy Storage Applications. J. Mater. Chem. A 2017, 5 (31), 16231–16240. 10.1039/C6TA10056B. DOI
Miao L.; Song Z.; Zhu D.; Li L.; Gan L.; Liu M. Ionic Liquids for Supercapacitive Energy Storage: A Mini-Review. Energy Fuels 2021, 35 (10), 8443–8455. 10.1021/acs.energyfuels.1c00321. DOI
Gao Y.-R.; Cao J.-F.; Shu Y.; Wang J.-H. Research Progress of Ionic Liquids-Based Gels in Energy Storage, Sensors and Antibacterial. Green Chem. Eng. 2021, 2 (4), 368–383. 10.1016/j.gce.2021.07.012. DOI
Fang X.; Yang L.; Dai Z.; Cong D.; Zheng D.; Yu T.; Tu R.; Zhai S.; Yang J.; Song F.; et al. Poly(ionic liquid)s for Photo-Driven CO 2 Cycloaddition: Electron Donor–Acceptor Segments Matter. Adv. Sci. 2023, 10 (8), e220668710.1002/advs.202206687. PubMed DOI PMC
Nikfarjam N.; Ghomi M.; Agarwal T.; Hassanpour M.; Sharifi E.; Khorsandi D.; Ali Khan M.; Rossi F.; Rossetti A.; Nazarzadeh Zare E.; et al. Antimicrobial Ionic Liquid-Based Materials for Biomedical Applications. Adv. Funct. Mater. 2021, 31 (42), 2104148.10.1002/adfm.202104148. DOI
Zheng Z.; Xu Q.; Guo J.; Qin J.; Mao H.; Wang B.; Yan F. Structure–Antibacterial Activity Relationships of Imidazolium-Type Ionic Liquid Monomers, Poly(Ionic Liquids) and Poly(Ionic Liquid) Membranes: Effect of Alkyl Chain Length and Cations. ACS Appl. Mater. Interfaces 2016, 8 (20), 12684–12692. 10.1021/acsami.6b03391. PubMed DOI
Miao L.; Song Z.; Zhu D.; Li L.; Gan L.; Liu M. Recent Advances in Carbon-Based Supercapacitors. Mater. Adv. 2020, 1 (5), 945–966. 10.1039/D0MA00384K. DOI
Li L.; Meng J.; Zhang M.; Liu T.; Zhang C. Recent Advances in Conductive Polymer Hydrogel Composites and Nanocomposites for Flexible Electrochemical Supercapacitors. Chem. Commun. 2021, 58 (2), 185–207. 10.1039/D1CC05526G. PubMed DOI
Sun L.; Zhuo K.; Chen Y.; Du Q.; Zhang S.; Wang J. Ionic Liquid-Based Redox Active Electrolytes for Supercapacitors. Adv. Funct. Mater. 2022, 32 (27), 2203611.10.1002/adfm.202203611. DOI
Khorsandi D.; Zarepour A.; Rezazadeh I.; Ghomi M.; Ghanbari R.; Zarrabi A.; Esfahani F. T.; Mojahed N.; Baghayeri M.; Zare E. N.; et al. Ionic Liquid-based Materials for Electrochemical Biosensing. Clinical Translational Dis. 2022, 2 (3), e12710.1002/ctd2.127. DOI
Muginova S. V.; Myasnikova D. A.; Kazarian S. G.; Shekhovtsova T. N. Applications of Ionic Liquids for the Development of Optical Chemical Sensors and Biosensors. Anal. Sci. 2017, 33 (3), 261–265. 10.2116/analsci.33.261. PubMed DOI
Jiang Y.; Zhao Y.; Liang L.; Zhang X.; Sun J. Imidazolium-Based Poly(Ionic Liquid)s@MIL-101 for CO2 Adsorption and Subsequent Catalytic Cycloaddition without Additional Cocatalyst and Solvent. N. J. Chem. 2022, 46 (5), 2309–2319. 10.1039/D1NJ05358B. DOI
Lepre L. F.; Andre D.; Denis-Quanquin S.; Gautier A.; Pádua A. A. H.; Costa Gomes M. Ionic Liquids Can Enable the Recycling of Fluorinated Greenhouse Gases. ACS Sustainable Chem. Eng. 2019, 7 (19), 16900–16906. 10.1021/acssuschemeng.9b04214. DOI
