Surface Analyses of PVDF/NMP/[EMIM][TFSI] Solid Polymer Electrolyte
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18 19104S
Grantová Agentura České Republiky
PubMed
34451218
PubMed Central
PMC8401855
DOI
10.3390/polym13162678
PII: polym13162678
Knihovny.cz E-zdroje
- Klíčová slova
- Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, crystallinity, imidazolium ionic liquids, poly-(vinylidene fluoride), secondary ion mass spectroscopy, solid polymer electrolyte, solvent evaporation,
- Publikační typ
- časopisecké články MeSH
Thermal treatment conditions of solid polymer polymer electrolyte (SPE) were studied with respect to their impact on the surface morphology, phase composition and chemical composition of an imidazolium ionic-liquid-based SPE, namely PVDF/NMP/[EMIM][TFSI] electrolyte. These investigations were done using scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry as well as X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. A thoroughly mixed blend of polymer matrix, ionic liquid and solvent was deposited on a ceramic substrate and was kept at a certain temperature for a specific time in order to achieve varying crystallinity. The morphology of all the electrolytes consists of spherulites whose average diameter increases with solvent evaporation rate. Raman mapping shows that these spherulites have a semicrystalline structure and the area between them is an amorphous region. Analysis of FTIR spectra as well as Raman spectroscopy showed that the β-phase becomes dominant over other phases, while DSC technique indicated decrease of crystallinity as the solvent evaporation rate increases. XPS and ToF-SIMS indicated that the chemical composition of the surface of the SPE samples with the highest solvent evaporation rate approaches the composition of the ionic liquid.
Zobrazit více v PubMed
Ye Y.S., Rick J., Hwang B.J. Ionic liquid polymer electrolytes. J. Mater. Chem. A. 2013;1:2719–2743. doi: 10.1039/C2TA00126H. DOI
Correia D.M., Fernandes L.C., Martins P.M., García-Astrain C., Costa C.M., Reguera J., Lanceros-Méndez S. Ionic Liquid–Polymer Composites: A New Platform for Multifunctional Applications. Adv. Funct. Mater. 2020;30:1909736. doi: 10.1002/adfm.201909736. DOI
Josef E., Yan Y., Stan M.C., Wellmann J., Vizintin A., Winter M., Johansson P., Dominko R., Guterman R. Ionic Liquids and their Polymers in Lithium-Sulfur Batteries. Isr. J. Chem. 2019;59:832–842. doi: 10.1002/ijch.201800159. DOI
Austin Suthanthiraraj S., Johnsi M. Nanocomposite polymer electrolytes. Ionics. 2017;23:2531–2542. doi: 10.1007/s11581-016-1924-6. DOI
Xia W., Zhang Z. PVDF-based dielectric polymers and their applications in electronic materials. IET Nanodielectr. 2018;1:17–31. doi: 10.1049/iet-nde.2018.0001. DOI
Kammoun M., Berg S., Ardebili H. Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte. Nanoscale. 2015;7:17516–17522. doi: 10.1039/C5NR04339E. PubMed DOI
Park J., Ahn D.B., Kim J., Cha E., Bae B.S., Lee S.Y., Park J.U. Printing of wirelessly rechargeable solid-state supercapacitors for soft, smart contact lenses with continuous operations. Sci. Adv. 2019;5:eaay0764. doi: 10.1126/sciadv.aay0764. PubMed DOI PMC
Kuberský P., Syrový T., Hamáček A., Nešpůrek S., Syrová L. Towards a fully printed electrochemical NO2 sensor on a flexible substrate using ionic liquid based polymer electrolyte. Sens. Actuators B Chem. 2015;209:1084–1090. doi: 10.1016/j.snb.2014.12.116. DOI
Luo B., Xiao M., Huang X., Hu H., Knibbe R., Wang S., Lyu M., Wang L., Sun D. An Integrated Strategy towards Enhanced Performance of the Lithium–Sulfur Battery and its Fading Mechanism. Chem. A Eur. J. 2018;24:18544–18550. PubMed
Luo R., Li Q., Du B., Zhou S., Chen Y. Preparation and Characterization of Solid Electrolyte Doped With Carbon Nanotubes and its Preliminary Application in NO2 Gas Sensors. Front. Mater. 2019;6:113. doi: 10.3389/fmats.2019.00113. DOI
Vonau C., Zosel J., Paramasivam M., Ahlborn K., Gerlach F., Vashook V., Guth U. Polymer based materials for solid electrolyte sensors. Solid State Ion. 2012;225:337–341. doi: 10.1016/j.ssi.2012.04.015. DOI
Navratil J., Kubersky P., Sedlak P., Hamacek A. Preparation of Nitrogen Dioxide Sensor Utilizing Aerosol Jet Printing Technology; Proceedings of the Proceedings of the International Spring Seminar on Electronics Technology; Demanovska Valley, Slovakia. 14–15 May 2020.
