The effect of thermal treatment on ac/dc conductivity and current fluctuations of PVDF/NMP/[EMIM][TFSI] solid polymer electrolyte
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18 19104S
Grantová Agentura České Republiky
PubMed
33273700
PubMed Central
PMC7713362
DOI
10.1038/s41598-020-78363-6
PII: 10.1038/s41598-020-78363-6
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The experimental study deals with the investigation of the effect of diverse crystallinity of imidazolium ionic-liquid-based SPE on conductivity and current fluctuations. The experimental study was carried out on samples consisting of [EMIM][TFSI] as ionic liquid, PVDF as a polymer matrix and NMP as a solvent. After the deposition, the particular sample was kept at an appropriate temperature for a specific time in order to achieve different crystalline forms of the polymer in the solvent, since the solvent evaporation rate controls crystallization. The ac/dc conductivities of SPEs were investigated across a range of temperatures using broadband dielectric spectroscopy in terms of electrical conductivity. In SPE samples of the higher solvent evaporation rate, the real parts of conductivity spectra exhibit a sharper transition during sample cooling and an increase of overall conductivity, which is implied by a growing fraction of the amorphous phase in the polymer matrix in which the ionic liquid is immobilized. The conductivity master curves illustrate that the changing of SPEs morphology is reflected in the low frequency regions governed by the electrode polarization effect. The dc conductivity of SPEs exhibits Vogel-Fulcher-Tammann temperature dependence and increases with the intensity of thermal treatment. Spectral densities of current fluctuations showed that flicker noise, thermal noise and shot noise seems to be major noise sources in all samples. The increase of electrolyte conductivity causes a decrease in bulk resistance and partially a decrease in charge transfer resistance, while also resulting in an increase in shot noise. However, the change of electrode material results in a more significant change of spectral density of current fluctuations than the modification of the preparation condition of the solid polymer electrolyte. Thus, the contact noise is considered to contribute to overall current fluctuations across the samples.
Zobrazit více v PubMed
Ye YS, Rick J, Hwang BJ. Ionic liquid polymer electrolytes. J. Mater. Chem. A. 2013;1:2719–2743. doi: 10.1039/C2TA00126H. DOI
Correia DM, et al. Ionic liquid-polymer composites: a new platform for multifunctional applications. Adv. Funct. Mater. 2020;30:1909736. doi: 10.1002/adfm.201909736. DOI
Josef E, et al. Ionic liquids and their polymers in lithium-sulfur batteries. Isr. J. Chem. 2019;59:832–842. doi: 10.1002/ijch.201800159. DOI
Austin Suthanthiraraj S, Johnsi M. Nanocomposite polymer electrolytes. Ionics. 2017;23:2531–2542. doi: 10.1007/s11581-016-1924-6. DOI
Xia W, Zhang Z. PVDF-based dielectric polymers and their applications in electronic materials. IET Nanodielectrics. 2018;1:17–31. doi: 10.1049/iet-nde.2018.0001. DOI
Kammoun M, Berg S, Ardebili H. Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte. Nanoscale. 2015;7:17516–17522. doi: 10.1039/C5NR04339E. PubMed DOI
Park J, et al. Printing of wirelessly rechargeable solid-state supercapacitors for soft, smart contact lenses with continuous operations. Sci. Adv. 2019;5:0764. PubMed PMC
Kuberský P, Syrový T, Hamáček A, Nešpůrek S, Syrová L. Towards a fully printed electrochemical NO2 sensor on a flexible substrate using ionic liquid based polymer electrolyte. Sens. Actuators B Chem. 2015;209:1084–1090. doi: 10.1016/j.snb.2014.12.116. DOI
Luo B, et al. An integrated strategy towards enhanced performance of the lithium-sulfur battery and its fading mechanism. Chem. A Eur. J. 2018;24:18544–18550. doi: 10.1002/chem.201804369. PubMed DOI
