The Effect of the Orientation Towards Analyte Flow on Electrochemical Sensor Performance and Current Fluctuations
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-19104S
Grantová Agentura České Republiky
LO1401
Ministerstvo Školství, Mládeže a Tělovýchovy
LO1607
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32075126
PubMed Central
PMC7070327
DOI
10.3390/s20041038
PII: s20041038
Knihovny.cz E-zdroje
- Klíčová slova
- amperometric sensor, analyte flow, current fluctuations, signal-to-noise ratio,
- Publikační typ
- časopisecké články MeSH
Analyte flow influences the performance of every gas sensor; thus, most of these sensors usually contain a diffusion barrier (layer, cover, inlet) that can prevent the negative impact of a sudden change of direction and/or the rate of analyte flow, as well as various unwanted impacts from the surrounding environment. However, several measurement techniques use the modulation of the flow rate to enhance sensor properties or to extract more information about the chemical processes that occur on a sensitive layer or a working electrode. The paper deals with the experimental study on how the analyte flow rate and the orientation of the electrochemical sensor towards the analyte flow direction influence sensor performance and current fluctuations. Experiments were carried out on a semi-planar, three-electrode topology that enabled a direct exposure of the working (sensing) electrode to the analyte without any artificial diffusion barrier. The sensor was tested within the flow rate range of 0.1-1 L/min and the orientation of the sensor towards the analyte flow direction was gradually set to the four angles 0°, 45°, 90° and 270° in the middle of the test chamber, while the sensor was also investigated in the standard position at the bottom of the chamber.
Zobrazit více v PubMed
Van den Broek J., Abegg S., Pratsinis S.E., Güntner A.T. Highly selective detection of methanol over ethanol by a handheld gas sensor. Nat. Commun. 2019;10:1–8. doi: 10.1038/s41467-019-12223-4. PubMed DOI PMC
Liu X., Cheng S., Liu H., Hu S., Zhang D., Ning H. A survey on gas sensing technology. Sensors. 2012;12:9635–9665. doi: 10.3390/s120709635. PubMed DOI PMC
Janata J. Principles of Chemical Sensors. Springer; Berlin/Heidelberg, Germany: 2009.
Wang Y., Xing J., Qian S. Selectivity Enhancement in Electronic Nose Based on an Optimized DQN. Sensors. 2017;17:2356. doi: 10.3390/s17102356. PubMed DOI PMC
Martinelli E., Santonico M., Pennazza G., Paolesse R., D’Amico A., Di Natale C. Short time gas delivery pattern improves long-term sensor reproducibility. Sens. Actuators B Chem. 2011;156:753–759. doi: 10.1016/j.snb.2011.02.034. DOI
Ziyatdinov A., Fonollosa J., Fernández L., Gutierrez-Gálvez A., Marco S., Perera A. Bioinspired early detection through gas flow modulation in chemo-sensory systems. Sens. Actuators B Chem. 2015;206:538–547. doi: 10.1016/j.snb.2014.09.001. DOI
Barbri N.E., Duran C., Brezmes J., Cañellas N., Ramírez J.L., Bouchikhi B., Llobet E. Selectivity Enhancement in Multisensor Systems Using Flow Modulation Techniques. Sensors. 2008;8:7369–7379. doi: 10.3390/s8117369. PubMed DOI PMC
Martinelli E., Polese D., Catini A., D’Amico A., Di Natale C. Self-adapted temperature modulation in metal-oxide semiconductor gas sensors. Sens. Actuators B Chem. 2012;161:534–541. doi: 10.1016/j.snb.2011.10.072. DOI
Kato Y., Yoshikawa K., Kitora M. Temperature-dependent dynamic response enables the qualification and quantification of gases by a single sensor. Sens. Actuators B Chem. 1997;40:33–37. doi: 10.1016/S0925-4005(97)80196-7. DOI
Wachholz F., Biała K., Piekarz M., Flechsig G.-U. Temperature pulse modulated amperometry at compact electrochemical sensors. Electrochem. Commun. 2007;9:2346–2352. doi: 10.1016/j.elecom.2007.06.043. DOI
Burgués J., Marco S. Low Power Operation of Temperature-Modulated Metal Oxide Semiconductor Gas Sensors. Sensors. 2018;18:339. doi: 10.3390/s18020339. PubMed DOI PMC
Macku R., Smulko J., Koktavy P., Trawka M., Sedlak P. Analytical fluctuation enhanced sensing by resistive gas sensors. Sens. Actuators B Chem. 2015;213:390–396. doi: 10.1016/j.snb.2015.02.114. DOI
Smulko J.M., Trawka M., Granqvist C.G., Ionescu R., Annanouch F., Llobet E., Kish L.B. New approaches for improving selectivity and sensitivity of resistive gas sensors: A review. Sens. Rev. 2015;35:340–347. doi: 10.1108/SR-12-2014-0747. DOI
