Surface Analyses of PVDF/NMP/[EMIM][TFSI] Solid Polymer Electrolyte

. 2021 Aug 11 ; 13 (16) : . [epub] 20210811

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34451218

Grantová podpora
18 19104S Grantová Agentura České Republiky

Thermal treatment conditions of solid polymer polymer electrolyte (SPE) were studied with respect to their impact on the surface morphology, phase composition and chemical composition of an imidazolium ionic-liquid-based SPE, namely PVDF/NMP/[EMIM][TFSI] electrolyte. These investigations were done using scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry as well as X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. A thoroughly mixed blend of polymer matrix, ionic liquid and solvent was deposited on a ceramic substrate and was kept at a certain temperature for a specific time in order to achieve varying crystallinity. The morphology of all the electrolytes consists of spherulites whose average diameter increases with solvent evaporation rate. Raman mapping shows that these spherulites have a semicrystalline structure and the area between them is an amorphous region. Analysis of FTIR spectra as well as Raman spectroscopy showed that the β-phase becomes dominant over other phases, while DSC technique indicated decrease of crystallinity as the solvent evaporation rate increases. XPS and ToF-SIMS indicated that the chemical composition of the surface of the SPE samples with the highest solvent evaporation rate approaches the composition of the ionic liquid.

Zobrazit více v PubMed

Ye Y.S., Rick J., Hwang B.J. Ionic liquid polymer electrolytes. J. Mater. Chem. A. 2013;1:2719–2743. doi: 10.1039/C2TA00126H. DOI

Correia D.M., Fernandes L.C., Martins P.M., García-Astrain C., Costa C.M., Reguera J., Lanceros-Méndez S. Ionic Liquid–Polymer Composites: A New Platform for Multifunctional Applications. Adv. Funct. Mater. 2020;30:1909736. doi: 10.1002/adfm.201909736. DOI

Josef E., Yan Y., Stan M.C., Wellmann J., Vizintin A., Winter M., Johansson P., Dominko R., Guterman R. Ionic Liquids and their Polymers in Lithium-Sulfur Batteries. Isr. J. Chem. 2019;59:832–842. doi: 10.1002/ijch.201800159. DOI

Austin Suthanthiraraj S., Johnsi M. Nanocomposite polymer electrolytes. Ionics. 2017;23:2531–2542. doi: 10.1007/s11581-016-1924-6. DOI

Xia W., Zhang Z. PVDF-based dielectric polymers and their applications in electronic materials. IET Nanodielectr. 2018;1:17–31. doi: 10.1049/iet-nde.2018.0001. DOI

Kammoun M., Berg S., Ardebili H. Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte. Nanoscale. 2015;7:17516–17522. doi: 10.1039/C5NR04339E. PubMed DOI

Park J., Ahn D.B., Kim J., Cha E., Bae B.S., Lee S.Y., Park J.U. Printing of wirelessly rechargeable solid-state supercapacitors for soft, smart contact lenses with continuous operations. Sci. Adv. 2019;5:eaay0764. doi: 10.1126/sciadv.aay0764. PubMed DOI PMC

Kuberský P., Syrový T., Hamáček A., Nešpůrek S., Syrová L. Towards a fully printed electrochemical NO2 sensor on a flexible substrate using ionic liquid based polymer electrolyte. Sens. Actuators B Chem. 2015;209:1084–1090. doi: 10.1016/j.snb.2014.12.116. DOI

Luo B., Xiao M., Huang X., Hu H., Knibbe R., Wang S., Lyu M., Wang L., Sun D. An Integrated Strategy towards Enhanced Performance of the Lithium–Sulfur Battery and its Fading Mechanism. Chem. A Eur. J. 2018;24:18544–18550. PubMed

Luo R., Li Q., Du B., Zhou S., Chen Y. Preparation and Characterization of Solid Electrolyte Doped With Carbon Nanotubes and its Preliminary Application in NO2 Gas Sensors. Front. Mater. 2019;6:113. doi: 10.3389/fmats.2019.00113. DOI

Vonau C., Zosel J., Paramasivam M., Ahlborn K., Gerlach F., Vashook V., Guth U. Polymer based materials for solid electrolyte sensors. Solid State Ion. 2012;225:337–341. doi: 10.1016/j.ssi.2012.04.015. DOI

Navratil J., Kubersky P., Sedlak P., Hamacek A. Preparation of Nitrogen Dioxide Sensor Utilizing Aerosol Jet Printing Technology; Proceedings of the Proceedings of the International Spring Seminar on Electronics Technology; Demanovska Valley, Slovakia. 14–15 May 2020.

