Triboelectric Response of Electrospun Stratified PVDF and PA Structures

. 2022 Jan 22 ; 12 (3) : . [epub] 20220122

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35159697

Grantová podpora
19-17457S Grant Agency of 315 Czech Republic
19-17457S Grant Agency of Czech Republic
19-17457S. Grant Agency of Czech Republic

Utilizing the triboelectric effect of the fibrous structure, a very low cost and straightforward sensor or an energy harvester can be obtained. A device of this kind can be flexible and, moreover, it can exhibit a better output performance than a device based on the piezoelectric effect. This study is concerned with comparing the properties of triboelectric devices prepared from polyvinylidene fluoride (PVDF) fibers, polyamide 6 (PA) fibers, and fibrous structures consisting of a combination of these two materials. Four types of fibrous structures were prepared, and then their potential for use in triboelectric devices was tested. Namely, individual fibrous mats of (i) PVDF and (ii) PA fibers, and their combination-(iii) PVDF and PA fibers intertwined together. Finally, the fourth kind was (iv), a stratified three-layer structure, where the middle layer from PVDF and PA intertwined fibers was covered by PVDF fibrous layer on one side and by PA fibrous layer on the opposite side. Dielectric properties were examined and the triboelectric response was investigated in a simple triboelectric nanogenerator (TENG) of individual or combined (i-iv) fibrous structures. The highest triboelectric output voltage was observed for the stratified three-layer structure (the structure of iv type) consisting of PVDF and PA individual and intertwined fibrous layers. This TENG generated 3.5 V at peak of amplitude at 6 Hz of excitation frequency and was most sensitive at the excitation signal. The second highest triboelectric response was observed for the individual PVDF fibrous mat, generating 2.8 V at peak at the same excitation frequency. The uniqueness of this work lies in the dielectric and triboelectric evaluation of the fibrous structures, where the materials PA and PVDF were electrospun simultaneously with two needles and thus created a fibrous composite. The structures showed a more effective triboelectric response compared to the fibrous structure electrospun by one needle.

Zobrazit více v PubMed

Xiong J., Lee P.S. Progress on wearable triboelectric nanogenerators in shapes of fiber, yarn, and textile. Sci. Technol. Adv. Mater. 2019;20:837–857. doi: 10.1080/14686996.2019.1650396. PubMed DOI PMC

Xia K., Wu D., Fu J., Hoque N.A., Ye Y., Xu Z. A high-output triboelectric nanogenerator based on nickel–copper bimetallic hydroxide nanowrinkles for self-powered wearable electronics. J. Mater. Chem. A. 2020;8:25995–26003. doi: 10.1039/D0TA09440D. DOI

Zhang P., Zhang Z., Cai J. A foot pressure sensor based on triboelectric nanogenerator for human motion monitoring. Microsyst. Technol. 2021;27:3507–3512. doi: 10.1007/s00542-020-05199-5. DOI

Heo D., Chung J., Kim B., Yong H., Shin G., Cho J.W., Kim D., Lee S. Triboelectric speed bump as a self-powered automobile warning and velocity sensor. Nano Energy. 2020;72:104719. doi: 10.1016/j.nanoen.2020.104719. DOI

Chen T., Shi Q., Li K., Yang Z., Liu H., Sun L., Dziuban J.A., Lee C. Investigation of position sensing and energy harvesting of a flexible triboelectric touch pad. Nanomaterials. 2018;8:613. doi: 10.3390/nano8080613. PubMed DOI PMC

Ibrahim A., Ramini A., Towfighian S. Triboelectric energy harvester with large bandwidth under harmonic and random excitations. Energy Rep. 2020;6:2490–2502. doi: 10.1016/j.egyr.2020.09.007. DOI

Ghosh R., Pin K.Y., Reddy V.S., Jayathilaka W.A., Ji D., Serrano-García W., Bhargava S.K., Ramakrishna S., Chinnappan A. Micro/nanofiber-based noninvasive devices for health monitoring diagnosis and rehabilitation. Appl. Phys. Rev. 2020;7:041309. doi: 10.1063/5.0010766. DOI

Elahi H., Munir K., Eugeni M., Atek S., Gaudenzi P. Energy harvesting towards self-powered iot devices. Energies. 2020;13:5528. doi: 10.3390/en13215528. DOI

Chen H., Xing C., Li Y., Wang J., Xu Y. Triboelectric nanogenerators for a macro-scale blue energy harvesting and self-powered marine environmental monitoring system. Sustain. Energy Fuels. 2020;4:1063–1077. doi: 10.1039/C9SE01184F. DOI

Gu G.Q., Han C.B., Lu C.X., He C., Jiang T., Gao Z.L., Li C.J., Wang Z.L. Triboelectric Nanogenerator Enhanced Nanofiber Air Filters for Efficient Particulate Matter Removal. ACS Nano. 2017;11:6211–6217. doi: 10.1021/acsnano.7b02321. PubMed DOI