Chinh N.D., Quang N.D., Lee H., Thi Hien T., Hieu N.M., Kim D., Kim C., Kim D. NO gas sensing kinetics at room temperature under UV light irradiation of In2O3 nanostructures. Sci. Rep. 2016;6:35066. doi: 10.1038/srep35066. PubMed DOI PMC
Kumar R., Goel N., Kumar M. UV-Activated MoS 2 Based Fast and Reversible NO2 Sensor at Room Temperature. ACS Sens. 2017;2:1744–1752. doi: 10.1021/acssensors.7b00731. PubMed DOI
Caravati E.M., Anderson K.T. Breath Alcohol Analyzer Mistakes Methanol Poisoning for Alcohol Intoxication. Ann. Emerg. Med. 2010;55:198–200. doi: 10.1016/j.annemergmed.2009.07.021. PubMed DOI
Jasinski G., Strzelczyk A., Koscinski P. Gas sampling system for matrix of semiconductor gas sensors. IOP Conf. Ser. Mater. Sci. Eng. 2016;104:012033. doi: 10.1088/1757-899X/104/1/012033. DOI
Scandurra G., Cannatà G., Ciofi C. Differential ultra low noise amplifier for low frequency noise measurements. Cit. AIP Adv. 2011;1:022144. doi: 10.1063/1.3605716. DOI
Hashisaka M., Ota T., Yamagishi M., Fujisawa T., Muraki K. Cross-correlation measurement of quantum shot noise using homemade transimpedance amplifiers. Cit. Rev. Sci. Instrum. 2014;85:054704. doi: 10.1063/1.4875588. PubMed DOI
Beulertz G., Geupel A., Moos R., Kubinski D.J., Visser J.H. Accumulating gas sensor principle—How to come from concentration integration to real amount measurements. Proc. Eng. 2011;25:1109–1112. doi: 10.1016/j.proeng.2011.12.273. DOI
Sedlák P., Kuberský P., Mívalt F. Effect of various flow rate on current fluctuations of amperometric gas sensors. Sens. Actuators B Chem. 2019;283:321–328. doi: 10.1016/j.snb.2018.12.006. DOI
Kuberský P., Hamáček A., Nešpůrek S., Soukup R., Vik R. Effect of the geometry of a working electrode on the behavior of a planar amperometric NO2 sensor based on solid polymer electrolyte. Sens. Actuators B Chem. 2013;187:546–552. doi: 10.1016/j.snb.2013.03.081. DOI
Kuberský P., Sedlák P., Hamáček A., Nešpůrek S., Kuparowitz T., Šikula J., Majzner J., Sedlaková V., Grmela L., Syrový T. Quantitative fluctuation-enhanced sensing in amperometric NO2 sensors. Chem. Phys. 2015;456:111–117. doi: 10.1016/j.chemphys.2014.10.021. DOI
Sedlak P., Kubersky P., Skarvada P., Hamacek A., Sedlakova V., Majzner J., Nespurek S., Sikula J. Current fluctuation measurements of amperometric gas sensors constructed with three different technology procedures. Metrol. Meas. Syst. 2016;23:531–543. doi: 10.1515/mms-2016-0042. DOI
Kuberský P., Altšmíd J., Hamáček A., Nešpůrek S., Zmeškal O. An electrochemical NO2 sensor based on ionic liquid: Influence of the morphology of the polymer electrolyte on sensor sensitivity. Sensors. 2015;15:28421–28434. doi: 10.3390/s151128421. PubMed DOI PMC
Kuberský P., Syrový T., Hamáček A., Nešpůrek S., Syrová L. Towards a fully printed electrochemical NO2 sensor on a flexible substrate using ionic liquid based polymer electrolyte. Sens. Actuators B Chem. 2015;209:1084–1090. doi: 10.1016/j.snb.2014.12.116. DOI
Ahmadi M.M., Jullien G.A. Current-Mirror-Based Potentiostats for Three-Electrode Amperometric Electrochemical Sensors. IEEE Trans. Circuits Syst. I Regul. Pap. 2009;56:1339–1348. doi: 10.1109/TCSI.2008.2005927. DOI
Gášpár R., Soucek S. Analysis of a heat exchanger for a cogeneration unit using computational fluid dynamics; Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Tampa, FL, USA. 3–9 November 2017;
Durst F. Fluid Mechanics. Springer; Berlin/Heidelberg, Germany: 2008. Unstable Flows and Laminar-Turbulent Transition; pp. 495–522.
Hassibi A., Navid R., Dutton R.W., Lee T.H. Comprehensive study of noise processes in electrode electrolyte interfaces. J. Appl. Phys. 2004;96:1074–1082. doi: 10.1063/1.1755429. DOI
Fourcade B., Tremblay A.-M.S. Diffusion Noise of Fractal Networks and Percolation Clusters. Phys. Rev. B. 1986;34:7802. doi: 10.1103/PhysRevB.34.7802. PubMed DOI
Green M.E. Diffusion and 1/f noise. J. Membr. Biol. 1976;28:181–186. doi: 10.1007/BF01869696. PubMed DOI
Musha T., Higuchi H. Traffic Current Fluctuation and the Burgers Equation. Jpn. J. Appl. Phys. 1978;17:811–816. doi: 10.1143/JJAP.17.811. DOI
Roach P.E. The generation of nearly isotropic turbulence by means of grids. Int. J. Heat Fluid Flow. 1987;8:82–92. doi: 10.1016/0142-727X(87)90001-4. DOI
Kubersky P., Sedlak P. Amperometric gas sensor in different orientation towards analyte flow at different flow rates and different concentrations. Mendeley Data. 2020 doi: 10.17632/4JHGXXKKT4.1. DOI