Korotcenkov G., Cho B.K. Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey) Sens. Actuators B Chem. 2011;156:527–538. doi: 10.1016/j.snb.2011.02.024. DOI
Luo R., Li H., Du B., Zhou S., Chen Y. A printed and flexible NO2 sensor based on a solid polymer electrolyte. Front. Chem. 2019;7:286. doi: 10.3389/fchem.2019.00286. PubMed DOI PMC
Varshney P.K., Gupta S. Natural polymer-based electrolytes for electrochemical devices: A review. Ionics. 2011;17:479–483. doi: 10.1007/s11581-011-0563-1. DOI
Kang Y., Kim H.J., Kim E., Oh B., Cho J.H. Photocured PEO-based solid polymer electrolyte and its application to lithium-polymer batteries. J. Power Sources. 2001;92:255–259. doi: 10.1016/S0378-7753(00)00546-2. DOI
Manjunatha H., Damle R., Pravin K., Kumaraswamy G.N. Modification in the transport and morphological properties of solid polymer electrolyte system by low-energy ion irradiation. Ionics. 2018;24:3027–3037. doi: 10.1007/s11581-018-2518-2. DOI
Sedlak P., Gajdos A., Macku R., Majzner J., Sedlakova V., Holcman V., Kuberský P. The effect of thermal treatment on ac/dc conductivity and current fluctuations of PVDF/NMP/ [EMIM][TFSI] solid polymer electrolyte. Sci. Rep. 2020;10:21140. doi: 10.1038/s41598-020-78363-6. PubMed DOI PMC
Xu P., Fu W., Hu Y., Ding Y. Effect of annealing treatment on crystalline and dielectric properties of PVDF/PEG-containing ionic liquid composites. Compos. Sci. Technol. 2018;158:1–8. doi: 10.1016/j.compscitech.2018.01.039. DOI
Lewandowski A., Świderska A. New composite solid electrolytes based on a polymer and ionic liquids. Solid State Ion. 2004;169:21–24. doi: 10.1016/j.ssi.2003.02.004. DOI
Chaurasia S.K., Singh R.K., Chandra S. Effect of ionic liquid on the crystallization kinetics behaviour of polymer poly(ethylene oxide) CrystEngComm. 2013;15:6022–6034. doi: 10.1039/c3ce40576a. DOI
Correia D.M., Costa C.M., Lizundia E., Sabater i Serra R., Gómez-Tejedor J.A., Biosca L.T., Meseguer-Dueñas J.M., Gomez Ribelles J.L., Lanceros-Méndez S. Influence of Cation and Anion Type on the Formation of the Electroactive β-Phase and Thermal and Dynamic Mechanical Properties of Poly(vinylidene fluoride)/Ionic Liquids Blends. J. Phys. Chem. C. 2019;123:45. doi: 10.1021/acs.jpcc.9b07986. DOI
Correia D.M., Barbosa J.C., Costa C.M., Reis P.M., Esperança J.M.S.S., De Zea Bermudez V., Lanceros-Méndez S. Ionic Liquid Cation Size-Dependent Electromechanical Response of Ionic Liquid/Poly(vinylidene fluoride)-Based Soft Actuators. J. Phys. Chem. C. 2019;123:12744–12752. doi: 10.1021/acs.jpcc.9b00868. DOI
Xing C., Zhao M., Zhao L., You J., Cao X., Li Y. Ionic liquid modified poly(vinylidene fluoride): Crystalline structures, miscibility, and physical properties. Polym. Chem. 2013;4:5726–5734. doi: 10.1039/c3py00466j. DOI