Korotcenkov G., Cho B.K. Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey) Sens. Actuators B Chem. 2011;156:527–538. doi: 10.1016/j.snb.2011.02.024. DOI

Luo R., Li H., Du B., Zhou S., Chen Y. A printed and flexible NO2 sensor based on a solid polymer electrolyte. Front. Chem. 2019;7:286. doi: 10.3389/fchem.2019.00286. PubMed DOI PMC

Varshney P.K., Gupta S. Natural polymer-based electrolytes for electrochemical devices: A review. Ionics. 2011;17:479–483. doi: 10.1007/s11581-011-0563-1. DOI

Kang Y., Kim H.J., Kim E., Oh B., Cho J.H. Photocured PEO-based solid polymer electrolyte and its application to lithium-polymer batteries. J. Power Sources. 2001;92:255–259. doi: 10.1016/S0378-7753(00)00546-2. DOI

Manjunatha H., Damle R., Pravin K., Kumaraswamy G.N. Modification in the transport and morphological properties of solid polymer electrolyte system by low-energy ion irradiation. Ionics. 2018;24:3027–3037. doi: 10.1007/s11581-018-2518-2. DOI

Sedlak P., Gajdos A., Macku R., Majzner J., Sedlakova V., Holcman V., Kuberský P. The effect of thermal treatment on ac/dc conductivity and current fluctuations of PVDF/NMP/ [EMIM][TFSI] solid polymer electrolyte. Sci. Rep. 2020;10:21140. doi: 10.1038/s41598-020-78363-6. PubMed DOI PMC

Xu P., Fu W., Hu Y., Ding Y. Effect of annealing treatment on crystalline and dielectric properties of PVDF/PEG-containing ionic liquid composites. Compos. Sci. Technol. 2018;158:1–8. doi: 10.1016/j.compscitech.2018.01.039. DOI

Lewandowski A., Świderska A. New composite solid electrolytes based on a polymer and ionic liquids. Solid State Ion. 2004;169:21–24. doi: 10.1016/j.ssi.2003.02.004. DOI

Chaurasia S.K., Singh R.K., Chandra S. Effect of ionic liquid on the crystallization kinetics behaviour of polymer poly(ethylene oxide) CrystEngComm. 2013;15:6022–6034. doi: 10.1039/c3ce40576a. DOI

Correia D.M., Costa C.M., Lizundia E., Sabater i Serra R., Gómez-Tejedor J.A., Biosca L.T., Meseguer-Dueñas J.M., Gomez Ribelles J.L., Lanceros-Méndez S. Influence of Cation and Anion Type on the Formation of the Electroactive β-Phase and Thermal and Dynamic Mechanical Properties of Poly(vinylidene fluoride)/Ionic Liquids Blends. J. Phys. Chem. C. 2019;123:45. doi: 10.1021/acs.jpcc.9b07986. DOI

Correia D.M., Barbosa J.C., Costa C.M., Reis P.M., Esperança J.M.S.S., De Zea Bermudez V., Lanceros-Méndez S. Ionic Liquid Cation Size-Dependent Electromechanical Response of Ionic Liquid/Poly(vinylidene fluoride)-Based Soft Actuators. J. Phys. Chem. C. 2019;123:12744–12752. doi: 10.1021/acs.jpcc.9b00868. DOI

Xing C., Zhao M., Zhao L., You J., Cao X., Li Y. Ionic liquid modified poly(vinylidene fluoride): Crystalline structures, miscibility, and physical properties. Polym. Chem. 2013;4:5726–5734. doi: 10.1039/c3py00466j. DOI

