Structure Tuning and Electrical Properties of Mixed PVDF and Nylon Nanofibers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FEKT-S-20-6352
Brno University of Technology
FEKT-S-20-6352
Brno University of Technology
PubMed
34683689
PubMed Central
PMC8539087
DOI
10.3390/ma14206096
PII: ma14206096
Knihovny.cz E-zdroje
- Klíčová slova
- DSC, FTIR, PA6, PVDF, Raman spectroscopy, SEM, XPS, electrostatic spinning, nanofibers, permittivity,
- Publikační typ
- časopisecké články MeSH
The paper specifies the electrostatic spinning process of specific polymeric materials, such as polyvinylidene fluoride (PVDF), polyamide-6 (PA6, Nylon-6) and their combination PVDF/PA6. By combining nanofibers from two different materials during the spinning process, new structures with different mechanical, chemical, and physical properties can be created. The materials and their combinations were subjected to several measurements: scanning electron microscopy (SEM) to capture topography; contact angle of the liquid wettability on the sample surface to observe hydrophobicity and hydrophilicity; crystallization events were determined by differential scanning calorimetry (DSC); X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and Fourier-transform infrared spectroscopy (FT-IR) to describe properties and their changes at the chemical level. Furthermore, for the electrical properties of the sample, the dielectric characteristics and the piezoelectric coefficient were measured. The advantage of the addition of co-polymers was to control the properties of PVDF samples and understand the reasons for the changed functionality. The innovation point of this work is the complex analysis of PVDF modification caused by mixing with nylon PA6. Here we emphasize that the application of nylon during the spin influences the properties and structure (polarization, crystallization) of PVDF.
Zobrazit více v PubMed
Pan M., Yuan C., Liang X., Zou J., Zhang Y., Bowen C. Triboelectric and Piezoelectric Nanogenerators for Future Soft Robots and Machines. Iscience. 2020;67:101682. doi: 10.1016/j.isci.2020.101682. PubMed DOI PMC
Mao H., Zhang T., Huang T., Zhang N., Wang Y., Yang J. Fabrication of high-k poly(vinylidene fluoride)/Nylon 6/carbon nanotube nanocomposites through selective localization of carbon nanotubes in blends. Polym. Int. 2017;66:604–611. doi: 10.1002/pi.5302. DOI
Scheinbeim J.I., Gao Q. High-temperature stable piezoelectric PVDF/Nylon 11 powder blend films; Proceedings of the Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices; Newport Beach, CA, USA. 16 July 2001; p. 131. DOI
Sezer N., Koç M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy. 2021;80:105567. doi: 10.1016/j.nanoen.2020.105567. DOI
Peng H., Sun X., Weng W., Fang X. Polymer Materials for Energy and Electronic Applications. Academic Press; Cambridge, MA, USA: 2017.
Pu X., Zha J.W., Zhao C.L., Gong S.B., Gao J.F., Li R.K. Flexible PVDF/nylon-11 electrospun fibrous membranes with aligned ZnO nanowires as potential triboelectric nanogenerators. Chem. Eng. J. 2020;398:125526. doi: 10.1016/j.cej.2020.125526. DOI
Şanlı S., Durmus A., Ercan N. Isothermal crystallization kinetics of glass fiber and mineral-filled polyamide 6 composites. J. Mater. Sci. 2012;47:3052–3063. doi: 10.1007/s10853-011-6137-9. DOI
Haider A., Haider S., Kang I.K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 2018;11:1165–1188. doi: 10.1016/j.arabjc.2015.11.015. DOI
Shi Q., Zhang Z., Chen T., Lee C. Minimalist and multi-functional human machine interface (HMI) using a flexible wearable triboelectric patch. Nano Energy. 2019;62:355–366. doi: 10.1016/j.nanoen.2019.05.033. DOI
Částková K., Kaštyl J., Sobola D., Petruš J., Šťastná E., Říha D., Tofel P. Structure–Properties Relationship of Electrospun PVDF Fibers. Nanomaterials. 2020;10:1221. doi: 10.3390/nano10061221. PubMed DOI PMC
Misiurev D., Ţălu Ş., Dallaev R., Sobola D., Goncharova M. Preparation of PVDF-CNT composite. E3S Web of Conferences. EDP Sci. 2021;270:245–253. doi: 10.1051/e3sconf/202127001012. DOI
Kaspar P., Sobola D., Částková K., Dallaev R., Šťastná E., Sedlák P., Knápek A., Trčka T., Holcman V. Case Study of Polyvinylidene Fluoride Doping by Carbon Nanotubes. Materials. 2021;14:1428. doi: 10.3390/ma14061428. PubMed DOI PMC
Papež N., Dallaev R., Ţălu Ş., Kaštyl J. Overview of the Current State of Gallium Arsenide-Based Solar Cells. Materials. 2021;14:3075. doi: 10.3390/ma14113075. PubMed DOI PMC
Pisarenko T. Characterization of PVDF nanofibers created by the electrospinning method; Proceedings of the 26th Conference Student EEICT 2020; Brno, Czech Republic. 23 April 2020; pp. 287–291.
