The Effect of the Orientation Towards Analyte Flow on Electrochemical Sensor Performance and Current Fluctuations

. 2020 Feb 14 ; 20 (4) : . [epub] 20200214

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32075126

Grantová podpora
18-19104S Grantová Agentura České Republiky
LO1401 Ministerstvo Školství, Mládeže a Tělovýchovy
LO1607 Ministerstvo Školství, Mládeže a Tělovýchovy

Analyte flow influences the performance of every gas sensor; thus, most of these sensors usually contain a diffusion barrier (layer, cover, inlet) that can prevent the negative impact of a sudden change of direction and/or the rate of analyte flow, as well as various unwanted impacts from the surrounding environment. However, several measurement techniques use the modulation of the flow rate to enhance sensor properties or to extract more information about the chemical processes that occur on a sensitive layer or a working electrode. The paper deals with the experimental study on how the analyte flow rate and the orientation of the electrochemical sensor towards the analyte flow direction influence sensor performance and current fluctuations. Experiments were carried out on a semi-planar, three-electrode topology that enabled a direct exposure of the working (sensing) electrode to the analyte without any artificial diffusion barrier. The sensor was tested within the flow rate range of 0.1-1 L/min and the orientation of the sensor towards the analyte flow direction was gradually set to the four angles 0°, 45°, 90° and 270° in the middle of the test chamber, while the sensor was also investigated in the standard position at the bottom of the chamber.

Zobrazit více v PubMed

Van den Broek J., Abegg S., Pratsinis S.E., Güntner A.T. Highly selective detection of methanol over ethanol by a handheld gas sensor. Nat. Commun. 2019;10:1–8. doi: 10.1038/s41467-019-12223-4. PubMed DOI PMC

Liu X., Cheng S., Liu H., Hu S., Zhang D., Ning H. A survey on gas sensing technology. Sensors. 2012;12:9635–9665. doi: 10.3390/s120709635. PubMed DOI PMC

Janata J. Principles of Chemical Sensors. Springer; Berlin/Heidelberg, Germany: 2009.

Wang Y., Xing J., Qian S. Selectivity Enhancement in Electronic Nose Based on an Optimized DQN. Sensors. 2017;17:2356. doi: 10.3390/s17102356. PubMed DOI PMC

Martinelli E., Santonico M., Pennazza G., Paolesse R., D’Amico A., Di Natale C. Short time gas delivery pattern improves long-term sensor reproducibility. Sens. Actuators B Chem. 2011;156:753–759. doi: 10.1016/j.snb.2011.02.034. DOI

Ziyatdinov A., Fonollosa J., Fernández L., Gutierrez-Gálvez A., Marco S., Perera A. Bioinspired early detection through gas flow modulation in chemo-sensory systems. Sens. Actuators B Chem. 2015;206:538–547. doi: 10.1016/j.snb.2014.09.001. DOI

Barbri N.E., Duran C., Brezmes J., Cañellas N., Ramírez J.L., Bouchikhi B., Llobet E. Selectivity Enhancement in Multisensor Systems Using Flow Modulation Techniques. Sensors. 2008;8:7369–7379. doi: 10.3390/s8117369. PubMed DOI PMC

Martinelli E., Polese D., Catini A., D’Amico A., Di Natale C. Self-adapted temperature modulation in metal-oxide semiconductor gas sensors. Sens. Actuators B Chem. 2012;161:534–541. doi: 10.1016/j.snb.2011.10.072. DOI

Kato Y., Yoshikawa K., Kitora M. Temperature-dependent dynamic response enables the qualification and quantification of gases by a single sensor. Sens. Actuators B Chem. 1997;40:33–37. doi: 10.1016/S0925-4005(97)80196-7. DOI

Wachholz F., Biała K., Piekarz M., Flechsig G.-U. Temperature pulse modulated amperometry at compact electrochemical sensors. Electrochem. Commun. 2007;9:2346–2352. doi: 10.1016/j.elecom.2007.06.043. DOI

Burgués J., Marco S. Low Power Operation of Temperature-Modulated Metal Oxide Semiconductor Gas Sensors. Sensors. 2018;18:339. doi: 10.3390/s18020339. PubMed DOI PMC

Macku R., Smulko J., Koktavy P., Trawka M., Sedlak P. Analytical fluctuation enhanced sensing by resistive gas sensors. Sens. Actuators B Chem. 2015;213:390–396. doi: 10.1016/j.snb.2015.02.114. DOI

Smulko J.M., Trawka M., Granqvist C.G., Ionescu R., Annanouch F., Llobet E., Kish L.B. New approaches for improving selectivity and sensitivity of resistive gas sensors: A review. Sens. Rev. 2015;35:340–347. doi: 10.1108/SR-12-2014-0747. DOI

Chinh N.D., Quang N.D., Lee H., Thi Hien T., Hieu N.M., Kim D., Kim C., Kim D. NO gas sensing kinetics at room temperature under UV light irradiation of In2O3 nanostructures. Sci. Rep. 2016;6:35066. doi: 10.1038/srep35066. PubMed DOI PMC

Kumar R., Goel N., Kumar M. UV-Activated MoS 2 Based Fast and Reversible NO2 Sensor at Room Temperature. ACS Sens. 2017;2:1744–1752. doi: 10.1021/acssensors.7b00731. PubMed DOI