Chaurasia S.K., Singh R.K., Chandra S. Ionic liquid assisted modification in ionic conductivity, phase transition temperature and crystallization kinetics behaviour of polymer poly(ethylene oxide) Solid State Ion. 2014;262:790–794. doi: 10.1016/j.ssi.2013.09.048. DOI

Pickford T., Gu X., Heeley E.L., Wan C. Effects of an ionic liquid and processing conditions on the β-polymorph crystal formation in poly(vinylidene fluoride) CrystEngComm. 2019;21:5418–5428. doi: 10.1039/C9CE01051C. DOI

Cui Z., Hassankiadeh N.T., Zhuang Y., Drioli E., Lee Y.M. Crystalline polymorphism in poly(vinylidenefluoride) membranes. Prog. Polym. Sci. 2015;51:94–126. doi: 10.1016/j.progpolymsci.2015.07.007. DOI

Dong Z., Zhang Q., Yu C., Peng J., Ma J., Ju X., Zhai M. Effect of ionic liquid on the properties of poly(vinylidene fluoride)-based gel polymer electrolytes. Ionics. 2013;19:1587–1593. doi: 10.1007/s11581-013-0905-2. DOI

Gregorio R., Borges D.S. Effect of crystallization rate on the formation of the polymorphs of solution cast poly(vinylidene fluoride) Polymer. 2008;49:4009–4016. doi: 10.1016/j.polymer.2008.07.010. DOI

Kuberský P., Hamáček A., Nešpůrek S., Soukup R., Vik R. Effect of the geometry of a working electrode on the behavior of a planar amperometric NO2 sensor based on solid polymer electrolyte. Sens. Actuators B Chem. 2013;187:546–552. doi: 10.1016/j.snb.2013.03.081. DOI

Kuberský P., Sedlák P., Hamáček A., Nešpůrek S., Kuparowitz T., Šikula J., Majzner J., Sedlaková V., Grmela L., Syrový T. Quantitative fluctuation-enhanced sensing in amperometric NO2 sensors. Chem. Phys. 2015;456:111–117. doi: 10.1016/j.chemphys.2014.10.021. DOI

Sedlák P., Kuberský P., Mívalt F. Effect of various flow rate on current fluctuations of amperometric gas sensors. Sens. Actuators B Chem. 2019;283:321–328. doi: 10.1016/j.snb.2018.12.006. DOI

Sedlák P., Kuberský P. The Effect of the Orientation Towards Analyte Flow on Electrochemical Sensor Performance and Current Fluctuations. Sensors. 2020;20:1038. doi: 10.3390/s20041038. PubMed DOI PMC

Nespurek S., Mracek L., Kubersky P., Syrovy T., Hamacek A. Ionic liquids in electrochemical gas sensors and transistors. Mol. Cryst. Liq. Cryst. 2019;694:1–20. doi: 10.1080/15421406.2020.1723892. DOI

Nair J.R., Shaji I., Ehteshami N., Thum A., Diddens D., Heuer A., Winter M. Solid Polymer Electrolytes for Lithium Metal Battery via Thermally Induced Cationic Ring-Opening Polymerization (CROP) with an Insight into the Reaction Mechanism. Chem. Mater. 2019;31:3118–3133. doi: 10.1021/acs.chemmater.8b04172. DOI

Jurado-Meneses N.M., Delgado-Rosero M.I., Meléndez-Lira M.A. Structural and vibrational studies on composites polymer electrolytes (PEO)10CF3COONa + x wt.% Al2O3. Rev. Fac. Ing. 2017;2017:43–49. doi: 10.17533/udea.redin.n83a06. DOI

Schaepe K., Jungnickel H., Heinrich T., Tentschert J., Luch A., Unger W.E.S. Characterization of Nanoparticles: Measurement Processes for Nanoparticles. Elsevier; Amsterdam, The Netherlands: 2019. Secondary ion mass spectrometry; pp. 481–509.

