Brief Review of PVDF Properties and Applications Potential

. 2022 Nov 08 ; 14 (22) : . [epub] 20221108

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36432920

Grantová podpora
FEKT-S-20-6352 Brno University of Technology
Grant #22-73-10091 Russian Science Foundation
MEYS CR (LM2018110) Central European Institute of Technology

Currently, there is an ever-growing interest in carbon materials with increased deformation-strength, thermophysical parameters. Due to their unique physical and chemical properties, such materials have a wide range of applications in various industries. Many prospects for the use of polymer composite materials based on polyvinylidene fluoride (PVDF) for scientific and technical purposes explain the plethora of studies on their characteristics "structure-property", processing, application and ecology which keep appearing. Building a broader conceptual picture of new generation polymeric materials is feasible with the use of innovative technologies; thus, achieving a high level of multidisciplinarity and integration of polymer science; its fundamental problems are formed, the solution of which determines a significant contribution to the natural-scientific picture of the modern world. This review provides explanation of PVDF advanced properties and potential applications of this polymer material in its various forms. More specifically, this paper will go over PVDF trademarks presently available on the market, provide thorough overview of the current and potential applications. Last but not least, this article will also delve into the processing and chemical properties of PVDF such as radiation carbonization, β-phase formation, etc.

Zobrazit více v PubMed

Morilova V.M. Master’s Thesis. Chelyabinsk State University; Chelyabinsk, Russia: 2014. Study of the Carbonization of Polyvinylidene Fluoride by Emission and Absorption Spectroscopy.

Baskin Z.L., Shabalin D.A., Vyrazheikin E.S., Dedov S.A. Range, properties and application of fluoropolymers of the Kirovo-Chepetsk Chemical Plant. Russ. Chem. J. 2008;3:13–23.

Voinkova I.V., Ginchitskii N.N., Gribov I.V., Klebanov I.I., Kuznetsov V.L., Moskvina N.A., Pesin L.A., Evsyukov S.E. A Model of Radiation-Induced Degradation of the Poly(Vinylidene Fluoride) Surface During XPS Measurements. Polym. Degrad. Stab. 2005;89:471–477.

Joh H.-I., Ha H.Y. Properties and Formation Mechanisms of Branched Carbon Nanotubes from Polyvinylidene Fluoride Fibers. Carbon. 2013;63:567–571. doi: 10.1016/j.carbon.2013.06.072. DOI

Voinkova I.V., Pesin L.A., Volegov A.A., Evsyukov S.E., Gribov I.V., Kuznetsov V.L., Moskvina N.A. Depth distribution of the fluorine concentration during radiative carbonization of PVDF. J. Surf. Investig. 2007;1:450–453. doi: 10.1134/S1027451007040155. DOI

Heimann R.B., Evsyukov S.E., Kavan L., editors. Carbyne and Carbynoid Structures Dordrecht. Kluwer Academic Publishers; Amsterdam, The Netherlands: 1999. 446p

Calcagno L., Musumeci P., Percolla R., Foti G. Calorimetric measurements of MeV ion irradiated polyvinylidene fluoride. Nucl. Inst. Methods Phys. Res. B. 1994;91:461–464. doi: 10.1016/0168-583X(94)96269-3. DOI

Oshima A., Ikeda S., Seguchi T., Tabata Y. Temperature effect on radiation induced reactions in ethylene and tetrafluoroethylene copolymer (ETFE) Radiat. Phys. Chem. 1997;50:519–522. doi: 10.1016/S0969-806X(97)00080-7. DOI

Zhudi Z., Jin C., Xinfang C. Crystallite damage studies on irradiated poly(vinylidene fluoride) Radiat. Phys. Chem. 1994;43:523–526. doi: 10.1016/0969-806X(94)90162-7. DOI

Knápek A., Dallaev R., Burda D., Sobola D., Allaham M.M., Horáček M., Kaspar P., Matějka M., Mousa M.S. Field Emission Properties of Polymer Graphite Tips Prepared by Membrane Electrochemical Etching. Nanomaterials. 2020;10:1294. doi: 10.3390/nano10071294. PubMed DOI PMC

Wu Y., Li Y., Wang Y., Liu Q., Chen Q., Chen M. Advances and prospects of PVDF based polymer electrolytes. J. Energy Chem. 2022;64:62–84. doi: 10.1016/j.jechem.2021.04.007. DOI

Bicy K., Gueye A.B., Rouxel D., Kalarikkal N., Thomas S. Surfaces and Interfaces. Volume 31. Elsevier B.V.; Amsterdam, The Netherlands: 2022. Lithium-ion battery separators based on electrospun PVDF: A review. DOI