Chaurasia S.K., Singh R.K., Chandra S. Ionic liquid assisted modification in ionic conductivity, phase transition temperature and crystallization kinetics behaviour of polymer poly(ethylene oxide) Solid State Ion. 2014;262:790–794. doi: 10.1016/j.ssi.2013.09.048. DOI
Pickford T., Gu X., Heeley E.L., Wan C. Effects of an ionic liquid and processing conditions on the β-polymorph crystal formation in poly(vinylidene fluoride) CrystEngComm. 2019;21:5418–5428. doi: 10.1039/C9CE01051C. DOI
Cui Z., Hassankiadeh N.T., Zhuang Y., Drioli E., Lee Y.M. Crystalline polymorphism in poly(vinylidenefluoride) membranes. Prog. Polym. Sci. 2015;51:94–126. doi: 10.1016/j.progpolymsci.2015.07.007. DOI
Dong Z., Zhang Q., Yu C., Peng J., Ma J., Ju X., Zhai M. Effect of ionic liquid on the properties of poly(vinylidene fluoride)-based gel polymer electrolytes. Ionics. 2013;19:1587–1593. doi: 10.1007/s11581-013-0905-2. DOI
Gregorio R., Borges D.S. Effect of crystallization rate on the formation of the polymorphs of solution cast poly(vinylidene fluoride) Polymer. 2008;49:4009–4016. doi: 10.1016/j.polymer.2008.07.010. DOI
Kuberský P., Hamáček A., Nešpůrek S., Soukup R., Vik R. Effect of the geometry of a working electrode on the behavior of a planar amperometric NO2 sensor based on solid polymer electrolyte. Sens. Actuators B Chem. 2013;187:546–552. doi: 10.1016/j.snb.2013.03.081. DOI
Kuberský P., Sedlák P., Hamáček A., Nešpůrek S., Kuparowitz T., Šikula J., Majzner J., Sedlaková V., Grmela L., Syrový T. Quantitative fluctuation-enhanced sensing in amperometric NO2 sensors. Chem. Phys. 2015;456:111–117. doi: 10.1016/j.chemphys.2014.10.021. DOI
Sedlák P., Kuberský P., Mívalt F. Effect of various flow rate on current fluctuations of amperometric gas sensors. Sens. Actuators B Chem. 2019;283:321–328. doi: 10.1016/j.snb.2018.12.006. DOI
Sedlák P., Kuberský P. The Effect of the Orientation Towards Analyte Flow on Electrochemical Sensor Performance and Current Fluctuations. Sensors. 2020;20:1038. doi: 10.3390/s20041038. PubMed DOI PMC
Nespurek S., Mracek L., Kubersky P., Syrovy T., Hamacek A. Ionic liquids in electrochemical gas sensors and transistors. Mol. Cryst. Liq. Cryst. 2019;694:1–20. doi: 10.1080/15421406.2020.1723892. DOI
Nair J.R., Shaji I., Ehteshami N., Thum A., Diddens D., Heuer A., Winter M. Solid Polymer Electrolytes for Lithium Metal Battery via Thermally Induced Cationic Ring-Opening Polymerization (CROP) with an Insight into the Reaction Mechanism. Chem. Mater. 2019;31:3118–3133. doi: 10.1021/acs.chemmater.8b04172. DOI
Jurado-Meneses N.M., Delgado-Rosero M.I., Meléndez-Lira M.A. Structural and vibrational studies on composites polymer electrolytes (PEO)10CF3COONa + x wt.% Al2O3. Rev. Fac. Ing. 2017;2017:43–49. doi: 10.17533/udea.redin.n83a06. DOI
Schaepe K., Jungnickel H., Heinrich T., Tentschert J., Luch A., Unger W.E.S. Characterization of Nanoparticles: Measurement Processes for Nanoparticles. Elsevier; Amsterdam, The Netherlands: 2019. Secondary ion mass spectrometry; pp. 481–509.
