Structure Tuning and Electrical Properties of Mixed PVDF and Nylon Nanofibers

. 2021 Oct 15 ; 14 (20) : . [epub] 20211015

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34683689

Grantová podpora
FEKT-S-20-6352 Brno University of Technology
FEKT-S-20-6352 Brno University of Technology

The paper specifies the electrostatic spinning process of specific polymeric materials, such as polyvinylidene fluoride (PVDF), polyamide-6 (PA6, Nylon-6) and their combination PVDF/PA6. By combining nanofibers from two different materials during the spinning process, new structures with different mechanical, chemical, and physical properties can be created. The materials and their combinations were subjected to several measurements: scanning electron microscopy (SEM) to capture topography; contact angle of the liquid wettability on the sample surface to observe hydrophobicity and hydrophilicity; crystallization events were determined by differential scanning calorimetry (DSC); X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and Fourier-transform infrared spectroscopy (FT-IR) to describe properties and their changes at the chemical level. Furthermore, for the electrical properties of the sample, the dielectric characteristics and the piezoelectric coefficient were measured. The advantage of the addition of co-polymers was to control the properties of PVDF samples and understand the reasons for the changed functionality. The innovation point of this work is the complex analysis of PVDF modification caused by mixing with nylon PA6. Here we emphasize that the application of nylon during the spin influences the properties and structure (polarization, crystallization) of PVDF.

Zobrazit více v PubMed

Pan M., Yuan C., Liang X., Zou J., Zhang Y., Bowen C. Triboelectric and Piezoelectric Nanogenerators for Future Soft Robots and Machines. Iscience. 2020;67:101682. doi: 10.1016/j.isci.2020.101682. PubMed DOI PMC

Mao H., Zhang T., Huang T., Zhang N., Wang Y., Yang J. Fabrication of high-k poly(vinylidene fluoride)/Nylon 6/carbon nanotube nanocomposites through selective localization of carbon nanotubes in blends. Polym. Int. 2017;66:604–611. doi: 10.1002/pi.5302. DOI

Scheinbeim J.I., Gao Q. High-temperature stable piezoelectric PVDF/Nylon 11 powder blend films; Proceedings of the Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices; Newport Beach, CA, USA. 16 July 2001; p. 131. DOI

Sezer N., Koç M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy. 2021;80:105567. doi: 10.1016/j.nanoen.2020.105567. DOI

Peng H., Sun X., Weng W., Fang X. Polymer Materials for Energy and Electronic Applications. Academic Press; Cambridge, MA, USA: 2017.

Pu X., Zha J.W., Zhao C.L., Gong S.B., Gao J.F., Li R.K. Flexible PVDF/nylon-11 electrospun fibrous membranes with aligned ZnO nanowires as potential triboelectric nanogenerators. Chem. Eng. J. 2020;398:125526. doi: 10.1016/j.cej.2020.125526. DOI

Şanlı S., Durmus A., Ercan N. Isothermal crystallization kinetics of glass fiber and mineral-filled polyamide 6 composites. J. Mater. Sci. 2012;47:3052–3063. doi: 10.1007/s10853-011-6137-9. DOI

Haider A., Haider S., Kang I.K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 2018;11:1165–1188. doi: 10.1016/j.arabjc.2015.11.015. DOI

Shi Q., Zhang Z., Chen T., Lee C. Minimalist and multi-functional human machine interface (HMI) using a flexible wearable triboelectric patch. Nano Energy. 2019;62:355–366. doi: 10.1016/j.nanoen.2019.05.033. DOI

Částková K., Kaštyl J., Sobola D., Petruš J., Šťastná E., Říha D., Tofel P. Structure–Properties Relationship of Electrospun PVDF Fibers. Nanomaterials. 2020;10:1221. doi: 10.3390/nano10061221. PubMed DOI PMC

Misiurev D., Ţălu Ş., Dallaev R., Sobola D., Goncharova M. Preparation of PVDF-CNT composite. E3S Web of Conferences. EDP Sci. 2021;270:245–253. doi: 10.1051/e3sconf/202127001012. DOI

Kaspar P., Sobola D., Částková K., Dallaev R., Šťastná E., Sedlák P., Knápek A., Trčka T., Holcman V. Case Study of Polyvinylidene Fluoride Doping by Carbon Nanotubes. Materials. 2021;14:1428. doi: 10.3390/ma14061428. PubMed DOI PMC

Papež N., Dallaev R., Ţălu Ş., Kaštyl J. Overview of the Current State of Gallium Arsenide-Based Solar Cells. Materials. 2021;14:3075. doi: 10.3390/ma14113075. PubMed DOI PMC

Pisarenko T. Characterization of PVDF nanofibers created by the electrospinning method; Proceedings of the 26th Conference Student EEICT 2020; Brno, Czech Republic. 23 April 2020; pp. 287–291.