Luo R, Li Q, Du B, Zhou S, Chen Y. Preparation and characterization of solid electrolyte doped with carbon nanotubes and its preliminary application in NO2 gas sensors. Front. Mater. 2019;6:113. doi: 10.3389/fmats.2019.00113. DOI
Vonau C, et al. Polymer based materials for solid electrolyte sensors. Solid State Ionics. 2012;225:337–341. doi: 10.1016/j.ssi.2012.04.015. DOI
Korotcenkov G, Cho BK. Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey) Sens. Actuators B. 2011;156:527–538. doi: 10.1016/j.snb.2011.02.024. DOI
Luo R, Li H, Du B, Zhou S, Chen Y. A printed and flexible NO2 sensor based on a solid polymer electrolyte. Front. Chem. 2019;7:286. doi: 10.3389/fchem.2019.00286. PubMed DOI PMC
Varshney PK, Gupta S. Natural polymer-based electrolytes for electrochemical devices: a review. Ionics. 2011;17:479–483. doi: 10.1007/s11581-011-0563-1. DOI
Kang Y, Kim HJ, Kim E, Oh B, Cho JH. Photocured PEO-based solid polymer electrolyte and its application to lithium-polymer batteries. J. Power Sources. 2001;92:255–259. doi: 10.1016/S0378-7753(00)00546-2. DOI
Cui Z, Hassankiadeh NT, Zhuang Y, Drioli E, Lee YM. Crystalline polymorphism in poly(vinylidenefluoride) membranes. Prog. Polym. Sci. 2015;51:94–126. doi: 10.1016/j.progpolymsci.2015.07.007. DOI
Chang J, Dommer M, Chang C, Lin L. Piezoelectric nanofibers for energy scavenging applications. Nano Energy. 2012;1:356–371. doi: 10.1016/j.nanoen.2012.02.003. DOI
Xu P, Fu W, Hu Y, Ding Y. Effect of annealing treatment on crystalline and dielectric properties of PVDF/PEG-containing ionic liquid composites. Compos. Sci. Technol. 2018;158:1–8. doi: 10.1016/j.compscitech.2018.01.039. DOI
Gregorio R, Borges DS. Effect of crystallization rate on the formation of the polymorphs of solution cast poly(vinylidene fluoride) Polymer. 2008;49:4009–4016. doi: 10.1016/j.polymer.2008.07.010. DOI
Lewandowski A, Świderska A. New composite solid electrolytes based on a polymer and ionic liquids. Solid State Ionics. 2004;169:21–24. doi: 10.1016/j.ssi.2003.02.004. DOI
Wang F, et al. Influence of additives in a PVDF-based solid polymer electrolyte on conductivity and Li-ion battery performance. Sustain. Energy Fuels. 2018;2:492–498. doi: 10.1039/C7SE00441A. DOI
Subba Reddy CV, et al. Characterization of (PVDF + LiFePO4) solid polymer electrolyte. J. Appl. Electrochem. 2007;37:637–642. doi: 10.1007/s10800-007-9294-4. DOI
Tjong SC, Li YC, Li RKY. Frequency and temperature dependences of dielectric dispersion and electrical properties of polyvinylidene fluoride/expanded graphite composites. J. Nanomater. 2010;2010:1–10.
Puértolas JA, et al. Dielectric behavior and electrical conductivity of PVDF filled with functionalized single-walled carbon nanotubes. Compos. Sci. Technol. 2017;152:263–274. doi: 10.1016/j.compscitech.2017.09.016. DOI
Xing C, et al. Ionic liquid modified poly(vinylidene fluoride): crystalline structures, miscibility, and physical properties. Polym. Chem. 2013;4:5726–5734. doi: 10.1039/c3py00466j. DOI
Correia DM, et al. ionic liquid cation size-dependent electromechanical response of ionic liquid/poly(vinylidene fluoride)-based soft actuators. J. Phys. Chem. C. 2019;123:12744–12752. doi: 10.1021/acs.jpcc.9b07986. DOI
Correia DM, et al. Influence of cation and anion type on the formation of the electroactive β-phase and thermal and dynamic mechanical properties of poly(vinylidene fluoride)/ionic liquids blends. J. Phys. Chem. C. 2019 doi: 10.1021/acs.jpcc.9b07986. DOI
Correia DM, et al. Magnetic ionic liquid/polymer composites: Tailoring physico-chemical properties by ionic liquid content and solvent evaporation temperature. Compos. Part B Eng. 2019;178:107516. doi: 10.1016/j.compositesb.2019.107516. DOI