Constantino C.J.L., Job A.E., Simões R.D., Simões S., Giacometti J.A., Zucolotto V., Oliveira O.N., Gozzi G., Chinaglia D.L. Phase Transition in Poly(vinylidene fluoride) Investigated with Micro-Raman Spectroscopy. Appl. Spectrosc. 2005;59:275–279. doi: 10.1366/0003702053585336. PubMed DOI
Nallasamy P. Vibrational spectroscopic characterization of form II poly(vinylidene fluoride) IJPAP. 2005;43:821–827.
Peleš A., Aleksić O., Pavlović V.P., Djoković V., Dojčilović R., Nikolić Z., Marinković F., Mitrić M., Blagojević V., Vlahović B., et al. Structural and electrical properties of ferroelectric poly(vinylidene fluoride) and mechanically activated ZnO nanoparticle composite films. Phys. Scr. 2018;93:105801. doi: 10.1088/1402-4896/aad749. DOI
Barnakov Y.A., Paul O., Joaquim A., Falconer A., Barnakov V.Y., Dikin D., Petranovskii V.P., Zavalin A., Ueda A., Williams F., et al. Nanoplasmonics: Past, present, and glimpse into future. Int. J. Smart Nano Mater. 2011;19:1–17.
Boccaccio T., Bottino A., Capannelli G., Piaggio P. Characterization of PVDF membranes by vibrational spectroscopy. J. Memb. Sci. 2002;210:315–329. doi: 10.1016/S0376-7388(02)00407-6. DOI
Elashmawi I.S., Gaabour L.H. Raman, morphology and electrical behavior of nanocomposites based on PEO/PVDF with multi-walled carbon nanotubes. Results Phys. 2015;5:105–110. doi: 10.1016/j.rinp.2015.04.005. DOI
Kaspar P., Sobola D., Částková K., Knápek A., Burda D., Orudzhev F., Dallaev R., Tofel P., Trčka T., Grmela L., et al. Characterization of Polyvinylidene Fluoride (PVDF) Electrospun Fibers Doped by Carbon Flakes. Polymers. 2020;12:2766. doi: 10.3390/polym12122766. PubMed DOI PMC
Kiefer J., Fries J., Leipertz A. Experimental vibrational study of imidazolium-based ionic Liquids: Raman and infrared spectra of 1-ethyl-3methylimidazolium bis(trifluoromethylsulfonyl) imide and 1-ethyl-3-methylimidazolium ethylsulfate. Appl. Spectrosc. 2007;61:1306–1311. doi: 10.1366/000370207783292000. PubMed DOI
Rey I., Johansson P., Lindgren J., Lassègues J.C., Grondin J., Servant L. Spectroscopic and theoretical study of (CF3SO2)2N- (TFSI-) and (CF3SO2)2NH (HTFSI) J. Phys. Chem. A. 1998;102:3249–3258. doi: 10.1021/jp980375v. DOI
Lassègues J.C., Grondin J., Holomb R., Johansson P. Raman and ab initio study of the conformational isomerism in the 1-ethyl-3-methyl-imidazolium bis(trifluoromethanesulfonyl)imide ionic liquid. J. Raman Spectrosc. 2007;38:551–558. doi: 10.1002/jrs.1680. DOI
Huang H.C., Yen Y.C., Chang J.C., Su C.W., Chang P.Y., Sun I.W., Hsieh C.T., Lee Y.L., Teng H. An ether bridge between cations to extend the applicability of ionic liquids in electric double layer capacitors. J. Mater. Chem. A. 2016;4:19160–19169. doi: 10.1039/C6TA08203C. DOI
Xu P., Fu W., Cui Z., Ding Y. Synergistic promotion of polar phase crystallization of PVDF by ionic liquid with PEG segment. Appl. Surf. Sci. 2018;444:480–484. doi: 10.1016/j.apsusc.2018.02.242. DOI
Revathi V., Dinesh Kumar S., Chithra Lekha P., Subramanian V., Natarajan T.S., Muthamizhchelvan C. Structural, dielectric, and magnetic studies on electrospun magnesium ferrite-polyvinylidene fluoride core-shell composite fibers. Acta Metall. Sin. 2014;27:557–562. doi: 10.1007/s40195-014-0055-1. DOI
Cai X., Lei T., Sun D., Lin L. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 2017;7:15382–15389. doi: 10.1039/C7RA01267E. DOI
Castkova K., Kastyl J., Sobola D., Petrus J., Stastna E., Riha D., Tofel P. Structure–properties relationship of electrospun pvdf fibers. Nanomaterials. 2020;10:1221. doi: 10.3390/nano10061221. PubMed DOI PMC
