An Electrochemical NO₂ Sensor Based on Ionic Liquid: Influence of the Morphology of the Polymer Electrolyte on Sensor Sensitivity

. 2015 Nov 11 ; 15 (11) : 28421-34. [epub] 20151111

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid26569248

A systematic study was carried out to investigate the effect of ionic liquid in solid polymer electrolyte (SPE) and its layer morphology on the characteristics of an electrochemical amperometric nitrogen dioxide sensor. Five different ionic liquids were immobilized into a solid polymer electrolyte and key sensor parameters (sensitivity, response/recovery times, hysteresis and limit of detection) were characterized. The study revealed that the sensor based on 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][N(Tf)2]) showed the best sensitivity, fast response/recovery times, and low sensor response hysteresis. The working electrode, deposited from water-based carbon nanotube ink, was prepared by aerosol-jet printing technology. It was observed that the thermal treatment and crystallinity of poly(vinylidene fluoride) (PVDF) in the solid polymer electrolyte influenced the sensitivity. Picture analysis of the morphology of the SPE layer based on [EMIM][N(Tf)2] ionic liquid treated under different conditions suggests that the sensor sensitivity strongly depends on the fractal dimension of PVDF spherical objects in SPE. Their deformation, e.g., due to crowding, leads to a decrease in sensor sensitivity.

Zobrazit více v PubMed

Ohno H. In: Electrochemical Aspects of Ionic Liquids. Ohno H., editor. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2005.

Wei D., Ivaska A. Applications of ionic liquids in electrochemical sensors. Anal. Chim. Acta. 2008;607:126–135. doi: 10.1016/j.aca.2007.12.011. PubMed DOI

Barrosse-Antle L.E., Bond A.M., Compton R.G., O’Mahony A.M., Rogers E.I., Silvester D.S. Voltammetry in room temperature ionic liquids: Comparisons and contrasts with conventional electrochemical solvents. Chem.-Asian J. 2010;5:202–230. doi: 10.1002/asia.200900191. PubMed DOI

Galiński M., Lewandowski A., Stępniak I. Ionic liquids as electrolytes. Electrochim. Acta. 2006;51:5567–5580. doi: 10.1016/j.electacta.2006.03.016. DOI

Freemantle M. An Introduction to Ionic Liquids. 1st ed. The Royal Society of Chemistry; Cambridge, UK: 2010.

Armand M., Endres F., MacFarlane D.R., Ohno H., Scrosati B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 2009;8:621–629. doi: 10.1038/nmat2448. PubMed DOI

Díaz M., Ortiz A., Ortiz I. Progress in the use of ionic liquids as electrolyte membranes in fuel cells. J. Memb. Sci. 2014;469:379–396. doi: 10.1016/j.memsci.2014.06.033. DOI

Chen X., Zhu J., Tian R., Yao C. Bienzymatic glucose biosensor based on three dimensional macroporous ionic liquid doped sol-gel organic-inorganic composite. Sens. Actuators B Chem. 2012;163:272–280. doi: 10.1016/j.snb.2012.01.053. DOI

Silva S.S., Duarte A.R. C., Carvalho A.P., Mano J.F., Reis R.L. Green processing of porous chitin structures for biomedical applications combining ionic liquids and supercritical fluid technology. Acta Biomater. 2011;7:1166–1172. doi: 10.1016/j.actbio.2010.09.041. PubMed DOI

Steichen M., Larsen J., Gütay L., Siebentritt S., Dale P.J. Preparation of CuGaSe2 absorber layers for thin film solar cells by annealing of efficiently electrodeposited Cu–Ga precursor layers from ionic liquids. Thin Solid Films. 2011;519:7254–7258. doi: 10.1016/j.tsf.2011.01.135. DOI

Vidal L., Riekkola M.L., Canals A. Ionic liquid-modified materials for solid-phase extraction and separation: A review. Anal. Chim. Acta. 2012;715:19–41. doi: 10.1016/j.aca.2011.11.050. PubMed DOI

Buzzeo M.C., Hardacre C., Compton R.G. Use of room temperature ionic liquids in gas sensor design. Anal. Chem. 2004;76:4583–4588. doi: 10.1021/ac040042w. PubMed DOI

Rogers E.I., O’Mahony A.M., Aldous L., Compton R.G. Amperometric gas detection using room temperature ionic liquid solvents. ECS Trans. 2010;33:473–502.

Faridbod F., Ganjali M.R. Application of Room Temperature Ionic Liquid in Electrochemical Sensors and Biosensors. In: Kokorin A., editor. Ionic Liquids: Applications and Perspectives. InTech; Rijeka, Croatia: 2011. pp. 643–658.

Silvester D.S. Recent advances in the use of ionic liquids for electrochemical sensing. Analyst. 2011;136:4871–4882. doi: 10.1039/c1an15699c. PubMed DOI

Xiong L., Compton R.G. Amperometric gas detection: A review. Int. J. Electrochem. Sci. 2014;9:7152–7181.