Pusty M., Shirage P.M. Insights and perspectives on graphene-PVDF based nanocomposite materials for harvesting mechanical energy. J. Alloys Compd. 2022;904:164060. doi: 10.1016/j.jallcom.2022.164060. DOI

Sahrash R., Siddiqa A., Razzaq H., Iqbal T., Qaisar S. PVDF based ionogels: Applications towards electrochemical devices and membrane separation processes. Heliyon. 2018;4:e00847. doi: 10.1016/j.heliyon.2018.e00847. PubMed DOI PMC

Ji J., Liu F., Hashim N.A., Abed M.M., Li K. Poly(vinylidene fluoride) (PVDF) membranes for fluid separation. React. Funct. Polym. 2015;86:134–153. doi: 10.1016/j.reactfunctpolym.2014.09.023. DOI

Lu L., Ding W., Liu J., Yang B. Flexible PVDF based piezoelectric nanogenerators. Nano Energy. 2020;78:105251. doi: 10.1016/j.nanoen.2020.105251. DOI

Liu F., Hashim N.A., Liu Y., Abed M.M., Li K. Progress in the production and modification of PVDF membranes. J. Membr. Sci. 2011;375:1–27. doi: 10.1016/j.memsci.2011.03.014. DOI

Papež N., Pisarenko T., Ščasnovič E., Sobola D., Ţălu Ş., Dallaev R., Částková K., Sedlák P. A Brief Introduction and Current State of Polyvinylidene Fluoride as an Energy Harvester. Coatings. 2022;12:1429. doi: 10.3390/coatings12101429. DOI

Rajeevan S., John S., George S.C. Polyvinylidene fluoride: A multifunctional polymer in supercapacitor applications. J. Power Sources. 2021;504:230037. doi: 10.1016/j.jpowsour.2021.230037. DOI

Zou D., Lee Y.M. Design strategy of poly(vinylidene fluoride) membranes for water treatment. Prog. Polym. Sci. 2022;128:101535. doi: 10.1016/j.progpolymsci.2022.101535. DOI

Kuznetsov E.V. Workshop on Chemistry and Physics of Polymers. Technosphere; Moscow, Russia: 1977. 256p

Chen H., Ling M., Hencz L., Ling H.Y., Li G., Lin Z., Liu G., Zhang S. Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices. Chem. Rev. 2018;118:8936–8982. doi: 10.1021/acs.chemrev.8b00241. PubMed DOI

Lestriez B. Functions of Polymers in Composite Electrodes of Lithium Ion Batteries. Comptes Rendus Chim. 2010;13:1341–1350.

Chou S.L., Pan Y., Wang J.Z., Liu H.K., Dou S.X. Small Things Make a Big Difference: Binder Effects on the Performance of Li and Na Batteries. Phys. Chem. Chem. Phys. 2014;16:20347–20359. doi: 10.1039/C4CP02475C. PubMed DOI

Nagai A. Applications of PvdfRelated Materials for LithiumIon Batteries. In: Yoshio M., Brodd R.J., Kozawa A., editors. Lithium-Ion Batteries: Science and Technologies. Springer; New York, NY, USA: 2009. pp. 155–162.

Morilova V.M., Koryakova O.V., Evsyukov S.E., Pesin L.A. Influence of Uniaxial Stretching of Polyvinylidene Fluoride Films on the Shape and Position of CH Peaks in IR Spectra. Herald of ChelGU. 2011. [(accessed on 7 November 2022)]. Available online: https://cyberleninka.ru/article/n/vliyanie-odnoosnogo-rastyazheniya-plyonok-polivinilidenftorida-na-formu-i-polozhenie-sn-pikov-v-ik-spektrah.

Tansel T. Effect of electric field assisted crystallisation of PVDF-TrFE and their functional properties. Sens. Actuators A Phys. 2021;332:113059. doi: 10.1016/j.sna.2021.113059. DOI

Rakhmankulov A.A., Davlatov F.F. Research on the effect of dispersed graphite grade GMZ on the thermophysical properties and structure of polyvinylidene fluoride. Int. Sci. Tech. J. 2019;87:11–15.

Kawai H. The Piezoelectricity of Poly(Vinilidene Fluoride) Jpn. J. Appl. Phis. 1969;8:975–976. doi: 10.1143/JJAP.8.975. DOI

Chu C.C. Biotextiles as Medical Implants. Woodhead Publishing; Cambridge, UK: 2013. pp. 275–334. (Chapter 11: Materials for Absorbable and Nonabsorbable Surgical Sutures). Woodhead Publishing Series in Textiles.

Seiler K., Simon W. Principles and mechanisms of ion-selective optodes. Sens. Actuators B Chem. 1992;6:295–298. doi: 10.1016/0925-4005(92)80073-7. DOI

Tang T.K., Liu S.S. Principles and Materials for Manufacturing Electrochemical Sensors in Chemical Sensor Technology. Volume 3 Kodansha Ltd.; Tokyo, Japan: 1991.