Benz M., Euler W.B. Determination of the crystalline phases of poly(vinylidene fluoride) under different preparation conditions using differential scanning calorimetry and infrared spectroscopy. J. Appl. Polym. Sci. 2003;89:1093–1100. doi: 10.1002/app.12267. DOI
Martins P., Lopes A.C., Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014;39:683–706. doi: 10.1016/j.progpolymsci.2013.07.006. DOI
Xu F., Zhang K., Zhou Y., Qu Z., Wang H., Zhang Y., Zhou H., Yan C. Facile preparation of highly oriented poly(vinylidene fluoride) uniform films and their ferro- and piezoelectric properties. RSC Adv. 2017;7:17038–17043. doi: 10.1039/C7RA00586E. DOI
Mayerhöfer T.G. Employing Theories Far beyond Their Limits–Linear Dichroism Theory. ChemPhysChem. 2018;19:2123–2130. doi: 10.1002/cphc.201800214. PubMed DOI
Arya A., Sharma A.L. Structural, microstructural and electrochemical properties of dispersed-type polymer nanocomposite films. J. Phys. D. Appl. Phys. 2018;51:044504. doi: 10.1088/1361-6463/aa9f69. DOI
Mejri R., Dias J.C., Hentati S.B., Martins M.S., Costa C.M., Lanceros-Mendez S. Effect of anion type in the performance of ionic liquid/poly(vinylidene fluoride) electromechanical actuators. J. Non. Cryst. Solids. 2016;453:8–15. doi: 10.1016/j.jnoncrysol.2016.09.014. DOI
Sa’Adun N.N., Subramaniam R., Kasi R. Development and characterization of poly(1-vinylpyrrolidone-co-vinyl acetate) copolymer based polymer electrolytes. Sci. World J. 2014;2014:254215. doi: 10.1155/2014/254215. PubMed DOI PMC
Cha S., Ao M., Sung W., Moon B., Ahlström B., Johansson P., Ouchi Y., Kim D. Structures of ionic liquid-water mixtures investigated by IR and NMR spectroscopy. Phys. Chem. Chem. Phys. 2014;16:9591–9601. doi: 10.1039/C4CP00589A. PubMed DOI
Ponzio E.A., Echevarria R., Morales G.M., Barbero C. Removal of N-methylpyrrolidone hydrogen-bonded to polyaniline free-standing films by protonation-deprotonation cycles or thermal heating. Polym. Int. 2001;50:1180–1185. doi: 10.1002/pi.755. DOI
Badruddoza A.Z.M., Bhattarai B., Suri R.P.S. Environmentally Friendly β-Cyclodextrin-Ionic Liquid Polyurethane-Modified Magnetic Sorbent for the Removal of PFOA, PFOS, and Cr(VI) from Water. ACS Sustain. Chem. Eng. 2017;5:9223–9232. doi: 10.1021/acssuschemeng.7b02186. DOI
Hong Y., Fang Y., Sun D., Zhou X. Ionic liquids modified cobalt/ZSM-5 as a highly efficient catalyst for enhancing the selectivity towards KA oil in the aerobic oxidation of cyclohexane. Open Chem. 2019;17:639–646. doi: 10.1515/chem-2019-0068. DOI
Hao D., Wang X., Liu X., Zhu X., Sun S., Li J., Yue O. A novel eco-friendly imidazole ionic liquids based amphoteric polymers for high performance fatliquoring in chromium-free tanned leather production. J. Hazard. Mater. 2020;399:123048. doi: 10.1016/j.jhazmat.2020.123048. PubMed DOI
Sobola D., Kaspar P., Částková K., Dallaev R., Papež N., Sedlák P., Trčka T., Orudzhev F., Kaštyl J., Weiser A., et al. PVDF Fibers Modification by Nitrate Salts Doping. Polymers. 2021;13:2439. doi: 10.3390/polym13152439. PubMed DOI PMC
Greczynski G., Hultman L. Compromising Science by Ignorant Instrument Calibration—Need to Revisit Half a Century of Published XPS Data. Angew. Chem. Int. Ed. 2020;59:5002–5006. doi: 10.1002/anie.201916000. PubMed DOI
Weber I., Kim J., Buchner F., Schnaidt J., Behm R.J. Surface Science and Electrochemical Model Studies on the Interaction of Graphite and Li-Containing Ionic Liquids. ChemSusChem. 2020;13:2589–2601. doi: 10.1002/cssc.202000495. PubMed DOI PMC
Göktürk P.A. Ph.D. Thesis. Bilkent University; Ankara, Turkey: 2018. X-ray Photoelectron Spectroscopy for Chemical and Electrical Characterization of Devices Extended to Liquid/Solid Interfaces.
