Brief Review of PVDF Properties and Applications Potential
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
FEKT-S-20-6352
Brno University of Technology
Grant #22-73-10091
Russian Science Foundation
MEYS CR (LM2018110)
Central European Institute of Technology
PubMed
36432920
PubMed Central
PMC9698228
DOI
10.3390/polym14224793
PII: polym14224793
Knihovny.cz E-zdroje
- Klíčová slova
- flexible electronics, piezoelectricity, polyvinylidene fluoride, sensor, structural properties,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Currently, there is an ever-growing interest in carbon materials with increased deformation-strength, thermophysical parameters. Due to their unique physical and chemical properties, such materials have a wide range of applications in various industries. Many prospects for the use of polymer composite materials based on polyvinylidene fluoride (PVDF) for scientific and technical purposes explain the plethora of studies on their characteristics "structure-property", processing, application and ecology which keep appearing. Building a broader conceptual picture of new generation polymeric materials is feasible with the use of innovative technologies; thus, achieving a high level of multidisciplinarity and integration of polymer science; its fundamental problems are formed, the solution of which determines a significant contribution to the natural-scientific picture of the modern world. This review provides explanation of PVDF advanced properties and potential applications of this polymer material in its various forms. More specifically, this paper will go over PVDF trademarks presently available on the market, provide thorough overview of the current and potential applications. Last but not least, this article will also delve into the processing and chemical properties of PVDF such as radiation carbonization, β-phase formation, etc.
Central European Institute of Technology Purkyňova 656 123 61200 Brno Czech Republic
Immanuel Kant Baltic Federal University 236041 Kaliningrad Russia
Zobrazit více v PubMed
Morilova V.M. Master’s Thesis. Chelyabinsk State University; Chelyabinsk, Russia: 2014. Study of the Carbonization of Polyvinylidene Fluoride by Emission and Absorption Spectroscopy.
Baskin Z.L., Shabalin D.A., Vyrazheikin E.S., Dedov S.A. Range, properties and application of fluoropolymers of the Kirovo-Chepetsk Chemical Plant. Russ. Chem. J. 2008;3:13–23.
Voinkova I.V., Ginchitskii N.N., Gribov I.V., Klebanov I.I., Kuznetsov V.L., Moskvina N.A., Pesin L.A., Evsyukov S.E. A Model of Radiation-Induced Degradation of the Poly(Vinylidene Fluoride) Surface During XPS Measurements. Polym. Degrad. Stab. 2005;89:471–477.
Joh H.-I., Ha H.Y. Properties and Formation Mechanisms of Branched Carbon Nanotubes from Polyvinylidene Fluoride Fibers. Carbon. 2013;63:567–571. doi: 10.1016/j.carbon.2013.06.072. DOI
Voinkova I.V., Pesin L.A., Volegov A.A., Evsyukov S.E., Gribov I.V., Kuznetsov V.L., Moskvina N.A. Depth distribution of the fluorine concentration during radiative carbonization of PVDF. J. Surf. Investig. 2007;1:450–453. doi: 10.1134/S1027451007040155. DOI
Heimann R.B., Evsyukov S.E., Kavan L., editors. Carbyne and Carbynoid Structures Dordrecht. Kluwer Academic Publishers; Amsterdam, The Netherlands: 1999. 446p