Zhivulin V.E. Master’s Thesis. South Ural State Humanitarian Pedagogical University; Chelyabinsk, Russia: 2016. Synthesis and properties of paramagnetic layers on the surface of polyvinylidene fluoride; pp. 1–127.

Rakhmankulov A.A., Khaidarov T.Z. Peculiarities of thermal motion in polyvinylidene fluoride. Sci. Educ. Cult. 2020;10:4–6.

Rakhmankulov A.A. Master's Thesis. Kyiv, Ukraine: 1986. Influence of dispersed fillers on the structure and thermal conductivity of unmodified and modified polyvinylidene fluoride; pp. 1–205.

Kakutani M. Dielectric Absorption of Oriented Polivinildenftuoride. J. Polym. Sci. Part A-2 Polym. Phys. 1970;8:1177–1183. doi: 10.1002/pol.1970.160080712. DOI

Harris G.R., Preston R.C., DeReggi A.S. Impact of piezoelectric PVDF on measurements, standards and regulations for medical ultrasound exposure. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2000;47:1321–1335. doi: 10.1109/58.883521. PubMed DOI

Lovlnger A.J. Crystallization of the P Base of Polivlnilidenftuoride from the Melt. Polymer. 1981;22:412–413. doi: 10.1016/0032-3861(81)90058-6. DOI

Kaspar P., Sobola D., Částková K., Dallaev R., Šťastná E., Sedlák P., Knápek A., Trčka T., Holcman V. Case study of polyvinylidene fluoride doping by carbon nanotubes. Materials. 2021;14:1428. doi: 10.3390/ma14061428. PubMed DOI PMC

Kaspar P., Sobola D., Částková K., Knápek A., Burda D., Orudzhev F., Dallaev R., Tofel P., Trčka T., Grmela L., et al. Characterization of polyvinylidene fluoride (Pvdf) electrospun fibers doped by carbon flakes. Polymers. 2020;12:2766. doi: 10.3390/polym12122766. PubMed DOI PMC

Sobola D., Kaspar P., Částková K., Dallaev R., Papež N., Sedlák P., Trčka T., Orudzhev F., Kaštyl J., Weiser A., et al. PVDF fibers modification by nitrate salts doping. Polymers. 2021;13:2439. doi: 10.3390/polym13152439. PubMed DOI PMC

Sedlak P., Sobola D., Gajdos A., Dallaev R., Nebojsa A., Kubersky P. Surface analyses of PVDF/NMP/[EMIM][TFSI] solid polymer electrolyte. Polymers. 2021;13:2678. doi: 10.3390/polym13162678. PubMed DOI PMC

Smejkalová T., Ţǎlu Ş., Dallaev R., Částková K., Sobola D., Nazarov A. SEM imaging and XPS characterization of doped PVDF fibers. E3S Web Conf. 2021;270:01011. doi: 10.1051/e3sconf/202127001011. DOI

Kerbow D.L. In: Modern Fluoropolymers. Scheirs J., editor. John Wiley & Sons; Chichester, UK: 1997. p. 301.

Cheng Y., Li D. Numerical analysis of piezoelectric signal of PVDF membrane flapping wing in flight. IOP Conf. Ser. Mater. Sci. Eng. 2020;774:012090. doi: 10.1088/1757-899X/774/1/012090. DOI

Holmes-Siedle A.G., Wilson P.D., Verrall A.P. PVdF: An electronically-active polymer for industry. Mater. Des. 1983;4:910–918. doi: 10.1016/0261-3069(84)90003-7. DOI

Liu R., Yuan B., Zhong S., Liu J., Dong L., Ji Y., Dong Y., Yang C., He W. Poly(vinylidene fluoride) separators for next-generation lithium based batteries. Nano Select. 2021;2:2308–2345. doi: 10.1002/nano.202100118. DOI

Shabanov V.A., Konnov E.I. Sensing elements based on PVDF films for creating hydroacoustic transducers; Proceedings of the 2nd Youth Scientific Conference “Actual problems of piezoelectric instrument making”; Rostov-on-Don, Russia. 6–10 September 2015; Sep 6–10, pp. 49–58.