Constantino C.J.L., Job A.E., Simões R.D., Simões S., Giacometti J.A., Zucolotto V., Oliveira O.N., Gozzi G., Chinaglia D.L. Phase Transition in Poly(vinylidene fluoride) Investigated with Micro-Raman Spectroscopy. Appl. Spectrosc. 2005;59:275–279. doi: 10.1366/0003702053585336. PubMed DOI

Nallasamy P. Vibrational spectroscopic characterization of form II poly(vinylidene fluoride) IJPAP. 2005;43:821–827.

Peleš A., Aleksić O., Pavlović V.P., Djoković V., Dojčilović R., Nikolić Z., Marinković F., Mitrić M., Blagojević V., Vlahović B., et al. Structural and electrical properties of ferroelectric poly(vinylidene fluoride) and mechanically activated ZnO nanoparticle composite films. Phys. Scr. 2018;93:105801. doi: 10.1088/1402-4896/aad749. DOI

Barnakov Y.A., Paul O., Joaquim A., Falconer A., Barnakov V.Y., Dikin D., Petranovskii V.P., Zavalin A., Ueda A., Williams F., et al. Nanoplasmonics: Past, present, and glimpse into future. Int. J. Smart Nano Mater. 2011;19:1–17.

Boccaccio T., Bottino A., Capannelli G., Piaggio P. Characterization of PVDF membranes by vibrational spectroscopy. J. Memb. Sci. 2002;210:315–329. doi: 10.1016/S0376-7388(02)00407-6. DOI

Elashmawi I.S., Gaabour L.H. Raman, morphology and electrical behavior of nanocomposites based on PEO/PVDF with multi-walled carbon nanotubes. Results Phys. 2015;5:105–110. doi: 10.1016/j.rinp.2015.04.005. DOI

Kaspar P., Sobola D., Částková K., Knápek A., Burda D., Orudzhev F., Dallaev R., Tofel P., Trčka T., Grmela L., et al. Characterization of Polyvinylidene Fluoride (PVDF) Electrospun Fibers Doped by Carbon Flakes. Polymers. 2020;12:2766. doi: 10.3390/polym12122766. PubMed DOI PMC

Kiefer J., Fries J., Leipertz A. Experimental vibrational study of imidazolium-based ionic Liquids: Raman and infrared spectra of 1-ethyl-3methylimidazolium bis(trifluoromethylsulfonyl) imide and 1-ethyl-3-methylimidazolium ethylsulfate. Appl. Spectrosc. 2007;61:1306–1311. doi: 10.1366/000370207783292000. PubMed DOI

Rey I., Johansson P., Lindgren J., Lassègues J.C., Grondin J., Servant L. Spectroscopic and theoretical study of (CF3SO2)2N- (TFSI-) and (CF3SO2)2NH (HTFSI) J. Phys. Chem. A. 1998;102:3249–3258. doi: 10.1021/jp980375v. DOI

Lassègues J.C., Grondin J., Holomb R., Johansson P. Raman and ab initio study of the conformational isomerism in the 1-ethyl-3-methyl-imidazolium bis(trifluoromethanesulfonyl)imide ionic liquid. J. Raman Spectrosc. 2007;38:551–558. doi: 10.1002/jrs.1680. DOI

Huang H.C., Yen Y.C., Chang J.C., Su C.W., Chang P.Y., Sun I.W., Hsieh C.T., Lee Y.L., Teng H. An ether bridge between cations to extend the applicability of ionic liquids in electric double layer capacitors. J. Mater. Chem. A. 2016;4:19160–19169. doi: 10.1039/C6TA08203C. DOI

Xu P., Fu W., Cui Z., Ding Y. Synergistic promotion of polar phase crystallization of PVDF by ionic liquid with PEG segment. Appl. Surf. Sci. 2018;444:480–484. doi: 10.1016/j.apsusc.2018.02.242. DOI