Calcagno L., Musumeci P., Percolla R., Foti G. Calorimetric measurements of MeV ion irradiated polyvinylidene fluoride. Nucl. Inst. Methods Phys. Res. B. 1994;91:461–464. doi: 10.1016/0168-583X(94)96269-3. DOI
Oshima A., Ikeda S., Seguchi T., Tabata Y. Temperature effect on radiation induced reactions in ethylene and tetrafluoroethylene copolymer (ETFE) Radiat. Phys. Chem. 1997;50:519–522. doi: 10.1016/S0969-806X(97)00080-7. DOI
Zhudi Z., Jin C., Xinfang C. Crystallite damage studies on irradiated poly(vinylidene fluoride) Radiat. Phys. Chem. 1994;43:523–526. doi: 10.1016/0969-806X(94)90162-7. DOI
Knápek A., Dallaev R., Burda D., Sobola D., Allaham M.M., Horáček M., Kaspar P., Matějka M., Mousa M.S. Field Emission Properties of Polymer Graphite Tips Prepared by Membrane Electrochemical Etching. Nanomaterials. 2020;10:1294. doi: 10.3390/nano10071294. PubMed DOI PMC
Wu Y., Li Y., Wang Y., Liu Q., Chen Q., Chen M. Advances and prospects of PVDF based polymer electrolytes. J. Energy Chem. 2022;64:62–84. doi: 10.1016/j.jechem.2021.04.007. DOI
Bicy K., Gueye A.B., Rouxel D., Kalarikkal N., Thomas S. Surfaces and Interfaces. Volume 31. Elsevier B.V.; Amsterdam, The Netherlands: 2022. Lithium-ion battery separators based on electrospun PVDF: A review. DOI
Pusty M., Shirage P.M. Insights and perspectives on graphene-PVDF based nanocomposite materials for harvesting mechanical energy. J. Alloys Compd. 2022;904:164060. doi: 10.1016/j.jallcom.2022.164060. DOI
Sahrash R., Siddiqa A., Razzaq H., Iqbal T., Qaisar S. PVDF based ionogels: Applications towards electrochemical devices and membrane separation processes. Heliyon. 2018;4:e00847. doi: 10.1016/j.heliyon.2018.e00847. PubMed DOI PMC
Ji J., Liu F., Hashim N.A., Abed M.M., Li K. Poly(vinylidene fluoride) (PVDF) membranes for fluid separation. React. Funct. Polym. 2015;86:134–153. doi: 10.1016/j.reactfunctpolym.2014.09.023. DOI
Lu L., Ding W., Liu J., Yang B. Flexible PVDF based piezoelectric nanogenerators. Nano Energy. 2020;78:105251. doi: 10.1016/j.nanoen.2020.105251. DOI
Liu F., Hashim N.A., Liu Y., Abed M.M., Li K. Progress in the production and modification of PVDF membranes. J. Membr. Sci. 2011;375:1–27. doi: 10.1016/j.memsci.2011.03.014. DOI
Papež N., Pisarenko T., Ščasnovič E., Sobola D., Ţălu Ş., Dallaev R., Částková K., Sedlák P. A Brief Introduction and Current State of Polyvinylidene Fluoride as an Energy Harvester. Coatings. 2022;12:1429. doi: 10.3390/coatings12101429. DOI
Rajeevan S., John S., George S.C. Polyvinylidene fluoride: A multifunctional polymer in supercapacitor applications. J. Power Sources. 2021;504:230037. doi: 10.1016/j.jpowsour.2021.230037. DOI
Zou D., Lee Y.M. Design strategy of poly(vinylidene fluoride) membranes for water treatment. Prog. Polym. Sci. 2022;128:101535. doi: 10.1016/j.progpolymsci.2022.101535. DOI
Kuznetsov E.V. Workshop on Chemistry and Physics of Polymers. Technosphere; Moscow, Russia: 1977. 256p
Chen H., Ling M., Hencz L., Ling H.Y., Li G., Lin Z., Liu G., Zhang S. Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices. Chem. Rev. 2018;118:8936–8982. doi: 10.1021/acs.chemrev.8b00241. PubMed DOI
Lestriez B. Functions of Polymers in Composite Electrodes of Lithium Ion Batteries. Comptes Rendus Chim. 2010;13:1341–1350.