Seo S., Park J., Kang Y.C. Chemical Analysis of Ionic Liquids Using Photoelectron Spectroscopy. Bull. Korean Chem. Soc. 2016;37:355–360. doi: 10.1002/bkcs.10683. DOI
Höfft O., Bahr S., Himmerlich M., Krischok S., Schaefer J.A., Kempter V. Electronic structure of the surface of the ionic liquid [EMIM][Tf 2N] studied by metastable Impact Electron Spectroscopy (MIES), UPS, and XPS. Langmuir. 2006;22:7120–7123. doi: 10.1021/la060943v. PubMed DOI
Sim D.M., Han H.J., Yim S., Choi M.-J., Jeon J., Jung Y.S. Long-Term Stable 2H-MoS2 Dispersion: Critical Role of Solvent for Simultaneous Phase Restoration and Surface Functionalization of Liquid-Exfoliated MoS2. ACS Omega. 2017;2:4678–4687. doi: 10.1021/acsomega.7b00841. PubMed DOI PMC
Yakimchuk E., Volodin V., Antonova I. New graphene derivative with N-methylpyrrolidone: Suspension, structural, optical and electrical properties. Phys. Chem. Chem. Phys. 2019;21:12494–12504. doi: 10.1039/C9CP01612K. PubMed DOI
Briggs D. Handbook of X-ray Photoelectron Spectroscopy C. D. Wanger, W. M. Riggs, L. E. Davis, J. F. Moulder and G. E. Muilenberg Perkin-Elmer Corp., Physical Electronics Division, Eden Prairie, Minnesota, USA, 1979. 190 pp. $195. Surf. Interface Anal. 1981;3 doi: 10.1002/sia.740030412. DOI
Souda R. Phase transition of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide thin films on highly oriented pyrolytic graphite. J. Phys. Chem. B. 2009;113:12973–12977. doi: 10.1021/jp9049439. PubMed DOI
Bundaleski N., Caporali S., Chenakin S.P., Moutinho A.M.C., Teodoro O.M.N.D., Tolstogouzov A. Ion-induced fragmentation of imidazolium ionic liquids: TOF-SIMS study. Int. J. Mass Spectrom. 2013;353:19–25. doi: 10.1016/j.ijms.2013.05.029. DOI
Günster J., Höfft O., Krischok S., Souda R. A time-of-flight secondary ion mass spectroscopy study of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide RT-ionic liquid. Surf. Sci. 2008;602:3403–3407. doi: 10.1016/j.susc.2008.09.018. DOI
Feng J., Chan C.M., Weng L.T. Influence of chain sequence structure of polymers on ToF-SIMS spectra. Polymer. 2000;41:2695–2699. doi: 10.1016/S0032-3861(99)00612-6. DOI
Piezo-Enhanced Photocatalytic Activity of the Electrospun Fibrous Magnetic PVDF/BiFeO3 Membrane
Brief Review of PVDF Properties and Applications Potential
Structure Tuning and Electrical Properties of Mixed PVDF and Nylon Nanofibers