Caravati E.M., Anderson K.T. Breath Alcohol Analyzer Mistakes Methanol Poisoning for Alcohol Intoxication. Ann. Emerg. Med. 2010;55:198–200. doi: 10.1016/j.annemergmed.2009.07.021. PubMed DOI

Jasinski G., Strzelczyk A., Koscinski P. Gas sampling system for matrix of semiconductor gas sensors. IOP Conf. Ser. Mater. Sci. Eng. 2016;104:012033. doi: 10.1088/1757-899X/104/1/012033. DOI

Scandurra G., Cannatà G., Ciofi C. Differential ultra low noise amplifier for low frequency noise measurements. Cit. AIP Adv. 2011;1:022144. doi: 10.1063/1.3605716. DOI

Hashisaka M., Ota T., Yamagishi M., Fujisawa T., Muraki K. Cross-correlation measurement of quantum shot noise using homemade transimpedance amplifiers. Cit. Rev. Sci. Instrum. 2014;85:054704. doi: 10.1063/1.4875588. PubMed DOI

Beulertz G., Geupel A., Moos R., Kubinski D.J., Visser J.H. Accumulating gas sensor principle—How to come from concentration integration to real amount measurements. Proc. Eng. 2011;25:1109–1112. doi: 10.1016/j.proeng.2011.12.273. DOI

Sedlák P., Kuberský P., Mívalt F. Effect of various flow rate on current fluctuations of amperometric gas sensors. Sens. Actuators B Chem. 2019;283:321–328. doi: 10.1016/j.snb.2018.12.006. DOI

Kuberský P., Hamáček A., Nešpůrek S., Soukup R., Vik R. Effect of the geometry of a working electrode on the behavior of a planar amperometric NO2 sensor based on solid polymer electrolyte. Sens. Actuators B Chem. 2013;187:546–552. doi: 10.1016/j.snb.2013.03.081. DOI

Kuberský P., Sedlák P., Hamáček A., Nešpůrek S., Kuparowitz T., Šikula J., Majzner J., Sedlaková V., Grmela L., Syrový T. Quantitative fluctuation-enhanced sensing in amperometric NO2 sensors. Chem. Phys. 2015;456:111–117. doi: 10.1016/j.chemphys.2014.10.021. DOI

Sedlak P., Kubersky P., Skarvada P., Hamacek A., Sedlakova V., Majzner J., Nespurek S., Sikula J. Current fluctuation measurements of amperometric gas sensors constructed with three different technology procedures. Metrol. Meas. Syst. 2016;23:531–543. doi: 10.1515/mms-2016-0042. DOI

Kuberský P., Altšmíd J., Hamáček A., Nešpůrek S., Zmeškal O. An electrochemical NO2 sensor based on ionic liquid: Influence of the morphology of the polymer electrolyte on sensor sensitivity. Sensors. 2015;15:28421–28434. doi: 10.3390/s151128421. PubMed DOI PMC

Kuberský P., Syrový T., Hamáček A., Nešpůrek S., Syrová L. Towards a fully printed electrochemical NO2 sensor on a flexible substrate using ionic liquid based polymer electrolyte. Sens. Actuators B Chem. 2015;209:1084–1090. doi: 10.1016/j.snb.2014.12.116. DOI

Ahmadi M.M., Jullien G.A. Current-Mirror-Based Potentiostats for Three-Electrode Amperometric Electrochemical Sensors. IEEE Trans. Circuits Syst. I Regul. Pap. 2009;56:1339–1348. doi: 10.1109/TCSI.2008.2005927. DOI

Gášpár R., Soucek S. Analysis of a heat exchanger for a cogeneration unit using computational fluid dynamics; Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Tampa, FL, USA. 3–9 November 2017;

Durst F. Fluid Mechanics. Springer; Berlin/Heidelberg, Germany: 2008. Unstable Flows and Laminar-Turbulent Transition; pp. 495–522.

Hassibi A., Navid R., Dutton R.W., Lee T.H. Comprehensive study of noise processes in electrode electrolyte interfaces. J. Appl. Phys. 2004;96:1074–1082. doi: 10.1063/1.1755429. DOI

Fourcade B., Tremblay A.-M.S. Diffusion Noise of Fractal Networks and Percolation Clusters. Phys. Rev. B. 1986;34:7802. doi: 10.1103/PhysRevB.34.7802. PubMed DOI

Green M.E. Diffusion and 1/f noise. J. Membr. Biol. 1976;28:181–186. doi: 10.1007/BF01869696. PubMed DOI

Musha T., Higuchi H. Traffic Current Fluctuation and the Burgers Equation. Jpn. J. Appl. Phys. 1978;17:811–816. doi: 10.1143/JJAP.17.811. DOI

Roach P.E. The generation of nearly isotropic turbulence by means of grids. Int. J. Heat Fluid Flow. 1987;8:82–92. doi: 10.1016/0142-727X(87)90001-4. DOI

Kubersky P., Sedlak P. Amperometric gas sensor in different orientation towards analyte flow at different flow rates and different concentrations. Mendeley Data. 2020 doi: 10.17632/4JHGXXKKT4.1. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...