Chou S.L., Pan Y., Wang J.Z., Liu H.K., Dou S.X. Small Things Make a Big Difference: Binder Effects on the Performance of Li and Na Batteries. Phys. Chem. Chem. Phys. 2014;16:20347–20359. doi: 10.1039/C4CP02475C. PubMed DOI
Nagai A. Applications of PvdfRelated Materials for LithiumIon Batteries. In: Yoshio M., Brodd R.J., Kozawa A., editors. Lithium-Ion Batteries: Science and Technologies. Springer; New York, NY, USA: 2009. pp. 155–162.
Morilova V.M., Koryakova O.V., Evsyukov S.E., Pesin L.A. Influence of Uniaxial Stretching of Polyvinylidene Fluoride Films on the Shape and Position of CH Peaks in IR Spectra. Herald of ChelGU. 2011. [(accessed on 7 November 2022)]. Available online: https://cyberleninka.ru/article/n/vliyanie-odnoosnogo-rastyazheniya-plyonok-polivinilidenftorida-na-formu-i-polozhenie-sn-pikov-v-ik-spektrah.
Tansel T. Effect of electric field assisted crystallisation of PVDF-TrFE and their functional properties. Sens. Actuators A Phys. 2021;332:113059. doi: 10.1016/j.sna.2021.113059. DOI
Rakhmankulov A.A., Davlatov F.F. Research on the effect of dispersed graphite grade GMZ on the thermophysical properties and structure of polyvinylidene fluoride. Int. Sci. Tech. J. 2019;87:11–15.
Kawai H. The Piezoelectricity of Poly(Vinilidene Fluoride) Jpn. J. Appl. Phis. 1969;8:975–976. doi: 10.1143/JJAP.8.975. DOI
Chu C.C. Biotextiles as Medical Implants. Woodhead Publishing; Cambridge, UK: 2013. pp. 275–334. (Chapter 11: Materials for Absorbable and Nonabsorbable Surgical Sutures). Woodhead Publishing Series in Textiles.
Seiler K., Simon W. Principles and mechanisms of ion-selective optodes. Sens. Actuators B Chem. 1992;6:295–298. doi: 10.1016/0925-4005(92)80073-7. DOI
Tang T.K., Liu S.S. Principles and Materials for Manufacturing Electrochemical Sensors in Chemical Sensor Technology. Volume 3 Kodansha Ltd.; Tokyo, Japan: 1991.
Zhivulin V.E. Master’s Thesis. South Ural State Humanitarian Pedagogical University; Chelyabinsk, Russia: 2016. Synthesis and properties of paramagnetic layers on the surface of polyvinylidene fluoride; pp. 1–127.
Rakhmankulov A.A., Khaidarov T.Z. Peculiarities of thermal motion in polyvinylidene fluoride. Sci. Educ. Cult. 2020;10:4–6.
Rakhmankulov A.A. Master's Thesis. Kyiv, Ukraine: 1986. Influence of dispersed fillers on the structure and thermal conductivity of unmodified and modified polyvinylidene fluoride; pp. 1–205.