Carter M.T., Stetter J.R., Findlay M.W., Patel V. Amperometric gas sensors with ionic liquid electrolytes. ECS Trans. 2014;58:7–18. doi: 10.1149/05834.0007ecst. DOI

Ji X., Banks C.E., Silvester D.S., Aldous L., Hardacre C., Compton R.G. Electrochemical ammonia gas sensing in nonaqueous systems: A comparison of propylene carbonate with room temperature ionic liquids. Electroanalysis. 2007;19:2194–2201. doi: 10.1002/elan.200703997. DOI

Carter M.T., Stetter J.R., Findlay M.W., Patel V. Printed amperometric gas sensors. ECS Trans. 2013;50:211–220. doi: 10.1149/05012.0211ecst. DOI

Huang X.-J., Aldous L., O’Mahony A.M., Campo F.J., Compton R.G. Toward membrane-free amperometric gas sensors: A microelectrode array approach. Anal. Chem. 2010;82:5238–5245. doi: 10.1021/ac1006359. PubMed DOI

Toniolo R., Dossi N., Pizzariello A., Doherty A.P., Susmel S., Bontempelli G. An oxygen amperometric gas sensor based on its electrocatalytic reduction in room temperature ionic liquids. J. Electroanal. Chem. 2012;670:23–29. doi: 10.1016/j.jelechem.2012.02.006. DOI

Zevenbergen M.A.G., Wouters D., Dam V. T., Brongersma S.H., Crego-Calama M. Electrochemical sensing of ethylene employing a thin ionic-liquid layer. Anal. Chem. 2011;83:6300–6307. doi: 10.1021/ac2009756. PubMed DOI

Stetter J.R., Stetter E.F., Ebeling D.D., Findlay M., Patel V. Printed Gas Sensor. No. 8,798,484. U.S. Patent. 2013

Nádherná M., Opekar F., Reiter J. Ionic liquid–polymer electrolyte for amperometric solid-state NO2 sensor. Electrochim. Acta. 2011;56:5650–5655. doi: 10.1016/j.electacta.2011.04.022. DOI

Nádherná M., Opekar F., Reiter J., Štulík K. A planar, solid-state amperometric sensor for nitrogen dioxide, employing an ionic liquid electrolyte contained in a polymeric matrix. Sens. Actuators B Chem. 2012;161:811–817. doi: 10.1016/j.snb.2011.11.037. DOI

Kuberský P., Hamáček A., Nešpůrek S., Soukup R., Vik R. Effect of the geometry of a working electrode on the behavior of a planar amperometric NO2 sensor based on solid polymer electrolyte. Sens. Actuators B Chem. 2013;187:546–552. doi: 10.1016/j.snb.2013.03.081. DOI

Kuberský P., Syrový T., Hamáček A., Nešpůrek S., Syrová L. Towards a fully printed electrochemical NO2 sensor on a flexible substrate using ionic liquid based polymer electrolyte. Sens. Actuators B Chem. 2015;209:1084–1090. doi: 10.1016/j.snb.2014.12.116. DOI

Gregorio R., Borges D.S. Effect of crystallization rate on the formation of the polymorphs of solution cast poly(vinylidene fluoride) Polymer. 2008;49:4009–4016. doi: 10.1016/j.polymer.2008.07.010. DOI

Zmeškal O., Bzatek T., Nezadal M. HarFA—Harmonic and Fractal Image Analyser Software. [(access on 6 November 2015)]. Available online: http://www.fch.vutbr.cz/lectures/imagesci/includes/harfa_download.inc.php.

Hoey J.M., Lutfurakhmanov A., Schulz D.L., Akhatov I.S. A Review on aerosol-based direct-write and its applications for microelectronics. J. Nanotechnol. 2012;2012:1–22. doi: 10.1155/2012/324380. DOI

Hrnc̆ír̆ová P., Opekar F., S̆tulik K. An amperometric solid-state NO2 sensor with a solid polymer electrolyte and a reticulated vitreous carbon indicator electrode. Sens. Actuators B Chem. 2000;69:199–204. doi: 10.1016/S0925-4005(00)00540-2. DOI

Chang S.-C., Stetter J.R. Electrochemical NO2 gas sensors: Model and mechanism for the electroreduction of NO2. Electroanalysis. 1990;2:359–365. doi: 10.1002/elan.1140020506. DOI

Zmeskal O., Nespurek S., Vesely M., Dzik P. Advances in Intelligent Systems and Computing. Springer International Publishing; Heidelberg, Germany: 2014. Statistics of Fractal Systems; pp. 55–63.

Zmeskal O., Dzik P., Vesely M. Entropy of fractal systems. Comput. Math. Appl. 2013;66:135–146. doi: 10.1016/j.camwa.2013.01.017. DOI

Jeřábková P., Zmeškal O., Haderka J. Complexus Mundi—Emergent Patterns in Nature. World Scientific; Singapore: 2006. Fractal Analysis of the Images using Wavelet Transformation; pp. 300–312.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...