Solvent Evaporation Rate as a Tool for Tuning the Performance of a Solid Polymer Electrolyte Gas Sensor
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
18-19104S
Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_026/0008382
European Development Fund OP RDE
PubMed
36365751
PubMed Central
PMC9658810
DOI
10.3390/polym14214758
PII: polym14214758
Knihovny.cz E-resources
- Keywords
- gas sensor, ionic liquid, noise spectroscopy, solid polymer electrolyte,
- Publication type
- Journal Article MeSH
Solid polymer electrolytes show their potential to partially replace conventional electrolytes in electrochemical devices. The solvent evaporation rate represents one of many options for modifying the electrode-electrolyte interface by affecting the structural and electrical properties of polymer electrolytes used in batteries. This paper evaluates the effect of solvent evaporation during the preparation of solid polymer electrolytes on the overall performance of an amperometric gas sensor. A mixture of the polymer host, solvent and an ionic liquid was thermally treated under different evaporation rates to prepare four polymer electrolytes. A carbon nanotube-based working electrode deposited by spray-coating the polymer electrolyte layer allowed the preparation of the electrode-electrolyte interface with different morphologies, which were then investigated using scanning electron microscopy and Raman spectroscopy. All prepared sensors were exposed to nitrogen dioxide concentration of 0-10 ppm, and the current responses and their fluctuations were analyzed. Electrochemical impedance spectroscopy was used to describe the sensor with an equivalent electric circuit. Experimental results showed that a higher solvent evaporation rate leads to lower sensor sensitivity, affects associated parameters (such as the detection/quantification limit) and increases the limit of the maximum current flowing through the sensor, while the other properties (hysteresis, repeatability, response time, recovery time) change insignificantly.
See more in PubMed
Ye Y.-S., Rick J., Hwang B.-J. Ionic liquid polymer electrolytes. J. Mater. Chem. A. 2013;1:2719–2743. doi: 10.1039/C2TA00126H. DOI
Correia D.M., Fernandes L.C., Martins P.M., García-Astrain C., Costa C.M., Reguera J., Lanceros-Méndez S. Ionic Liquid–Polymer Composites: A New Platform for Multifunctional Applications. Adv. Funct. Mater. 2020;30:1909736. doi: 10.1002/adfm.201909736. DOI
Josef E., Yan Y., Stan M.C., Wellmann J., Vizintin A., Winter M., Johansson P., Dominko R., Guterman R. Ionic Liquids and their Polymers in Lithium-Sulfur Batteries. Isr. J. Chem. 2019;59:832–842. doi: 10.1002/ijch.201800159. DOI
Austin Suthanthiraraj S., Johnsi M. Nanocomposite polymer electrolytes. Ionics (Kiel) 2017;23:2531–2542. doi: 10.1007/s11581-016-1924-6. DOI
Xia W., Zhang Z. PVDF-based dielectric polymers and their applications in electronic materials. IET Nanodielectrics. 2018;1:17–31. doi: 10.1049/iet-nde.2018.0001. DOI
Kammoun M., Berg S., Ardebili H. Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte. Nanoscale. 2015;7:17516–17522. doi: 10.1039/C5NR04339E. PubMed DOI
Korotcenkov G., Cho B.K. Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey) Sens. Actuators B Chem. 2011;156:527–538. doi: 10.1016/j.snb.2011.02.024. DOI
Varshney P.K., Gupta S. Natural polymer-based electrolytes for electrochemical devices: A review. Ionics (Kiel) 2011;17:479–483. doi: 10.1007/s11581-011-0563-1. DOI