Kakutani M. Dielectric Absorption of Oriented Polivinildenftuoride. J. Polym. Sci. Part A-2 Polym. Phys. 1970;8:1177–1183. doi: 10.1002/pol.1970.160080712. DOI
Harris G.R., Preston R.C., DeReggi A.S. Impact of piezoelectric PVDF on measurements, standards and regulations for medical ultrasound exposure. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2000;47:1321–1335. doi: 10.1109/58.883521. PubMed DOI
Lovlnger A.J. Crystallization of the P Base of Polivlnilidenftuoride from the Melt. Polymer. 1981;22:412–413. doi: 10.1016/0032-3861(81)90058-6. DOI
Kaspar P., Sobola D., Částková K., Dallaev R., Šťastná E., Sedlák P., Knápek A., Trčka T., Holcman V. Case study of polyvinylidene fluoride doping by carbon nanotubes. Materials. 2021;14:1428. doi: 10.3390/ma14061428. PubMed DOI PMC
Kaspar P., Sobola D., Částková K., Knápek A., Burda D., Orudzhev F., Dallaev R., Tofel P., Trčka T., Grmela L., et al. Characterization of polyvinylidene fluoride (Pvdf) electrospun fibers doped by carbon flakes. Polymers. 2020;12:2766. doi: 10.3390/polym12122766. PubMed DOI PMC
Sobola D., Kaspar P., Částková K., Dallaev R., Papež N., Sedlák P., Trčka T., Orudzhev F., Kaštyl J., Weiser A., et al. PVDF fibers modification by nitrate salts doping. Polymers. 2021;13:2439. doi: 10.3390/polym13152439. PubMed DOI PMC
Sedlak P., Sobola D., Gajdos A., Dallaev R., Nebojsa A., Kubersky P. Surface analyses of PVDF/NMP/[EMIM][TFSI] solid polymer electrolyte. Polymers. 2021;13:2678. doi: 10.3390/polym13162678. PubMed DOI PMC
Smejkalová T., Ţǎlu Ş., Dallaev R., Částková K., Sobola D., Nazarov A. SEM imaging and XPS characterization of doped PVDF fibers. E3S Web Conf. 2021;270:01011. doi: 10.1051/e3sconf/202127001011. DOI
Kerbow D.L. In: Modern Fluoropolymers. Scheirs J., editor. John Wiley & Sons; Chichester, UK: 1997. p. 301.
Cheng Y., Li D. Numerical analysis of piezoelectric signal of PVDF membrane flapping wing in flight. IOP Conf. Ser. Mater. Sci. Eng. 2020;774:012090. doi: 10.1088/1757-899X/774/1/012090. DOI
Holmes-Siedle A.G., Wilson P.D., Verrall A.P. PVdF: An electronically-active polymer for industry. Mater. Des. 1983;4:910–918. doi: 10.1016/0261-3069(84)90003-7. DOI
Liu R., Yuan B., Zhong S., Liu J., Dong L., Ji Y., Dong Y., Yang C., He W. Poly(vinylidene fluoride) separators for next-generation lithium based batteries. Nano Select. 2021;2:2308–2345. doi: 10.1002/nano.202100118. DOI
Shabanov V.A., Konnov E.I. Sensing elements based on PVDF films for creating hydroacoustic transducers; Proceedings of the 2nd Youth Scientific Conference “Actual problems of piezoelectric instrument making”; Rostov-on-Don, Russia. 6–10 September 2015; Sep 6–10, pp. 49–58.
Liu T., Zhou X., Sun Y., Bai R. Anticorrosion performance of pvdf membranes modified by blending ptfe nanoemulsion and prepared through usual non-solvent-induced phase inversion method. Membranes. 2021;11:420. doi: 10.3390/membranes11060420. PubMed DOI PMC
Ghazali N., Basirun W.J., Nor A.M., Johan M.R. Super-amphiphobic coating system incorporating functionalized nano-Al2O3 in polyvinylidene fluoride (PVDF) with enhanced corrosion resistance. Coatings. 2020;10:387. doi: 10.3390/coatings10040387. DOI
Hussein A.A., Dawood N.M., Al-Kawaz A.E. Corrosion protection of 316L stainless steel by (PVDF/HA) composite coating using a spinning coating technique. Bull. Pol. Acad. Sci. Tech. Sci. 2021;69:e136810. doi: 10.24425/bpasts.2021.136810. DOI