Liu T., Zhou X., Sun Y., Bai R. Anticorrosion performance of pvdf membranes modified by blending ptfe nanoemulsion and prepared through usual non-solvent-induced phase inversion method. Membranes. 2021;11:420. doi: 10.3390/membranes11060420. PubMed DOI PMC

Ghazali N., Basirun W.J., Nor A.M., Johan M.R. Super-amphiphobic coating system incorporating functionalized nano-Al2O3 in polyvinylidene fluoride (PVDF) with enhanced corrosion resistance. Coatings. 2020;10:387. doi: 10.3390/coatings10040387. DOI

Hussein A.A., Dawood N.M., Al-Kawaz A.E. Corrosion protection of 316L stainless steel by (PVDF/HA) composite coating using a spinning coating technique. Bull. Pol. Acad. Sci. Tech. Sci. 2021;69:e136810. doi: 10.24425/bpasts.2021.136810. DOI

Chakradhar R.P., Prasad G., Bera P., Anandan C. Stable superhydrophobic coatings using PVDF-MWCNT nanocomposite. Appl. Surf. Sci. 2014;301:208–215. doi: 10.1016/j.apsusc.2014.02.044. DOI

Burkhart M., Wermelinger J., Setz W., Müller D. Suitability of polyvinylidene fluoride (PVDF) piping in pharmaceutical ultrapure water applications. PDA J. Pharm. Sci. Technol. 1996;50:246–251. PubMed

Yessari M., Fangachi N., Rguiti M., Hajjaji A. Design and numerical simulation of a piezoelectric harvester using PVDF polymer for keyboard application. Mater. Today Proc. 2022;66:365–372. doi: 10.1016/j.matpr.2022.05.545. DOI

Klinge U., Klosterhalfen B., Birkenhauer V., Junge K., Conze J., Schumpelick V. Impact of polymer pore size on the interface scar formation in a rat model. J. Surg. Res. 2002;103:208–214. doi: 10.1006/jsre.2002.6358. PubMed DOI

Klosterhalfen B., Klinge U., Schumpelick V. Functional and morphological evaluation of different polypropylene-mesh modifications for abdominal wall repair. Biomaterials. 1998;19:2235–2246. doi: 10.1016/S0142-9612(98)00115-X. PubMed DOI

Klinge U., Klosterhalfen B., Müller M., Öttinger A.P., Schumpelick V. Shrinking of polypropylene mesh in vivo: An experimental study in dogs. Eur. J. Surg. 1998;164:965–969. doi: 10.1080/110241598750005156. PubMed DOI

Sukovatykh B.S., Netyaga A.A., Zhukovsky V.A., Valuyskaya N.M., Korovicheva S.Y. The up to date polymer materials in plastic surgery of postoperative and recurrent ventral hernias. Modern methods of surgical treatment of ventral abdominal hernias and eventrations. Kursk scientific and practical bulletin “Man and his health”, 2006, No.1. [(accessed on 7 November 2022)]. Available online: https://cyberleninka.ru/article/n/setchatye-implantaty-iz-polivinilidenftorida-v-lechenii-gryzh-bryushnoy-stenki/viewer.

Sedov V.M., Tarbaev S.D., Rostovskoy A.A., Gorelov A.A. Surgical treatment of postoperative ventral hernias using polypropylene and PVDF mesh implants; Proceedings of the 5th International Conference Modern Approaches to the Development and Clinical Use of Effective Dressings, Suture Materials and Polymeric Implants; Moscow, Russia. 24–25 January 2006; pp. 200–208.

Jansen P.L., Klinge U., Anurov M., Titkova S., Mertens P.R., Jansen M. Surgical mesh as a scaffold for tissue regeneration in the esophagus. Eur. Surg. Res. 2004;36:104–111. PubMed

Junge K., Rosch R., Klinge U., Krones C., Klosterhalfen B., Mertens P.R., Lynen P., Kunz D., Preiß A., Peltroche-Llacsahuanga H., et al. Gentamicin supplementation of polyvinylidenfluoride mesh materials for infection prophylaxis. Biomaterials. 2005;26:787–793. doi: 10.1016/j.biomaterials.2004.02.070. PubMed DOI

Klinge U., Klosterhalfen B., Öttinger A.P., Junge K., Schumpelick V. PVDF as a new polymer for the construction of surgical meshes. Biomaterials. 2002;23:3487. doi: 10.1016/S0142-9612(02)00070-4. PubMed DOI

Lazarenko V.A. The choice of suture material for vascular plasty. Int. Congr. Surg. Petrozavodsk. 2002;1:369–370.

Bezhin A.I., Dolzhikov A.A., Zhukovsky V.A., Netyaga A.A., Plotnikov R.V. Experimental substantiation of the use of new polyvinylidene fluoride endoprostheses with carbine coating for hernioplasty. Bull. New Med. Technol. 2007;1:99.

Lee M., Catsouras I., Asadi K., Blom P.W.M., de Leeuw D.D. Low voltage extrinsic switching of ferroelectric δ-PVDF ultra-thin films. Phys. Lett. 2013;103:072903.