Hadaš Z., Rubeš O., Tofel P., Machøu Z., Říha D., Ševeček O., Kaštyl J., Sobola D., Částková K. Proceedings of the 2020 19th International Conference on Mechatronics—Mechatronika, ME 2020. Institute of Electrical and Electronics Engineers Inc.; Prague, Czech Republic: 2020. Piezoelectric PVDF Elements and Systems for Mechanical Engineering Applications. DOI
Sundaray B., Subramanian V., Natarajan T.S., Xiang R.Z., Chang C.C., Fann W.S. Electrospinning of continuous aligned polymer fibers. Appl. Phys. Lett. 2004;84:1222–1224. doi: 10.1063/1.1647685. DOI
Lai C.C., Chen S.Y., Chen M.H., Chen H.L., Hsiao H.T., Liu L.C., Chen C.M. Preparation and characterization of heterocyclic polyamide 6 (PA 6) with high transparencies and low hygroscopicities. J. Mol. Struct. 2019;1175:836–843. doi: 10.1016/j.molstruc.2018.08.032. DOI
Merlini C., Barra G.M., Medeiros Araujo T., Pegoretti A. Electrically pressure sensitive poly(vinylidene fluoride)/polypyrrole electrospun mats. RSC Adv. 2014;4:15749–15758. doi: 10.1039/C4RA01058B. DOI
Sobola D., Kaspar P., Částková K., Dallaev R., Papež N., Sedlák P., Trčka T., Orudzhev F., Kaštyl J., Weiser A., et al. PVDF Fibers Modification by Nitrate Salts Doping. Polymers. 2021;13:2439. doi: 10.3390/polym13152439. PubMed DOI PMC
Table of Elements. 2021. [(accessed on 10 September 2021)]. Available online: https://www.thermofisher.com/cz/en/home/materials-science/learning-center/periodic-table.html.
Smejkalová T., Ţălu Ş., Dallaev R., Částková K., Sobola D., Nazarov A. SEM imaging and XPS characterization of doped PVDF fibers. E3S Web Conf. 2021;270:01011. doi: 10.1051/e3sconf/202127001011. DOI
Pisarenko T. PVDF—An ideal candidate for use in nanogenerators; Proceedings of the 27th Conference STUDENT EEICT 2021; Brno, Czech Republic. 27 April 2021; pp. 275–279.
Kafle B.P. Chemical Analysis and Material Characterization by Spectrophotometry. Elsevier; Amsterdam, The Netherlands: 2020. Raman spectroscopy; pp. 245–268. DOI
Constantino C.J., Job A.E., Simões R.D., Giacometti J.A., Zucolotto V., Oliveira O.N., Gozzi G., Chinaglia D.L. Phase transition in poly(vinylidene fluoride) investigated with micro-Raman spectroscopy. Appl. Spectrosc. 2005;59:275–279. doi: 10.1366/0003702053585336. PubMed DOI
Cai X., Lei T., Sun D., Lin L. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 2017;7:15382–15389. doi: 10.1039/C7RA01267E. DOI
Lovinger A.J. Unit Cell of the γ Phase of Poly(vinylidene fluoride) Macromolecules. 1981;14:322–325. doi: 10.1021/ma50003a018. DOI
Barrau S., Ferri A., Da Costa A., Defebvin J., Leroy S., Desfeux R., Lefebvre J.M. Nanoscale Investigations of α- Furthermore, γ-Crystal Phases in PVDF-Based Nanocomposites. ACS Appl. Mater. Interfaces. 2018;10:13092–13099. doi: 10.1021/acsami.8b02172. PubMed DOI
Tabulka Relativních Permitivit Vybraných Materiálů. 2014. [(accessed on 10 September 2021)]. Available online: https://www.dinel.cz/ke-stazeni/tabulka-relativnich-permitivit.
Puértolas J.A., García-García J.F., Pascual F.J., González-Domínguez J.M., Martínez M.T., Ansón-Casaos A. Dielectric behavior and electrical conductivity of PVDF filled with functionalized single-walled carbon nanotubes. Compos. Sci. Technol. 2017;152:263–274. doi: 10.1016/j.compscitech.2017.09.016. DOI
Sedlák P., Gajdoš A., Macků R., Majzner J., Holcman V., Sedláková V., Kuberský P. The effect of thermal treatment on ac/dc conductivity and current fluctuations of PVDF/NMP/[EMIM][TFSI] solid polymer electrolyte. Sci. Rep. 2020;10:1–12. doi: 10.1038/s41598-020-78363-6. PubMed DOI PMC
Sedlák P., Sobola D., Gajdoš A., Dallaev R., Nebojsa A., Kuberský P. Surface Analyses of PVDF/NMP/[EMIM][TFSI] Solid Polymer Electrolyte. Polymers. 2021;13:2678. doi: 10.3390/polym13162678. PubMed DOI PMC
Yuan X., Zhang Y., Dong C., Sheng J. Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polym. Int. 2004;53:1704–1710. doi: 10.1002/pi.1538. DOI
Papež N., Dallaev R., Kaspar P., Sobola D., Škarvada P., Ţălu Ş., Ramazanov S., Nebojsa A. Characterization of GaAs Solar Cells under Supercontinuum Long-Time Illumination. Materials. 2021;14:461. doi: 10.3390/ma14020461. PubMed DOI PMC
Papež N., Gajdoš A., Sobola D., Dallaev R., Macků R., Škarvada P., Grmela L. Effect of gamma radiation on properties and performance of GaAs based solar cells. Appl. Surf. Sci. 2020;527 doi: 10.1016/j.apsusc.2020.146766. DOI
Piezo-Enhanced Photocatalytic Activity of the Electrospun Fibrous Magnetic PVDF/BiFeO3 Membrane
Comprehensive Characterization of PVDF Nanofibers at Macro- and Nanolevel
Triboelectric Response of Electrospun Stratified PVDF and PA Structures