Revathi V., Dinesh Kumar S., Chithra Lekha P., Subramanian V., Natarajan T.S., Muthamizhchelvan C. Structural, dielectric, and magnetic studies on electrospun magnesium ferrite-polyvinylidene fluoride core-shell composite fibers. Acta Metall. Sin. 2014;27:557–562. doi: 10.1007/s40195-014-0055-1. DOI

Cai X., Lei T., Sun D., Lin L. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 2017;7:15382–15389. doi: 10.1039/C7RA01267E. DOI

Castkova K., Kastyl J., Sobola D., Petrus J., Stastna E., Riha D., Tofel P. Structure–properties relationship of electrospun pvdf fibers. Nanomaterials. 2020;10:1221. doi: 10.3390/nano10061221. PubMed DOI PMC

Benz M., Euler W.B. Determination of the crystalline phases of poly(vinylidene fluoride) under different preparation conditions using differential scanning calorimetry and infrared spectroscopy. J. Appl. Polym. Sci. 2003;89:1093–1100. doi: 10.1002/app.12267. DOI

Martins P., Lopes A.C., Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014;39:683–706. doi: 10.1016/j.progpolymsci.2013.07.006. DOI

Xu F., Zhang K., Zhou Y., Qu Z., Wang H., Zhang Y., Zhou H., Yan C. Facile preparation of highly oriented poly(vinylidene fluoride) uniform films and their ferro- and piezoelectric properties. RSC Adv. 2017;7:17038–17043. doi: 10.1039/C7RA00586E. DOI

Mayerhöfer T.G. Employing Theories Far beyond Their Limits–Linear Dichroism Theory. ChemPhysChem. 2018;19:2123–2130. doi: 10.1002/cphc.201800214. PubMed DOI

Arya A., Sharma A.L. Structural, microstructural and electrochemical properties of dispersed-type polymer nanocomposite films. J. Phys. D. Appl. Phys. 2018;51:044504. doi: 10.1088/1361-6463/aa9f69. DOI

Mejri R., Dias J.C., Hentati S.B., Martins M.S., Costa C.M., Lanceros-Mendez S. Effect of anion type in the performance of ionic liquid/poly(vinylidene fluoride) electromechanical actuators. J. Non. Cryst. Solids. 2016;453:8–15. doi: 10.1016/j.jnoncrysol.2016.09.014. DOI

Sa’Adun N.N., Subramaniam R., Kasi R. Development and characterization of poly(1-vinylpyrrolidone-co-vinyl acetate) copolymer based polymer electrolytes. Sci. World J. 2014;2014:254215. doi: 10.1155/2014/254215. PubMed DOI PMC

Cha S., Ao M., Sung W., Moon B., Ahlström B., Johansson P., Ouchi Y., Kim D. Structures of ionic liquid-water mixtures investigated by IR and NMR spectroscopy. Phys. Chem. Chem. Phys. 2014;16:9591–9601. doi: 10.1039/C4CP00589A. PubMed DOI

Ponzio E.A., Echevarria R., Morales G.M., Barbero C. Removal of N-methylpyrrolidone hydrogen-bonded to polyaniline free-standing films by protonation-deprotonation cycles or thermal heating. Polym. Int. 2001;50:1180–1185. doi: 10.1002/pi.755. DOI

Badruddoza A.Z.M., Bhattarai B., Suri R.P.S. Environmentally Friendly β-Cyclodextrin-Ionic Liquid Polyurethane-Modified Magnetic Sorbent for the Removal of PFOA, PFOS, and Cr(VI) from Water. ACS Sustain. Chem. Eng. 2017;5:9223–9232. doi: 10.1021/acssuschemeng.7b02186. DOI

Hong Y., Fang Y., Sun D., Zhou X. Ionic liquids modified cobalt/ZSM-5 as a highly efficient catalyst for enhancing the selectivity towards KA oil in the aerobic oxidation of cyclohexane. Open Chem. 2019;17:639–646. doi: 10.1515/chem-2019-0068. DOI

Hao D., Wang X., Liu X., Zhu X., Sun S., Li J., Yue O. A novel eco-friendly imidazole ionic liquids based amphoteric polymers for high performance fatliquoring in chromium-free tanned leather production. J. Hazard. Mater. 2020;399:123048. doi: 10.1016/j.jhazmat.2020.123048. PubMed DOI