Chakradhar R.P., Prasad G., Bera P., Anandan C. Stable superhydrophobic coatings using PVDF-MWCNT nanocomposite. Appl. Surf. Sci. 2014;301:208–215. doi: 10.1016/j.apsusc.2014.02.044. DOI
Burkhart M., Wermelinger J., Setz W., Müller D. Suitability of polyvinylidene fluoride (PVDF) piping in pharmaceutical ultrapure water applications. PDA J. Pharm. Sci. Technol. 1996;50:246–251. PubMed
Yessari M., Fangachi N., Rguiti M., Hajjaji A. Design and numerical simulation of a piezoelectric harvester using PVDF polymer for keyboard application. Mater. Today Proc. 2022;66:365–372. doi: 10.1016/j.matpr.2022.05.545. DOI
Klinge U., Klosterhalfen B., Birkenhauer V., Junge K., Conze J., Schumpelick V. Impact of polymer pore size on the interface scar formation in a rat model. J. Surg. Res. 2002;103:208–214. doi: 10.1006/jsre.2002.6358. PubMed DOI
Klosterhalfen B., Klinge U., Schumpelick V. Functional and morphological evaluation of different polypropylene-mesh modifications for abdominal wall repair. Biomaterials. 1998;19:2235–2246. doi: 10.1016/S0142-9612(98)00115-X. PubMed DOI
Klinge U., Klosterhalfen B., Müller M., Öttinger A.P., Schumpelick V. Shrinking of polypropylene mesh in vivo: An experimental study in dogs. Eur. J. Surg. 1998;164:965–969. doi: 10.1080/110241598750005156. PubMed DOI
Sukovatykh B.S., Netyaga A.A., Zhukovsky V.A., Valuyskaya N.M., Korovicheva S.Y. The up to date polymer materials in plastic surgery of postoperative and recurrent ventral hernias. Modern methods of surgical treatment of ventral abdominal hernias and eventrations. Kursk scientific and practical bulletin “Man and his health”, 2006, No.1. [(accessed on 7 November 2022)]. Available online: https://cyberleninka.ru/article/n/setchatye-implantaty-iz-polivinilidenftorida-v-lechenii-gryzh-bryushnoy-stenki/viewer.
Sedov V.M., Tarbaev S.D., Rostovskoy A.A., Gorelov A.A. Surgical treatment of postoperative ventral hernias using polypropylene and PVDF mesh implants; Proceedings of the 5th International Conference Modern Approaches to the Development and Clinical Use of Effective Dressings, Suture Materials and Polymeric Implants; Moscow, Russia. 24–25 January 2006; pp. 200–208.
Jansen P.L., Klinge U., Anurov M., Titkova S., Mertens P.R., Jansen M. Surgical mesh as a scaffold for tissue regeneration in the esophagus. Eur. Surg. Res. 2004;36:104–111. PubMed
Junge K., Rosch R., Klinge U., Krones C., Klosterhalfen B., Mertens P.R., Lynen P., Kunz D., Preiß A., Peltroche-Llacsahuanga H., et al. Gentamicin supplementation of polyvinylidenfluoride mesh materials for infection prophylaxis. Biomaterials. 2005;26:787–793. doi: 10.1016/j.biomaterials.2004.02.070. PubMed DOI
Klinge U., Klosterhalfen B., Öttinger A.P., Junge K., Schumpelick V. PVDF as a new polymer for the construction of surgical meshes. Biomaterials. 2002;23:3487. doi: 10.1016/S0142-9612(02)00070-4. PubMed DOI
Lazarenko V.A. The choice of suture material for vascular plasty. Int. Congr. Surg. Petrozavodsk. 2002;1:369–370.
Bezhin A.I., Dolzhikov A.A., Zhukovsky V.A., Netyaga A.A., Plotnikov R.V. Experimental substantiation of the use of new polyvinylidene fluoride endoprostheses with carbine coating for hernioplasty. Bull. New Med. Technol. 2007;1:99.
Lee M., Catsouras I., Asadi K., Blom P.W.M., de Leeuw D.D. Low voltage extrinsic switching of ferroelectric δ-PVDF ultra-thin films. Phys. Lett. 2013;103:072903.
Ma H., Jen A.Y., Dalton L.R. Polymer-based optical waveguides: Materials, processing, and devices. Adv. Mater. 2002;14:1339–1365.