Ma H., Jen A.Y., Dalton L.R. Polymer-based optical waveguides: Materials, processing, and devices. Adv. Mater. 2002;14:1339–1365.

Iwamoto N., Johnston R.W., Yokoi K., Nakano K., Fujita K., Misaki S., Sugimoto M., Johnston R.W., Kanazawa K., Misaki Y. Respiration and Heartbeat Signal Measurement with A Highly Sensitive PVDF Piezoelectric Film Sensor; Proceedings of the Second International Conference on Electronics and Software Science (ICESS2016); Takamatsu, Japan. 14–16 November 2016.

Hu X., You M., Yi N., Zhang X., Xiang Y. Enhanced Piezoelectric Coefficient of PVDF-TrFE Films via In Situ Polarization. Front. Energy Res. 2021;9:621540. doi: 10.3389/fenrg.2021.621540. DOI

Kalimuldina G., Turdakyn N., Abay I., Medeubayev A., Nurpeissova A., Adair D., Bakenov Z. A Review of Piezoelectric PVDF Film by Electrospinning and Its Applications. Sensors. 2020;20:5214. doi: 10.3390/s20185214. PubMed DOI PMC

Chen W.W., An Z.L., He L.B., Deng Z. Piezoelectric coefficients measurement for PVDF films with pneumatic pressure rig in a sole cavity; Proceedings of the 2015 Symposium on Piezoelectricity, Acoustic Waves and Device Applications; SPAWDA, Jinan, China. 30 October–2 November 2015; pp. 111–114. DOI

Xu F., Chu F., Trolier-McKinstry S. Longitudinal piezoelectric coefficient measurement for bulk ceramics and thin films using pneumatic pressure rig. J. Appl. Phys. 1999;86:588–594.

Kholkin A.L., Wütchrich C., Taylor D.V., Setter N. Interferometric measurements of electric field-induced displacements in piezoelectric thin films. Rev. Sci. Instrum. 1996;67:1935–1941. doi: 10.1063/1.1147000. DOI

Lu K., Huang W., Guo J., Gong T., Wei X., Lu B.-W., Liu S.-Y., Yu B. Supersensitive strain gauge based on flexible poly(vinylidene fluoride) piezoelectric film. Nanoscale Resolut. 2018;13:83. doi: 10.1186/s11671-018-2492-7. PubMed DOI PMC

Furlan A.D., Brosso L., Imamura M., Irvin E. Massage for low back pain: A systematic review within the Cochrane Collaboration Back Review Group. Spine. 2002;27:1896–1910. doi: 10.1097/00007632-200209010-00017. PubMed DOI

Shirafuji S., Hosoda K. Slip detection and prevention using sensors with different properties embedded in elastic artificial leather based on previous experience; Proceedings of the International Conference on Advanced Robotics; New Taipei, Taiwan. 6–8 June 2014.

Liao H., Ava L., Nicola R. The Evidence for Shiatsu: A Systematic Review of Shiatsu and Acupressure. BMC Complementary Altern. Med. 2011;11:88 PubMed PMC

Dmitriev I.Y. Master’s Thesis. Ioffe Institute; St. Petersburg, Russia: 2007. Electroactive polymer systems based on porous films of polyvinylidene fluoride: Dissertation of a candidate of physical and mathematical sciences; pp. 1–154.

Korobova Y.G., Babaev V.G., Khvostov V.V., Guseva M.B. Emission characteristics of fibers based on linear chain carbon. Vestn. Mosc. Univ. Ser. 3 Phys. Astron. 2008;1:33–39.

Mavrinskaya N.A., Pesin L.A., Baumgarten M., Mavrinskiy A.V., Baitinger E.M., Evsyukov S.E. ESR studies of chemically dehydrofluorinated poly(vinylidene fluoride) Magn. Reson. Solids. EJ. 2008;10:31–38.

Evsyukov S.E., Kudryavtsev Y.P., Korshak Y.V. Chemical dehydrohalogenation of halogenated polymers. Russ. Chem. Rev. 1991;60:373–390. doi: 10.1070/RC1991v060n04ABEH001083. DOI

Kudryavtsev Y.P., Evsyukov S.E., Guseva M.B. Karbin—The Third Allotropic Form of Carbon. Nanotechnologies: Dev. Appl. XXI Century. 2010;1:37–52.

Sencadas V., Moreira V.M., Lanceros-Mendéz S., Pouzada A.S., Gregório R., Jr. α- to -β Transformation On Pvdf Films Obtained By Uniaxial Stretch. Mater. Sci. Forum. 2006;514/516:872–876. doi: 10.4028/www.scientific.net/MSF.514-516.872. DOI

Makarevich N.I., Sushko N.I. IR spectra and crystalline modifications of IR-polyvinylidene fluoride. Zh. Butt. Spectrosc. 1965;11:917–920.