Sedlak P., Gajdos A., Macku R., Majzner J., Sedlakova V., Holcman V., Kuberský P. The effect of thermal treatment on ac/dc conductivity and current fluctuations of PVDF/NMP/[EMIM][TFSI] solid polymer electrolyte. Sci. Rep. 2020;10:21140. doi: 10.1038/s41598-020-78363-6. PubMed DOI PMC
Wang F., Li L., Yang X., You J., Xu Y., Wang H., Ma Y., Gao G. Influence of additives in a PVDF-based solid polymer electrolyte on conductivity and Li-ion battery performance. Sustain. Energy Fuels. 2018;2:492–498. doi: 10.1039/C7SE00441A. DOI
Subba Reddy C.V., Chen M., Jin W., Zhu Q.Y., Chen W., Mho S. Il Characterization of (PVDF + LiFePO4) solid polymer electrolyte. J. Appl. Electrochem. 2007;37:637–642. doi: 10.1007/s10800-007-9294-4. DOI
Tjong S.C., Li Y.C., Li R.K.Y. Frequency and temperature dependences of dielectric dispersion and electrical properties of polyvinylidene fluoride/expanded graphite composites. J. Nanomater. 2010;2010
Puértolas J.A., García-García J.F., Pascual F.J., González-Domínguez J.M., Martínez M.T., Ansón-Casaos A. Dielectric behavior and electrical conductivity of PVDF filled with functionalized single-walled carbon nanotubes. Compos. Sci. Technol. 2017;152:263–274. doi: 10.1016/j.compscitech.2017.09.016. DOI
Li X., Xuan T., Yin G., Gao Z., Zhao K., Yan P., He D. Highly sensitive amperometric CO sensor using nanocomposite C-loaded PdCl2–CuCl2 as sensing electrode materials. J. Alloys Compd. 2015;645:553–558. doi: 10.1016/j.jallcom.2015.04.110. DOI
Tofel P., Částková K., Říha D., Sobola D., Papež N., Kaštyl J., Ţălu Ş., Hadaš Z. Triboelectric Response of Electrospun Stratified PVDF and PA Structures. Nanomaterials. 2022;12:349. doi: 10.3390/nano12030349. PubMed DOI PMC
Černohorský P., Pisarenko T., Papež N., Sobola D., Ţălu Ş., Částková K., Kaštyl J., Macků R., Škarvada P., Sedlák P. Structure Tuning and Electrical Properties of Mixed PVDF and Nylon Nanofibers. Materials. 2021;14:6096. doi: 10.3390/ma14206096. PubMed DOI PMC
Nespurek S., Mracek L., Kubersky P., Syrovy T., Hamacek A. Ionic liquids in electrochemical gas sensors and transistors. Mol. Cryst. Liq. Cryst. 2019;694:1–20. doi: 10.1080/15421406.2020.1723892. DOI
Ohno H. Electrochemical Aspects of Ionic Liquids. 2nd ed. Wiley; Hoboken, NJ, USA: 2011.
Torriero A.A.J., Shiddiky M.J.A. Electrochemical Properties and Applications of Ionic Liquids. Nova Science; Hauppauge, NY, USA: 2011.
Kirchner B., Perlt E. Ionic Liquids II. Springer International Publishing; Cham, Switzerland: 2018. Topics in Current Chemistry Collections.
Paluch M. Dielectric Properties of Ionic Liquids. Springer International Publishing; Cham, Switzerland: 2016.
Brandt A., Pohlmann S., Varzi A., Balducci A., Passerini S. Ionic liquids in supercapacitors. MRS Bull. 2013;38:554–559. doi: 10.1557/mrs.2013.151. DOI
Kuberský P., Navrátil J., Syrový T., Sedlák P., Nešpůrek S., Hamáček A. An Electrochemical Amperometric Ethylene Sensor with Solid Polymer Electrolyte Based on Ionic Liquid. Sensors. 2021;21:711. doi: 10.3390/s21030711. PubMed DOI PMC
Kuberský P., Altšmíd J., Hamáček A., Nešpůrek S., Zmeškal O. An electrochemical NO2 sensor based on ionic liquid: Influence of the morphology of the polymer electrolyte on sensor sensitivity. Sensors. 2015;15:28421–28434. doi: 10.3390/s151128421. PubMed DOI PMC
Luo R., Li H., Du B., Zhou S., Chen Y. A printed and flexible NO2 sensor based on a solid polymer electrolyte. Front. Chem. 2019;7:286. doi: 10.3389/fchem.2019.00286. PubMed DOI PMC
Luo R., Li Q., Du B., Zhou S., Chen Y. Preparation and Characterization of Solid Electrolyte Doped With Carbon Nanotubes and its Preliminary Application in NO2 Gas Sensors. Front. Mater. 2019;6:113. doi: 10.3389/fmats.2019.00113. DOI