Dong Z, et al. Effect of ionic liquid on the properties of poly(vinylidene fluoride)-based gel polymer electrolytes. Ionics. 2013;19:1587–1593. doi: 10.1007/s11581-013-0905-2. DOI
Chaurasia SK, Singh RK, Chandra S. Effect of ionic liquid on the crystallization kinetics behaviour of polymer poly(ethylene oxide) CrystEngComm. 2013;15:6022–6034. doi: 10.1039/c3ce40576a. DOI
Chaurasia SK, Singh RK, Chandra S. Ionic liquid assisted modification in ionic conductivity, phase transition temperature and crystallization kinetics behaviour of polymer poly(ethylene oxide) Solid State Ionics. 2014;262:790–794. doi: 10.1016/j.ssi.2013.09.048. DOI
Pickford T, Gu X, Heeley EL, Wan C. Effects of an ionic liquid and processing conditions on the β-polymorph crystal formation in poly(vinylidene fluoride) CrystEngComm. 2019;21:5418–5428. doi: 10.1039/C9CE01051C. DOI
Hassibi A, Navid R, Dutton RW, Lee TH. Comprehensive study of noise processes in electrode electrolyte interfaces. J. Appl. Phys. 2004;96:1074–1082. doi: 10.1063/1.1755429. DOI
Kuberský P, et al. Quantitative fluctuation-enhanced sensing in amperometric NO2 sensors. Chem. Phys. 2015;456:1. doi: 10.1016/j.chemphys.2014.10.021. DOI
Sedlák P, Kuberský P, Mívalt F. Effect of various flow rate on current fluctuations of amperometric gas sensors. Sens. Actuators B. 2019;283:321–328. doi: 10.1016/j.snb.2018.12.006. DOI
Scandurra G, Smulko J, Kish LB. Fluctuation-enhanced sensing (FES): a promising sensing technique. Appl. Sci. 2020;10:5818. doi: 10.3390/app10175818. DOI
Sedlák P, Kuberský P. The effect of the orientation towards analyte flow on electrochemical sensor performance and current fluctuations. Sensors. 2020;20:1038. doi: 10.3390/s20041038. PubMed DOI PMC
Nespurek S, Mracek L, Kubersky P, Syrovy T, Hamacek A. Ionic liquids in electrochemical gas sensors and transistors. Mol. Cryst. Liq. Cryst. 2019;694:1–20. doi: 10.1080/15421406.2020.1723892. DOI
Sangoro JR, et al. Charge transport and mass transport in imidazolium-based ionic liquids. Phys. Rev. E. 2008;77:1. doi: 10.1103/PhysRevE.77.051202. PubMed DOI
Thoms E, et al. Dielectric study on mixtures of ionic liquids. Sci. Rep. 2017;7:1–9. doi: 10.1038/s41598-017-07982-3. PubMed DOI PMC
Serghei A, Tress M, Sangoro JR, Kremer F. Electrode polarization and charge transport at solid interfaces. Phys. Rev. B. 2009;80:184301. doi: 10.1103/PhysRevB.80.184301. DOI
Sangoro, J. et al. Electrical conductivity and translational diffusion in the 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. J. Chem. Phys.128, (2008). PubMed
Sangoro JR, Kremer F. Charge transport and glassy dynamics in ionic liquids. Acc. Chem. Res. 2012;45:525–532. doi: 10.1021/ar2001809. PubMed DOI
Frenzel F, Guterman R, Anton AM, Yuan J, Kremer F. Molecular Dynamics and Charge Transport in Highly Conductive Polymeric Ionic Liquids. 2017 doi: 10.1021/acs.macromol.7b00554. DOI
Dyre, J. C. Universal ac conductivity of nonmetallic disordered solids at low temperatures. 47, (1993). PubMed
Wojnarowska Z, et al. How is charge transport different in ionic liquids? The effect of high pressure. Phys. Chem. Chem. Phys. 2017;19:14141–14147. doi: 10.1039/C6CP08592J. PubMed DOI
Sangoro, J., Cosby, T. & Kremer, F. Rotational and translational diffusion in ionic liquids. in Dielectric Properties of Ionic Liquids (ed. Paluch, M.) 29–51 (Springer International Publishing, 2016). 10.1007/978-3-319-32489-0_2
Kremer, F. & Schönhals, A. Molecular and collective dynamics of (polymeric) liquid crystals. in Broadband Dielectric Spectroscopy 385–432 (Springer, Berlin Heidelberg, 2003).10.1007/978-3-642-56120-7_10
Artioli, M., Perez, M. D., Reggiani, U. & Sandrolini, L. Particle swarm optimization method for complex permittivity extraction of dispersive materials. in 2010 Asia-Pacific Symposium on Electromagnetic Compatibility, APEMC 2010 900–903 (2010). 10.1109/APEMC.2010.5475635