Semochkin P.S., Andreychuk V.P., Pesin L.A., Evsyukov S.E., Koryakova O.V., Belenkov E.A., Shakhova I.V. Effect of Uniaxial Tension on Phase Transformations of Polyvinylidene Fluoride Films. Bull. South Ural. State University. Ser. Mathematics. Mechanics. Phys. 2009;12/10:80–84.

Vointseva I.I., Gil’man L.M., Kudryavtsev Y.P., Evsyukov S.E., Pesin L.A., Gribov I.V., Moskvina N.A., Khvostov V.V. Chemical Dehydrochlorination of Polytrichlorobutadienes. A New Route to Carbines. Europ. Polym. J. 1996;32:61–68.

Kochervinsky V.V. Structure and properties of block polyvinylidene fluoride and systems based on it. Adv. Chem. 1996;65:936–987.

Duca M.D., PLoSceanu C.L., Pop T. Effect of X-rays on Poly (Vinylidene Fluoride) in X-ray Photoelectron Spectroscopy. J. Appl. Polym. Sci. 1998;67:2125–2129.

Pesin L.A., Gribov I.V., Kuznetsov V.L., Evsyukov S.E., Moskvina N.A., Margamov I.G. In Situ Observation of the Modification of Carbon Hybridization in Poly (Vinylidene Fluoride) during Xps/Xaes Measurements. Chem. Phys. Lett. 2003;372:825–830. doi: 10.1016/S0009-2614(03)00522-0. DOI

Brzhezinskaya M.M., Morilova V.M., Baitinger E.M., Evsyukov S.E., Pesin L.A. Study of Poly (Vinylidene Fluoride) Radiative Modification Using Core Level Spectroscopy. Polym. Degrad. Stab. 2014;99:176–179. doi: 10.1016/j.polymdegradstab.2013.11.009. DOI

Sidelnikova A.L., Andreichuk V.P., Pesin L.A., Evsyukov S.E., Gribov I.V., Moskvina N.A., Kuznetsov V.L. Kinetics of Radiation-Induced Degradation of Cf2- And Cf-Groups in Poly (Vinylidene Fluoride): Model Refinement. Polym. Degrad. Stab. 2014;110:308–311. doi: 10.1016/j.polymdegradstab.2014.09.009. DOI

le Moël A., Duraud J.P., Balanzat E. Modifications of Polyvinylidene Fluoride (Pvdf) Under High Energy Heavy Ion, X-ray and Electron Irradiation Studied by X-ray Photoelectron Spectroscopy. Nucl. Instrum. Methods Phys. Res. B. 1986;18:59–63. doi: 10.1016/S0168-583X(86)80012-X. DOI

Le Moël A., Duraud J.P., Lemaire I., Balanzat E. 1.; Ramillon, J.M.; Darnez, C. Electronic and Structural Modifications of Polyvinylidene Fluoride under High Energy Oxygen Ion Irradiation. Nucl. Instrum. Methods Phys. Res. B. 1987;19/20:891–894.

le Moël A., Duraud J.P., Lecomte C., Valin M.T., Henriot M., le Gressus C., Darnez C., Balanzat E., Demanet C.M. Modifications Induced in Polyvinylidene Fluoride by Energetic Ions. Nucl. Instrum. Methods Phys. Res. B. 1988;32:115–119.

Adem E.H., Bean S.J., Demanet C.M., le Moel A., Duraund J.P. Xps As A Tool For The Investigation of Polymers Irradiated By Energetic Ions. Nucl. Instrum. Methods Phys. Res. B. 1988;32:182–185. doi: 10.1016/0168-583X(88)90206-6. DOI

Pesin L.A., Morilova V.M., Zherebtsov D.A., Evsyukov S.E. Kinetics of Pvdf Film Degradation under Electron Bombardment. Polym. Degrad. Stab. 2013;98:666–670. doi: 10.1016/j.polymdegradstab.2012.11.007. DOI

Zhang S., Shen J., Qiu X., Wend D., Zhu W. ESR and Vibrational Spectroscopy Study on Poly (Vinylidene Fluoride) Membranes with Alkaline Treatment. J. Power Sources. 2006;153:234–238. doi: 10.1016/j.jpowsour.2005.05.020. DOI

Volegov A.A., Pesin L.A., Margamov I.G., Evsyukov S.E., Koryakova O.V., Kochedykov V.A. Evaluation of the depth and rate of penetration of a dehydrofluorinating mixture into polyvinylidene fluoride using IR spectroscopy. Proc. Chelyabinsk Sci. Cent. 2006;4:26–31.