Luo R., Jiang H., Du B., Zhou S., Zhu Y. Preparation and application of solid polymer electrolyte based on deep eutectic solvent. AIP Adv. 2019;9:035341. doi: 10.1063/1.5086820. DOI
Nádherná M., Opekar F., Reiter J. Ionic liquid–polymer electrolyte for amperometric solid-state NO2 sensor. Electrochim. Acta. 2011;56:5650–5655. doi: 10.1016/j.electacta.2011.04.022. DOI
Strzelczyk A., Jasinski G., Chachulski B. Investigation of solid polymer electrolyte gas sensor with different electrochemical techniques. IOP Conf. Ser. Mater. Sci. Eng. 2016;104:012029. doi: 10.1088/1757-899X/104/1/012029. DOI
Dosi M., Lau I., Zhuang Y., Simakov D.S.A., Fowler M.W., Pope M.A. Ultrasensitive Electrochemical Methane Sensors Based on Solid Polymer Electrolyte-Infused Laser-Induced Graphene. ACS Appl. Mater. Interfaces. 2019;11:6166–6173. doi: 10.1021/acsami.8b22310. PubMed DOI
Satapathy S., Pawar S., Gupta P.K., RVarma K.B. Effect of annealing on phase transition in poly(vinylidene fluoride) films prepared using polar solvent. Bull. Mater. Sci. 2011;34:727–733. doi: 10.1007/s12034-011-0187-0. DOI
Ting Y., Suprapto, Bunekar N., Sivasankar K., Aldori Y.R. Using Annealing Treatment on Fabrication Ionic Liquid-Based PVDF Films. Coatings. 2020;10:44. doi: 10.3390/coatings10010044. DOI
Xu P., Fu W., Hu Y., Ding Y. Effect of annealing treatment on crystalline and dielectric properties of PVDF/PEG-containing ionic liquid composites. Compos. Sci. Technol. 2018;158:1–8. doi: 10.1016/j.compscitech.2018.01.039. DOI
Gregorio R., Borges D.S. Effect of crystallization rate on the formation of the polymorphs of solution cast poly(vinylidene fluoride) Polymer. 2008;49:4009–4016. doi: 10.1016/j.polymer.2008.07.010. DOI
Dong Z., Zhang Q., Yu C., Peng J., Ma J., Ju X., Zhai M. Effect of ionic liquid on the properties of poly(vinylidene fluoride)-based gel polymer electrolytes. Ionics (Kiel) 2013;19:1587–1593. doi: 10.1007/s11581-013-0905-2. DOI
Correia D.M., Costa C.M., Rodríguez-Hernández J.C., Tort Ausina I., Biosca L.T., Torregrosa Cabanilles C., Meseguer-Duenãs J.M., Lanceros-Méndez S., Gomez Ribelles J.L. Effect of Ionic Liquid Content on the Crystallization Kinetics and Morphology of Semicrystalline Poly(vinylidene Fluoride)/Ionic Liquid Blends. Cryst. Growth Des. 2020;20:4967–4979. doi: 10.1021/acs.cgd.0c00042. DOI
Sedlak P., Sobola D., Gajdos A., Dallaev R., Nebojsa A., Kubersky P. Surface analyses of PVDF/NMP/[EMIM][TFSI] solid polymer electrolyte. Polymers. 2021;13:2678. doi: 10.3390/polym13162678. PubMed DOI PMC
Altšmíd J., Syrový T., Syrová L., Kuberský P., Hamáček A., Zmeškal O., Nešpůrek S. Ionic Liquid based polymer electrolytes for electrochemical sensors. Mater. Sci. 2015;21:415–418. doi: 10.5755/j01.ms.21.3.7371. DOI
Luo R., Wu Y., Li Q., Du B., Zhou S., Li H. Rational synthesis and characterization of IL-CNTs-PANI microporous polymer electrolyte film. Synth. Met. 2021;274:116720. doi: 10.1016/j.synthmet.2021.116720. DOI
Kuberský P., Sedlák P., Hamáček A., Nešpůrek S., Kuparowitz T., Šikula J., Majzner J., Sedlaková V., Grmela L., Syrový T. Quantitative fluctuation-enhanced sensing in amperometric NO2 sensors. Chem. Phys. 2015;456:111–117. doi: 10.1016/j.chemphys.2014.10.021. DOI
Sedlák P., Kuberský P., Mívalt F. Effect of various flow rate on current fluctuations of amperometric gas sensors. Sens. Actuators B Chem. 2019;283:321–328. doi: 10.1016/j.snb.2018.12.006. DOI
Sedlák P., Kuberský P. The Effect of the Orientation Towards Analyte Flow on Electrochemical Sensor Performance and Current Fluctuations. Sensors. 2020;20:1038. doi: 10.3390/s20041038. PubMed DOI PMC