Sobola D., Kaspar P., Částková K., Dallaev R., Papež N., Sedlák P., Trčka T., Orudzhev F., Kaštyl J., Weiser A., et al. PVDF Fibers Modification by Nitrate Salts Doping. Polymers. 2021;13:2439. doi: 10.3390/polym13152439. PubMed DOI PMC

Greczynski G., Hultman L. Compromising Science by Ignorant Instrument Calibration—Need to Revisit Half a Century of Published XPS Data. Angew. Chem. Int. Ed. 2020;59:5002–5006. doi: 10.1002/anie.201916000. PubMed DOI

Weber I., Kim J., Buchner F., Schnaidt J., Behm R.J. Surface Science and Electrochemical Model Studies on the Interaction of Graphite and Li-Containing Ionic Liquids. ChemSusChem. 2020;13:2589–2601. doi: 10.1002/cssc.202000495. PubMed DOI PMC

Göktürk P.A. Ph.D. Thesis. Bilkent University; Ankara, Turkey: 2018. X-ray Photoelectron Spectroscopy for Chemical and Electrical Characterization of Devices Extended to Liquid/Solid Interfaces.

Seo S., Park J., Kang Y.C. Chemical Analysis of Ionic Liquids Using Photoelectron Spectroscopy. Bull. Korean Chem. Soc. 2016;37:355–360. doi: 10.1002/bkcs.10683. DOI

Höfft O., Bahr S., Himmerlich M., Krischok S., Schaefer J.A., Kempter V. Electronic structure of the surface of the ionic liquid [EMIM][Tf 2N] studied by metastable Impact Electron Spectroscopy (MIES), UPS, and XPS. Langmuir. 2006;22:7120–7123. doi: 10.1021/la060943v. PubMed DOI

Sim D.M., Han H.J., Yim S., Choi M.-J., Jeon J., Jung Y.S. Long-Term Stable 2H-MoS2 Dispersion: Critical Role of Solvent for Simultaneous Phase Restoration and Surface Functionalization of Liquid-Exfoliated MoS2. ACS Omega. 2017;2:4678–4687. doi: 10.1021/acsomega.7b00841. PubMed DOI PMC

Yakimchuk E., Volodin V., Antonova I. New graphene derivative with N-methylpyrrolidone: Suspension, structural, optical and electrical properties. Phys. Chem. Chem. Phys. 2019;21:12494–12504. doi: 10.1039/C9CP01612K. PubMed DOI

Briggs D. Handbook of X-ray Photoelectron Spectroscopy C. D. Wanger, W. M. Riggs, L. E. Davis, J. F. Moulder and G. E. Muilenberg Perkin-Elmer Corp., Physical Electronics Division, Eden Prairie, Minnesota, USA, 1979. 190 pp. $195. Surf. Interface Anal. 1981;3 doi: 10.1002/sia.740030412. DOI

Souda R. Phase transition of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide thin films on highly oriented pyrolytic graphite. J. Phys. Chem. B. 2009;113:12973–12977. doi: 10.1021/jp9049439. PubMed DOI

Bundaleski N., Caporali S., Chenakin S.P., Moutinho A.M.C., Teodoro O.M.N.D., Tolstogouzov A. Ion-induced fragmentation of imidazolium ionic liquids: TOF-SIMS study. Int. J. Mass Spectrom. 2013;353:19–25. doi: 10.1016/j.ijms.2013.05.029. DOI

Günster J., Höfft O., Krischok S., Souda R. A time-of-flight secondary ion mass spectroscopy study of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide RT-ionic liquid. Surf. Sci. 2008;602:3403–3407. doi: 10.1016/j.susc.2008.09.018. DOI

Feng J., Chan C.M., Weng L.T. Influence of chain sequence structure of polymers on ToF-SIMS spectra. Polymer. 2000;41:2695–2699. doi: 10.1016/S0032-3861(99)00612-6. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...