Vila J, et al. Temperature dependence of the electrical conductivity in EMIM-based ionic liquids: evidence of Vogel-Tamman-Fulcher behavior. Fluid Phase Equilib. 2006;242:141–146. doi: 10.1016/j.fluid.2006.01.022. DOI
Ediger MD, Angell CA, Nagel SR. Supercooled liquids and glasses. J. Phys. Chem. 1996;100:13200–13212. doi: 10.1021/jp953538d. DOI
Thoms E, et al. Dielectric study on mixtures of ionic liquids. Sci. Rep. 2017;7:7463. doi: 10.1038/s41598-017-07982-3. PubMed DOI PMC
Fredlake CP, Crosthwaite JM, Hert DG, Aki SNVK, Brennecke JF. Thermophysical properties of imidazolium-based ionic liquids. J. Chem. Eng. Data. 2004;49:954–964. doi: 10.1021/je034261a. DOI
Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M. Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J. Phys. Chem. B. 2005;109:6103–6110. doi: 10.1021/jp044626d. PubMed DOI
Nilsson-Hallén J, Ahlström B, Marczewski M, Johansson P. Ionic liquids: a simple model to predict ion conductivity based on dft derived physical parameters. Front. Chem. 2019;7:126. doi: 10.3389/fchem.2019.00126. PubMed DOI PMC
Correia DM, et al. Molecular relaxation and ionic conductivity of ionic liquids confined in a poly(vinylidene fluoride) polymer matrix: influence of anion and cation type. Polymer. 2019;171:58–69. doi: 10.1016/j.polymer.2019.03.032. DOI
Zhang Y, Wang W, Zhang J, Ni Y. Dielectric relaxation processes in PVDF composite. Polym. Test. 2020;91:106801. doi: 10.1016/j.polymertesting.2020.106801. DOI
Zhou C, Bag S, Lv B, Thangadurai V. Understanding the role of solvents on the morphological structure and Li-ion conductivity of poly(vinylidene fluoride)-based polymer electrolytes. J. Electrochem. Soc. 2020;167:070552. doi: 10.1149/1945-7111/ab7c3a. DOI
Rekik H, et al. Dielectric relaxation behaviour in semi-crystalline polyvinylidene fluoride (PVDF)/TiO2 nanocomposites. Compos. Part B Eng. 2013;45:1199–1206. doi: 10.1016/j.compositesb.2012.08.002. DOI
Lopes AC, et al. Dielectric relaxation, ac conductivity and electric modulus in poly(vinylidene fluoride)/NaY zeolite composites. Solid State Ionics. 2013;235:42–50. doi: 10.1016/j.ssi.2013.01.013. DOI
Yao P, et al. PVDF/palygorskite nanowire composite electrolyte for 4 v rechargeable lithium batteries with high energy density. Nano Lett. 2018;18:6113–6120. doi: 10.1021/acs.nanolett.8b01421. PubMed DOI
Yang L, Ji H, Qiu J, Zhu K, Shao B. Effect of temperature on the crystalline phase and dielectric and ferroelectric properties of poly(vinylidene fluoride) film. J. Intell. Mater. Syst. Struct. 2014;25:858–864. doi: 10.1177/1045389X13510217. DOI
Altšmíd J, et al. Ionic Liquid based polymer electrolytes for electrochemical sensors. Mater. Sci. 2015;21:415–418.
Smulko, J. M., Szewczyk, A. & Lentka, L. Noise in electrical double-layer capacitors. in 25th International Conference on Noise and Fluctuations ICNF 2019 Proceedings 306–309 (EPFL, 2019).
Vandamme EP, Vandamme LKJ. Current crowding and its effect on 1/f noise and third harmonic distortion: a case study for quality assessment of resistors. Microelectron. Reliab. 2000;40:1847–1853. doi: 10.1016/S0026-2714(00)00091-3. DOI
Karnatak P, et al. Current crowding mediated large contact noise in graphene field-effect transistors. Nat. Commun. 2016;7:13703. doi: 10.1038/ncomms13703. PubMed DOI PMC
Schaumburg G. Novocontrol introduces high quality low cost interdigitated comb electrodes. Dielectr. Newsl. 2006;1:5–7.
Piezo-Enhanced Photocatalytic Activity of the Electrospun Fibrous Magnetic PVDF/BiFeO3 Membrane
Structure Tuning and Electrical Properties of Mixed PVDF and Nylon Nanofibers
Surface Analyses of PVDF/NMP/[EMIM][TFSI] Solid Polymer Electrolyte
Case Study of Polyvinylidene Fluoride Doping by Carbon Nanotubes
An Electrochemical Amperometric Ethylene Sensor with Solid Polymer Electrolyte Based on Ionic Liquid