Ghatak B., Banerjee S., Ali S.B., Bandyopadhyay R., Das N., Mandal D., Tudu B. Design of a self-powered triboelectric face mask. Nano Energy. 2021;79:105387. doi: 10.1016/j.nanoen.2020.105387. PubMed DOI PMC

Shi L., Jin H., Dong S., Huang S., Kuang H., Xu H., Chen J., Xuan W., Zhang S., Li S., et al. High-performance triboelectric nanogenerator based on electrospun PVDF-graphene nanosheet composite nanofibers for energy harvesting. Nano Energy. 2021;80:105599. doi: 10.1016/j.nanoen.2020.105599. DOI

Rodrigues C., Nunes D., Clemente D., Mathias N., Correia J.M., Rosa-Santos P., Taveira-Pinto F., Morais T., Pereira A., Ventura J. Emerging triboelectric nanogenerators for ocean wave energy harvesting: State of the art and future perspectives. Energy Environ. Sci. 2020;13:2657–2683. doi: 10.1039/D0EE01258K. DOI

Zou H., Zhang Y., Guo L., Wang P., He X., Dai G., Zheng H., Chen C., Wang A.C., Xu C., et al. Quantifying the triboelectric series. Nat. Commun. 2019;10:1427. doi: 10.1038/s41467-019-09461-x. PubMed DOI PMC

Wang Z.L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano. 2013;7:9533–9557. doi: 10.1021/nn404614z. PubMed DOI

Kim Y.J., Lee J., Park S., Park C., Park C., Choi H.J. Effect of the relative permittivity of oxides on the performance of triboelectric nanogenerators. RSC Adv. 2017;7:49368–49373. doi: 10.1039/C7RA07274K. DOI

Dhakar L. Triboelectric Devices for Power Generation and Self-Powered Sensing Applications. Springer; Singapore: 2017. DOI

Částková K., Kaštyl J., Sobola D., Petruš J., Šťastná E., Říha D., Tofel P. Structure–Properties Relationship of Electrospun PVDF Fibers. Nanomaterials. 2020;10:1221. doi: 10.3390/nano10061221. PubMed DOI PMC

Sobola D., Kaspar P., Částková K., Dallaev R., Papež N., Sedlák P., Trčka T., Orudzhev F., Kaštyl J., Weiser A., et al. PVDF Fibers Modification by Nitrate Salts Doping. Polymers. 2021;13:2439. doi: 10.3390/polym13152439. PubMed DOI PMC

Černohorský P., Pisarenko T., Papež N., Sobola D., Ţălu Ş., Částková K., Kaštyl J., Macků R., Škarvada P., Sedlák P. Structure Tuning and Electrical Properties of Mixed PVDF and Nylon Nanofibers. Materials. 2021;14:6096. doi: 10.3390/ma14206096. PubMed DOI PMC

Kaspar P., Sobola D., Částková K., Knápek A., Burda D., Orudzhev F., Dallaev R., Tofel P., Trčka T., Grmela L., et al. Characterization of Polyvinylidene Fluoride (PVDF) Electrospun Fibers Doped by Carbon Flakes. Polymers. 2020;12:2766. doi: 10.3390/polym12122766. PubMed DOI PMC

Wang W., Wang H., Wang H., Jin X., Li J., Zhu Z. Electrospinning preparation of a large surface area, hierarchically porous, and interconnected carbon nanofibrous network using polysulfone as a sacrificial polymer for high performance supercapacitors. RSC Adv. 2018;8:28480–28486. doi: 10.1039/C8RA05957H. PubMed DOI PMC

Chen F., Wu Y., Ding Z., Xia X., Li S., Zheng H., Diao C., Yue G., Zi Y. A novel triboelectric nanogenerator based on electrospun polyvinylidene fluoride nanofibers for effective acoustic energy harvesting and self-powered multifunctional sensing. Nano Energy. 2019;56:241–251. doi: 10.1016/j.nanoen.2018.11.041. DOI

Garain S., Jana S., Sinha T.K., Mandal D. Design of in Situ Poled Ce3+-Doped Electrospun PVDF/Graphene Composite Nanofibers for Fabrication of Nanopressure Sensor and Ultrasensitive Acoustic Nanogenerator. ACS Appl. Mater. Interfaces. 2016;8:4532–4540. doi: 10.1021/acsami.5b11356. PubMed DOI

Mi H.Y., Jing X., Zheng Q., Fang L., Huang H.X., Turng L.S., Gong S. High-performance flexible triboelectric nanogenerator based on porous aerogels and electrospun nanofibers for energy harvesting and sensitive self-powered sensing. Nano Energy. 2018;48:327–336. doi: 10.1016/j.nanoen.2018.03.050. DOI

Gasparini C., Aluigi A., Pace G., Molina-García M.A., Treossi E., Ruani G., Candini A., Melucci M., Bettin C., Bonaccorso F., et al. Enhancing triboelectric performances of electrospun poly(vinylidene fluoride) with graphene oxide sheets. Graphene Technol. 2020;5:49–57. doi: 10.1007/s41127-020-00038-w. DOI

Ţălu Ş. Micro and Nanoscale Characterization of Three Dimensional Surfaces: Basics and Applications. Napoca Star Publishing House; Cluj-Napoca, Romania: 2015.