Bernard F. L.; Dos Santos L. M.; Schwab M. B.; Polesso B. B.; Do Nascimento J. F.; Einloft S. Polyurethane-based Poly (Ionic Liquid)s for CO2 Removal from Natural Gas. J. Appl. Polym. Sci. 2019, 136 (20), 47536.10.1002/app.47536. DOI
Li N.; Qu R.; Han X.; Lin W.; Zhang H.; Zhang Z. J. The Counterion Effect of Imidazolium-Type Poly(Ionic Liquid) Brushes on Carbon Dioxide Adsorption. ChemPluschem 2019, 84 (3), 281–288. 10.1002/cplu.201800636. PubMed DOI
Al-Sodies S.; Asiri A. M.; Khan A.; Alamry K. A.; Hussein M. A. Recent Exploiting of Poly(Ionic Liquid)s in Sensing Applications. Eur. Poly. J. 2024, 205, 112719.10.1016/j.eurpolymj.2023.112719. DOI
Willa C.; Yuan J.; Niederberger M.; Koziej D. When Nanoparticles Meet Poly(Ionic Liquid)s: Chemoresistive CO2 Sensing at Room Temperature. Adv. Funct. Mater. 2015, 25 (17), 2537–2542. 10.1002/adfm.201500314. DOI
Mineo P. G.; Livoti L.; Giannetto M.; Gulino A.; Lo Schiavo S.; Cardiano P. Very Fast CO2 Response and Hydrophobic Properties of Novel Poly(Ionic Liquid)s. J. Mater. Chem. 2009, 19 (46), 8861.10.1039/b912379b. DOI
Li Y.; Li G.; Wang X.; Zhu Z.; Ma H.; Zhang T.; Jin J. Poly(Ionic Liquid)-Wrapped Single-Walled Carbon Nanotubes for Sub-Ppb Detection of CO2. Chem. Commun. 2012, 48 (66), 8222.10.1039/c2cc33365a. PubMed DOI
Smith N. L.; Hong Z.; Asher S. A. Responsive Ionic Liquid–Polymer 2D Photonic Crystal Gas Sensors. Analyst 2014, 139 (24), 6379–6386. 10.1039/C4AN01485E. PubMed DOI
Yu Y.; Ma Z.; Miao X.; Cui Y.; Song Y.; Liu S.; Fei T.; Zhang T. Humidity Sensors Based on Cross-Linked Poly(Ionic Liquid)s for Low Humidity Sensing. Sens. Actuators, B 2024, 399, 134840.10.1016/j.snb.2023.134840. DOI
Luo L.; Li J.; Chen X.; Cao X.; Liu Y.; Wu Z.; Luo X.; Wang C. Superhigh and Reversible NH3 Uptake of Cobaltous Thiocyanate Functionalized Porous Poly Ionic Liquids through Competitive and Cooperative Interactions. Chem. Eng. J. 2022, 427, 131638.10.1016/j.cej.2021.131638. DOI
Kuberský P.; Syrový T.; Hamáček A.; Nešpůrek S.; Syrová L. Towards a Fully Printed Electrochemical NO2 Sensor on a Flexible Substrate Using Ionic Liquid Based Polymer Electrolyte. Sens. Actuators, B 2015, 209, 1084–1090. 10.1016/j.snb.2014.12.116. DOI
Hou Z.; Huang T.; Cai C.; Resheed T.; Yu C.; Zhou Y.; Yan D. Polymer Vesicle Sensor through the Self-Assembly of Hyperbranched Polymeric Ionic Liquids for the Detection of SO2 Derivatives. Chin. J. Polym. Sci. 2017, 35 (5), 602–610. 10.1007/s10118-017-1921-x. DOI
Regmi B. P.; Adhikari P. L.; Dangi B. B. Ionic Liquid-Based Quartz Crystal Microbalance Sensors for Organic Vapors: A Tutorial Review. Chemosensors 2021, 9 (8), 194.10.3390/chemosensors9080194. DOI
Marešová E.; Tomeček D.; Fitl P.; Vlček J.; Novotný M.; Fišer L.; Havlová Š.; Hozák P.; Tudor A.; Glennon T. Textile Chemiresistors with Sensitive Layers Based on Polymer Ionic Liquids: Applicability for Detection of Toxic Gases and Chemical Warfare Agents. Sens. Actuators, B 2018, 266, 830–840. 10.1016/j.snb.2018.03.157. DOI
Jaaniso R.; Tan O. K.. Semiconductor Gas Sensors, 2nd ed.; Woodhead Publishing, 2019.