Hadaš Z., Rubeš O., Tofel P., Machøu Z., Říha D., Ševeček O., Kaštyl J., Sobola D., Částková K. Proceedings of the 2020 19th International Conference on Mechatronics—Mechatronika, ME 2020. Institute of Electrical and Electronics Engineers Inc.; Prague, Czech Republic: 2020. Piezoelectric PVDF Elements and Systems for Mechanical Engineering Applications. DOI

Sundaray B., Subramanian V., Natarajan T.S., Xiang R.Z., Chang C.C., Fann W.S. Electrospinning of continuous aligned polymer fibers. Appl. Phys. Lett. 2004;84:1222–1224. doi: 10.1063/1.1647685. DOI

Lai C.C., Chen S.Y., Chen M.H., Chen H.L., Hsiao H.T., Liu L.C., Chen C.M. Preparation and characterization of heterocyclic polyamide 6 (PA 6) with high transparencies and low hygroscopicities. J. Mol. Struct. 2019;1175:836–843. doi: 10.1016/j.molstruc.2018.08.032. DOI

Merlini C., Barra G.M., Medeiros Araujo T., Pegoretti A. Electrically pressure sensitive poly(vinylidene fluoride)/polypyrrole electrospun mats. RSC Adv. 2014;4:15749–15758. doi: 10.1039/C4RA01058B. DOI

Sobola D., Kaspar P., Částková K., Dallaev R., Papež N., Sedlák P., Trčka T., Orudzhev F., Kaštyl J., Weiser A., et al. PVDF Fibers Modification by Nitrate Salts Doping. Polymers. 2021;13:2439. doi: 10.3390/polym13152439. PubMed DOI PMC

Table of Elements. 2021. [(accessed on 10 September 2021)]. Available online: https://www.thermofisher.com/cz/en/home/materials-science/learning-center/periodic-table.html.

Smejkalová T., Ţălu Ş., Dallaev R., Částková K., Sobola D., Nazarov A. SEM imaging and XPS characterization of doped PVDF fibers. E3S Web Conf. 2021;270:01011. doi: 10.1051/e3sconf/202127001011. DOI

Pisarenko T. PVDF—An ideal candidate for use in nanogenerators; Proceedings of the 27th Conference STUDENT EEICT 2021; Brno, Czech Republic. 27 April 2021; pp. 275–279.

Kafle B.P. Chemical Analysis and Material Characterization by Spectrophotometry. Elsevier; Amsterdam, The Netherlands: 2020. Raman spectroscopy; pp. 245–268. DOI

Constantino C.J., Job A.E., Simões R.D., Giacometti J.A., Zucolotto V., Oliveira O.N., Gozzi G., Chinaglia D.L. Phase transition in poly(vinylidene fluoride) investigated with micro-Raman spectroscopy. Appl. Spectrosc. 2005;59:275–279. doi: 10.1366/0003702053585336. PubMed DOI

Cai X., Lei T., Sun D., Lin L. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 2017;7:15382–15389. doi: 10.1039/C7RA01267E. DOI

Lovinger A.J. Unit Cell of the γ Phase of Poly(vinylidene fluoride) Macromolecules. 1981;14:322–325. doi: 10.1021/ma50003a018. DOI

Barrau S., Ferri A., Da Costa A., Defebvin J., Leroy S., Desfeux R., Lefebvre J.M. Nanoscale Investigations of α- Furthermore, γ-Crystal Phases in PVDF-Based Nanocomposites. ACS Appl. Mater. Interfaces. 2018;10:13092–13099. doi: 10.1021/acsami.8b02172. PubMed DOI

Tabulka Relativních Permitivit Vybraných Materiálů. 2014. [(accessed on 10 September 2021)]. Available online: https://www.dinel.cz/ke-stazeni/tabulka-relativnich-permitivit.

Puértolas J.A., García-García J.F., Pascual F.J., González-Domínguez J.M., Martínez M.T., Ansón-Casaos A. Dielectric behavior and electrical conductivity of PVDF filled with functionalized single-walled carbon nanotubes. Compos. Sci. Technol. 2017;152:263–274. doi: 10.1016/j.compscitech.2017.09.016. DOI

Sedlák P., Gajdoš A., Macků R., Majzner J., Holcman V., Sedláková V., Kuberský P. The effect of thermal treatment on ac/dc conductivity and current fluctuations of PVDF/NMP/[EMIM][TFSI] solid polymer electrolyte. Sci. Rep. 2020;10:1–12. doi: 10.1038/s41598-020-78363-6. PubMed DOI PMC

Sedlák P., Sobola D., Gajdoš A., Dallaev R., Nebojsa A., Kuberský P. Surface Analyses of PVDF/NMP/[EMIM][TFSI] Solid Polymer Electrolyte. Polymers. 2021;13:2678. doi: 10.3390/polym13162678. PubMed DOI PMC

Yuan X., Zhang Y., Dong C., Sheng J. Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polym. Int. 2004;53:1704–1710. doi: 10.1002/pi.1538. DOI

Papež N., Dallaev R., Kaspar P., Sobola D., Škarvada P., Ţălu Ş., Ramazanov S., Nebojsa A. Characterization of GaAs Solar Cells under Supercontinuum Long-Time Illumination. Materials. 2021;14:461. doi: 10.3390/ma14020461. PubMed DOI PMC

Papež N., Gajdoš A., Sobola D., Dallaev R., Macků R., Škarvada P., Grmela L. Effect of gamma radiation on properties and performance of GaAs based solar cells. Appl. Surf. Sci. 2020;527 doi: 10.1016/j.apsusc.2020.146766. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...