Zhang F., Li B., Zheng J., Xu C. Facile Fabrication of Micro-Nano Structured Triboelectric Nanogenerator with High Electric Output. Nanoscale Res. Lett. 2015;10:4–9. doi: 10.1186/s11671-015-1001-5. PubMed DOI PMC

Yu J., Hou X., He J., Cui M., Wang C., Geng W., Mu J., Han B., Chou X. Ultra-flexible and high-sensitive triboelectric nanogenerator as electronic skin for self-powered human physiological signal monitoring. Nano Energy. 2020;69:104437. doi: 10.1016/j.nanoen.2019.104437. DOI

Feng Y., Zheng Y., Zhang G., Wang D., Zhou F., Liu W. A new protocol toward high output TENG with polyimide as charge storage layer. Nano Energy. 2017;38:467–476. doi: 10.1016/j.nanoen.2017.06.017. DOI

Kim D.W., Lee J.H., You I., Kim J.K., Jeong U. Adding a stretchable deep-trap interlayer for high-performance stretchable triboelectric nanogenerators. Nano Energy. 2018;50:192–200. doi: 10.1016/j.nanoen.2018.05.041. DOI

Chen A., Zhang C., Zhu G., Wang Z.L. Polymer Materials for High-Performance Triboelectric Nanogenerators. Adv. Sci. 2020;7:1–25. doi: 10.1002/advs.202000186. PubMed DOI PMC

Garcia C., Trendafilova I., de Villoria R.G., del Rio J.S. Self-powered pressure sensor based on the triboelectric effect and its analysis using dynamic mechanical analysis. Nano Energy. 2018;50:401–409. doi: 10.1016/j.nanoen.2018.05.046. DOI

Wu C., Wang A.C., Ding W., Guo H., Wang Z.L. Triboelectric Nanogenerator: A Foundation of the Energy for the New Era. Adv. Energy Mater. 2019;9:1802906. doi: 10.1002/aenm.201802906. DOI

Taghavi M., Beccai L. A contact-key triboelectric nanogenerator: Theoretical and experimental study on motion speed influence. Nano Energy. 2015;18:283–292. doi: 10.1016/j.nanoen.2015.10.019. DOI

Niu S., Wang S., Lin L., Liu Y., Zhou Y.S., Hu Y., Wang Z.L. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 2013;6:3576. doi: 10.1039/c3ee42571a. DOI

Zhang H., Yao L., Quan L., Zheng X. Theories for triboelectric nanogenerators: A comprehensive review. Nanotechnol. Rev. 2020;9:610–625. doi: 10.1515/ntrev-2020-0049. DOI

Smejkalová T., Ţălu Ş., Dallaev R., Částková K., Sobola D., Nazarov A. SEM imaging and XPS characterization of doped PVDF fibers. E3S Web Conf. 2021;270:01011. doi: 10.1051/e3sconf/202127001011. DOI

Misiurev D., Ţălu Ş., Dallaev R., Sobola D., Goncharova M. E3S Web of Conferences. Volume 270. EDP Sciences; Les Ulis, France: 2021. Preparation of PVDF-CNT composite; p. 01012. DOI

Roscow J.I., Lewis R.W., Taylor J., Bowen C.R. Modelling and fabrication of porous sandwich layer barium titanate with improved piezoelectric energy harvesting figures of merit. Acta Mater. 2017;128:207–217. doi: 10.1016/j.actamat.2017.02.029. DOI

Tong J., Zhang H., Li W., Chen H., Wang D., Hu M., Wang Z. Simultaneously improving thermal conductivity and dielectric properties of poly(vinylidene fluoride)/expanded graphite via melt blending with polyamide 6. J. Appl. Polym. Sci. 2021;138:51354. doi: 10.1002/app.51354. DOI

Song Y., Shen Y., Hu P., Lin Y., Li M., Nan C.W. Significant enhancement in energy density of polymer composites induced by dopamine-modified Ba 0.6Sr 0.4TiO 3 nanofibers. Appl. Phys. Lett. 2012;101:152904. doi: 10.1063/1.4760228. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Correlation of Dielectric Properties and Vibrational Spectra of Composite PVDF/Salt Fibers

. 2024 Aug 26 ; 16 (17) : . [epub] 20240826

Solvent Evaporation Rate as a Tool for Tuning the Performance of a Solid Polymer Electrolyte Gas Sensor

. 2022 Nov 06 ; 14 (21) : . [epub] 20221106

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...