Kuberský P., Hamáček A., Nešpůrek S., Soukup R., Vik R. Effect of the geometry of a working electrode on the behavior of a planar amperometric NO2 sensor based on solid polymer electrolyte. Sens. Actuators B Chem. 2013;187:546–552. doi: 10.1016/j.snb.2013.03.081. DOI
Sedlak P., Kubersky P., Skarvada P., Hamacek A., Sedlakova V., Majzner J., Nespurek S., Sikula J. Current Fluctuation Measurements of Amperometric Gas Sensors Constructed with Three Different Technology Procedures. Metrol. Meas. Syst. 2016;23:531–543. doi: 10.1515/mms-2016-0042. DOI
Kuberský P., Syrový T., Hamáček A., Nešpůrek S., Syrová L. Towards a fully printed electrochemical NO2 sensor on a flexible substrate using ionic liquid based polymer electrolyte. Sens. Actuators B Chem. 2015;209:1084–1090. doi: 10.1016/j.snb.2014.12.116. DOI
Ahmadi M.M., Jullien G.A. Current-Mirror-Based Potentiostats for Three-Electrode Amperometric Electrochemical Sensors. IEEE Trans. Circuits Syst. I Regul. Pap. 2009;56:1339–1348. doi: 10.1109/TCSI.2008.2005927. DOI
Cui Z., Hassankiadeh N.T., Zhuang Y., Drioli E., Lee Y.M. Crystalline polymorphism in poly(vinylidenefluoride) membranes. Prog. Polym. Sci. 2015;51:94–126. doi: 10.1016/j.progpolymsci.2015.07.007. DOI
California A., Cardoso V.F., Costa C.M., Sencadas V., Botelho G., Gómez-Ribelles J.L., Lanceros-Mendez S. Tailoring porous structure of ferroelectric poly(vinylidene fluoride-trifluoroethylene) by controlling solvent/polymer ratio and solvent evaporation rate. Eur. Polym. J. 2011;47:2442–2450. doi: 10.1016/j.eurpolymj.2011.10.005. DOI
Magalhães R., Durães N., Silva M., Silva J., Sencadas V., Botelho G., Gómez Ribelles J.L., Lanceros-Méndez S. The Role of Solvent Evaporation in the Microstructure of Electroactive β-Poly(Vinylidene Fluoride) Membranes Obtained by Isothermal Crystallization. Soft Mater. 2010;9:1–14. doi: 10.1080/1539445X.2010.525442. DOI
Li C.L., Wang D.M., Deratani A., Quémener D., Bouyer D., Lai J.Y. Insight into the preparation of poly(vinylidene fluoride) membranes by vapor-induced phase separation. J. Memb. Sci. 2010;361:154–166. doi: 10.1016/j.memsci.2010.05.064. DOI
Crist B., Schultz J.M. Polymer spherulites: A critical review. Prog. Polym. Sci. 2016;56:1–63. doi: 10.1016/j.progpolymsci.2015.11.006. DOI
Sheiko S.S., Magonov S.N. Scanning Probe Microscopy of Polymers. In: Martin Moeller K.M., editor. Polymer Science: A Comprehensive Reference. Vol. 10. Elsevier; Amsterdam, The Netherlands: 2012. pp. 559–605.
Noor N.A.M., Kamarudin S.K., Darus M., Yunos N.F.D.M., Idris M.A. Photocatalytic Properties and Graphene Oxide Additional Effects in TiO2. Solid State Phenom. 2018;280:65–70. doi: 10.4028/www.scientific.net/SSP.280.65. DOI
Randles J.E.B. Kinetics of rapid electrode reactions. Faraday Discuss. 1947;1:11–19. doi: 10.1039/df9470100011. DOI
Lvovich V.F. Impedance spectroscopy: Applications to electrochemical and dielectric phenomena. Wiley; Hoboken, NJ, USA: 2015.
Chang S.-C., Stetter J.R. Electrochemical NO2 gas sensors: Model and mechanism for the electroreduction of NO2. Electroanalysis. 1990;2:359–365. doi: 10.1002/elan.1140020506. DOI
Hassibi A., Navid R., Dutton R.W., Lee T.H. Comprehensive study of noise processes in electrode electrolyte interfaces. J. Appl. Phys. 2004;96:1074–1082. doi: 10.1063/1.1755429. DOI
Musha T., Higuchi H. Traffic Current Fluctuation and the Burgers Equation. Jpn. J. Appl. Phys. 1978;17:811–816. doi: 10.1143/JJAP.17.811. DOI
Roach P.E. The generation of nearly isotropic turbulence by means of grids. Int. J. Heat Fluid Flow. 1987;8:82–92. doi: 10.1016/0142-727X(87)90001-4. DOI