Avila J.; Červinka C.; Dugas P.-Y.; Pádua A. A. H.; Costa Gomes M. Porous Ionic Liquids: Structure, Stability, and Gas Absorption Mechanisms. Adv. Mater. Interface 2021, 8 (9), 2001982.10.1002/admi.202001982. DOI
Philippi F.; Goloviznina K.; Gong Z.; Gehrke S.; Kirchner B.; Pádua A. A. H.; Hunt P. A. Charge Transfer and Polarisability in Ionic Liquids: A Case Study. Phys. Chem. Chem. Phys. 2022, 24 (5), 3144–3162. 10.1039/D1CP04592J. PubMed DOI
Paul R.; Dai L. Interfacial Aspects of Carbon Composites. Compos. Interfaces 2018, 25 (5–7), 539–605. 10.1080/09276440.2018.1439632. DOI
Ehsani M.; Rahimi P.; Joseph Y. Structure–Function Relationships of Nanocarbon/Polymer Composites for Chemiresistive Sensing: A Review. Sensors 2021, 21 (9), 3291.10.3390/s21093291. PubMed DOI PMC
Nomizu D.; Tsuchida Y.; Matsumiya M.; Tsunashima K. Solvation Structure and Thermodynamics for Lanthanide Complexes in Phosphonium-Based Ionic Liquid Evaluated by Raman Spectroscopy and Density Functional Theory. J. Mol. Liq. 2020, 318, 114008.10.1016/j.molliq.2020.114008. DOI
Andrievsky G. V.; Klochkov V. K.; Bordyuh A. B.; Dovbeshko G. I. Comparative Analysis of Two Aqueous-Colloidal Solutions of C60 Fullerene with Help of FTIR Reflectance and UV-Vis Spectroscopy. Chem. Phys. Lett. 2002, 364 (1–2), 8–17. 10.1016/S0009-2614(02)01305-2. DOI
Catalán J. Towards the Gas-Phase UV-VIS Absorption Spectrum of C60. Chem. Phys. Lett. 1994, 223 (3), 159–161. 10.1016/0009-2614(94)00448-X. DOI
Catalán J. Towards the Gas-Phase UV-VIS Absorption Spectrum of C70. Some Comments on Its O-O Component. Chem. Phys. Lett. 1994, 228 (1–3), 122–124. 10.1016/0009-2614(94)00907-4. DOI
Lange U.; Mirsky V. M. Chemiresistors Based on Conducting Polymers: A Review on Measurement Techniques. Anal. Chim. Acta 2011, 687 (2), 105–113. 10.1016/j.aca.2010.11.030. PubMed DOI
Myslík V.; Vysloužil F.; Vrňata M.; Rozehnal Z.; Jelínek M.; Fryček R.; Kovanda M. Phase Ac-Sensitivity of Oxidic and Acetylacetonic Gas Sensors. Sens. Actuators, B 2003, 89 (1–2), 205–211. 10.1016/S0925-4005(02)00466-5. DOI
Hussain G.; Silvester D. S. Detection of Sub-Ppm Concentrations of Ammonia in an Ionic Liquid: Enhanced Current Density Using “Filled” Recessed Microarrays. Anal. Chem. 2016, 88 (24), 12453–12460. 10.1021/acs.analchem.6b03824. PubMed DOI
Kuberský P.; Navrátil J.; Syrový T.; Sedlák P.; Nešpůrek S.; Hamáček A. An Electrochemical Amperometric Ethylene Sensor with Solid Polymer Electrolyte Based on Ionic Liquid. Sensors 2021, 21 (3), 711.10.3390/s21030711. PubMed DOI PMC
Gondosiswanto R.; Hibbert D. B.; Fang Y.; Zhao C. Ionic Liquid Microstrips Impregnated with Magnetic Nanostirrers for Sensitive Gas Sensors. ACS Appl. Mater. Interfaces 2017, 9 (49), 43377–43385. 10.1021/acsami.7b14657. PubMed DOI
Kuberský P.; Altšmíd J.; Hamáček A.; Nešpůrek S.; Zmeškal O. An Electrochemical NO2 Sensor Based on Ionic Liquid: Influence of the Morphology of the Polymer Electrolyte on Sensor Sensitivity. Sensors 2015, 15 (11), 28421–28434. 10.3390/s151128421. PubMed DOI PMC
Bannwarth C.; Ehlert S.; Grimme S. GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput. 2019, 15 (3), 1652–1671. 10.1021/acs.jctc.8b01176. PubMed DOI
Pracht P.; Bohle F.; Grimme S. Automated Exploration of the Low-Energy Chemical Space with Fast Quantum Chemical Methods. Phys. Chem. Chem. Phys. 2020, 22 (14), 7169–7192. 10.1039/C9CP06869D. PubMed DOI
Martins S.; Fedorov A.; Afonso C. A. M.; Baleizão C.; Berberan-Santos M. N. Fluorescence of Fullerene C70 in Ionic Liquids. Chem. Phys. Lett. 2010, 497 (1–3), 43–47. 10.1016/j.cplett.2010.07.076. DOI
Haynes W. M.CRC Handbook of Chemistry and Physics; CRC Press, 2014.
Thermophysical Properties of Chemicals and Hydrocarbons. Yaws C. L.William Andrew Publishing: Norwich, NY, 2009; pp. 1-95.
Walsh A. D. The Dependence of the Properties of Carbonyl Compounds upon Polarity. Trans. Faraday Soc. 1947, 43, 158.10.1039/tf9474300158. DOI
Reichardt C. Solvatochromic Dyes as Solvent Polarity Indicators. Chem. Rev. 1994, 94 (8), 2319–2358. 10.1021/cr00032a005. DOI