Ross G.J., Watts J.F., Hill M.P., Morrissey P. Surface Modification of Poly (Vinylidene Fluoride) by Alkaline Treatment 1. the Degradation Mechanism. Polymer. 2000;41:1685–1696.

Ross G.J., Watts J.F., Hill M.P., Morrissey P. Surface Modification of Poly (Vinylidene Fluoride) by Alkaline Treatment. Part 2. Process Modification by the Use of Phase Transfer Catalysts. Polymer. 2001;42:403–413. doi: 10.1016/S0032-3861(00)00328-1. DOI

Zhivulin V.E., Zherebtsov D.A., Pesin L.A. Molecular structure of chemically carbonized films of polyvinylidene fluoride (according to IR spectroscopy) Bull. Tomsk. Polytech. Univ. Eng. Georesources. 2018;329:80–87.

Zhivulin V.E., Pesin L.A., Morilova V.M., Koryakova O.V. Influence of heat treatment on the magnetic activity of the products of chemical carbonization of polyvinylidene fluoride. Bull. Juurgu Ser. Math. Mech. Phys. 2014;6:56–62.

Zhivulin V.E., Pesin L.A., Mezhenina O.A., Kovalev I.N., Zlobina N.A., Gavrilov M.A., Morilova V.M., Koryakova O.V. Influence of the duration of isothermal holding on the magnetic and structural properties of the products of chemical carbonization of polyvinylidene fluoride. Proc. Tomsk. Polytech. Univ. Math. Mech. Phys. 2014;325:149–157.

Zhivulin V.E., Pesin L.A., Ivanov D.V. Peculiarities of temperature dependence of EPR absorption of chemically carbonized derivatives of polyvinylidene fluoride. Solid State Phys. 2016;58:87–91. doi: 10.1134/S1063783416010340. DOI

Mavrinskaya N.A., Pesin L.A., Baumgarten M., Baitinger E.M., Mavrinsky A.V., Evsyukov S.E. Optical properties and EPR absorption of chemically dehydrofluorinated polyvinylidene fluoride. 123 Bull. Juurgu Ser. Math. Phys. Chem. 2008;7:80–88.

Mavrinskaya N.A., Mavrinsky A.V., Baumgarten M., Baitinger E.M., Evsyukov S.E., Pesin L.A. Influence of conditions and duration of storage on the intensity of the EPR signal of chemically dehydrofluorinated derivatives of polyvinylidene fluoride. Bull. Juurgu Ser. Math. Phys. Chem. 2008;22:89–91.

Kudryavtsev Y.P., Evsyukov S.E., Babaev V.G. Effective dehydrofluorinating system for polyvinylidene fluoride. Proc. Acad. Sci. Chem. Ser. 1992;5:1223–1225.

Gordon A., Ford R. A Companion to Chemistry. Mir; Moscow, Russia: 1976. 134p

Korshak V.V., Kudryavtsev Y.P., Korshak Y.V., Evsyukov S.E., Litovchenko G.D. Dehydrofluorination of polyvinylidene fluoride in the presence of tetrahydrofuran. Rep. Acad. Sci. USSR. 1987;294:127–130.

Pesin L.A., Chebotarev S.S., Kuvshinov A.M., Bespal I.I., Gribov I.V., Moskvina N.A., Kuznetsov V.L., Evsyukov S.E., Vyazovtsev A.V., Kravets N.S. Peculiarities of electron emission spectra of products of radiation carbonization of polyvinylidene fluoride. Surf. X-Ray Synchrotron Neutron Res. 2010;3:37–44.

Voinkova L.A., Pesin A.A., Volegov A.A., Evsyukov S. Depth distribution of fluorine concentration during radiation carbonization of PVDF. Surf. X-Ray Synchrotron Neutron Stud. 2007;8:1–5.

Kochervinsky V.V. Structural aspects of piezoelectricity in crystallizing ferroelectric polymers on the example of homopolymer and copolymers of vinylidene fluoride. VMS Ser. B. 2003;11:1922–1964.

Kochervinskii V.V. Ferroelectricity of polymers based on vinylidene fluoride. Russ. Chem. Rev. 1999;68:821–857. doi: 10.1070/RC1999v068n10ABEH000446. DOI

Kochervinskii V.V. The properties and applications of fluorine-containing polymer films with piezo- and pyro-activity. Russ. Chem. Rev. 1994;63:367–371. doi: 10.1070/RC1994v063n04ABEH000090. DOI

Wang T.T., Herbert J.M., editors. The Application of Ferroelectric Polymers. Blackie; Glasgow, UK: London, UK: Chapman and Hall; New York, NY, USA: 1988.

Kochervinskii V.V. The structure and properties of block poly(vinylidene fluoride) and systems based on it. Russ. Chem. Rev. 1996;65:865–913. doi: 10.1070/RC1996v065n10ABEH000328. DOI

Kochervinsky V.V. Piezoelectricity in crystallizing ferroelectric polymers by the example of polyvinylidene fluoride and its copolymers. Crystallography. 2003;48:699–726.

Ohigashi H. Electromechanical properties of polarized polyvinylidene fluoride films as studied by the piezoelectric resonance method. J. Appl. Phys. 1976;47:949–955. doi: 10.1063/1.322685. DOI

Sussner H. Physical interpretation of the anisotropy and temperature dependence of the piezoelectric constant of polyvinylidene fluoride. Phys. Lett. A. 1976;58:426. doi: 10.1016/0375-9601(76)90687-3. DOI

Furukawa T., Aiba J., Fukada E. Piezoelectric relaxation in polyvinylidene fluoride. J. Appl. Phys. 1979;50:3615–3621. doi: 10.1063/1.326310. DOI

Kochervinsky V.V., Sokolov V.G., Zubkov V.M. Influence of the molecular structure on the characteristics of the electrical hysteresis of polyvinylidene fluoride and its copolymers. [(accessed on 7 November 2022)];High Mol. Weight. Compd. A. 1991 :530–537. Available online: https://cyberleninka.ru/article/n/vliyanie-molekulyarnoy-struktury-na-harakteristiki-elektricheskogo-gisterezisa-polivinilidenftorida-i-ego-sopolimerov.

Scheinbeim J.J., Chung K.T., Rae C.D., Newman B.A. The dependence of the piezoelectric response of poly (vinylidene fluoride) on phase-I volume fraction. J. Appl. Phys. 1979;50:6101.

Nix E.L., Holt L., Mcgrath J.C., Ward I.M. Highly drawn poly (vinylidene fluoride) with enhanced mechanical and electrical properties. Ferroelectrics. 1981;32:103–114. doi: 10.1080/00150198108238680. DOI

Tasaka S., Niki J., Ojio T., Miyata S. Structure and Piezoelectricity of Poly (vinylidene fluoride) Films Obtained by Solid-State Extrusion. Polym. J. 1984;16:41–48.

Wang T.T. Piezoelectricity in β-phase poly (vinylidene fluoride) having a “single-crystal” orientation. J. Appl. Phys. 1979;50:6091–6094.

Nagai M., Uehara H., Kanamoto T. Drawing of poly (vinylidene fluoride): Effects of initial morphology and technique on the structure and properties of drawn products. Kobunshi Ronbunshu. 1996;53:555–562. doi: 10.1295/koron.53.555. DOI

Nagai M., Nakamura K., Uehara H., Kanamoto T., Takahashi Y., Furukawa T. Enhanced electrical properties of highly oriented poly (vinylidene fluoride) films prepared by solid-state coextrusion. J. Polym. Sci. Polym. Phys. 1999;37:2549–2556. doi: 10.1002/(SICI)1099-0488(19990915)37:18<2549::AID-POLB1>3.0.CO;2-S. DOI

Ibragimova A.I., Zhuravleva I.I., Kuznetsov S.I., Panin A.S., Tarasova E.Y. Structure and phase composition of polyvinylidene fluoride films obtained by laser synthesis. Bull. Lebedev Phys. Inst. 2019;46:118–121. doi: 10.3103/S1068335619040031. DOI

Wachtler M., Wagner M.R., Schmied M., Winter M., Besenhard J.O. The Effect of the Binder Morphology on the Cycling Stability of LiAlloy Composite Electrodes. J. Electroanal. Chem. 2001;510:12–19. doi: 10.1016/S0022-0728(01)00532-0. DOI

Yoo M., Frank C.W., Mori S., Yamaguchi S. Interaction of Poly(Vinylidene Fluoride) with Graphite Particles. 2. Effect of Solvent Evaporation Kinetics and Chemical Properties of Pvdf on the Surface Morphology of a Composite Film and Its Relation to Electrochemical Performance. Chem. Mater. 2004;16:1945–1953. doi: 10.1021/cm0304593. DOI

Sedov V.M., Gostevskoy A.A., Tarbaev S.D., Gorelov A.S., Chulkhovin A.B., Nutfullina G.M., Zhukovsky V.A. Polyvinylidene fluoride mesh implants in the treatment of hernias abdominal wall. Surg. Her. 2008;2:17–21. PubMed

Egiev V.N., Voskresensky P.K., Emelyanov S.I. Tension-Free Hernioplasty. Medpraktika-M.; Moscow, Russia: 2002. pp. 1–147.

Eremeev V.P., Rekhachev V.P., Kivermna Z.I. Treatment of postoperative ventral hernia. Surg. Her. 1984;6:17–21. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...