Iwamoto N., Johnston R.W., Yokoi K., Nakano K., Fujita K., Misaki S., Sugimoto M., Johnston R.W., Kanazawa K., Misaki Y. Respiration and Heartbeat Signal Measurement with A Highly Sensitive PVDF Piezoelectric Film Sensor; Proceedings of the Second International Conference on Electronics and Software Science (ICESS2016); Takamatsu, Japan. 14–16 November 2016.
Hu X., You M., Yi N., Zhang X., Xiang Y. Enhanced Piezoelectric Coefficient of PVDF-TrFE Films via In Situ Polarization. Front. Energy Res. 2021;9:621540. doi: 10.3389/fenrg.2021.621540. DOI
Kalimuldina G., Turdakyn N., Abay I., Medeubayev A., Nurpeissova A., Adair D., Bakenov Z. A Review of Piezoelectric PVDF Film by Electrospinning and Its Applications. Sensors. 2020;20:5214. doi: 10.3390/s20185214. PubMed DOI PMC
Chen W.W., An Z.L., He L.B., Deng Z. Piezoelectric coefficients measurement for PVDF films with pneumatic pressure rig in a sole cavity; Proceedings of the 2015 Symposium on Piezoelectricity, Acoustic Waves and Device Applications; SPAWDA, Jinan, China. 30 October–2 November 2015; pp. 111–114. DOI
Xu F., Chu F., Trolier-McKinstry S. Longitudinal piezoelectric coefficient measurement for bulk ceramics and thin films using pneumatic pressure rig. J. Appl. Phys. 1999;86:588–594.
Kholkin A.L., Wütchrich C., Taylor D.V., Setter N. Interferometric measurements of electric field-induced displacements in piezoelectric thin films. Rev. Sci. Instrum. 1996;67:1935–1941. doi: 10.1063/1.1147000. DOI
Lu K., Huang W., Guo J., Gong T., Wei X., Lu B.-W., Liu S.-Y., Yu B. Supersensitive strain gauge based on flexible poly(vinylidene fluoride) piezoelectric film. Nanoscale Resolut. 2018;13:83. doi: 10.1186/s11671-018-2492-7. PubMed DOI PMC
Furlan A.D., Brosso L., Imamura M., Irvin E. Massage for low back pain: A systematic review within the Cochrane Collaboration Back Review Group. Spine. 2002;27:1896–1910. doi: 10.1097/00007632-200209010-00017. PubMed DOI
Shirafuji S., Hosoda K. Slip detection and prevention using sensors with different properties embedded in elastic artificial leather based on previous experience; Proceedings of the International Conference on Advanced Robotics; New Taipei, Taiwan. 6–8 June 2014.
Liao H., Ava L., Nicola R. The Evidence for Shiatsu: A Systematic Review of Shiatsu and Acupressure. BMC Complementary Altern. Med. 2011;11:88 PubMed PMC
Dmitriev I.Y. Master’s Thesis. Ioffe Institute; St. Petersburg, Russia: 2007. Electroactive polymer systems based on porous films of polyvinylidene fluoride: Dissertation of a candidate of physical and mathematical sciences; pp. 1–154.
Korobova Y.G., Babaev V.G., Khvostov V.V., Guseva M.B. Emission characteristics of fibers based on linear chain carbon. Vestn. Mosc. Univ. Ser. 3 Phys. Astron. 2008;1:33–39.
Mavrinskaya N.A., Pesin L.A., Baumgarten M., Mavrinskiy A.V., Baitinger E.M., Evsyukov S.E. ESR studies of chemically dehydrofluorinated poly(vinylidene fluoride) Magn. Reson. Solids. EJ. 2008;10:31–38.
Evsyukov S.E., Kudryavtsev Y.P., Korshak Y.V. Chemical dehydrohalogenation of halogenated polymers. Russ. Chem. Rev. 1991;60:373–390. doi: 10.1070/RC1991v060n04ABEH001083. DOI
Kudryavtsev Y.P., Evsyukov S.E., Guseva M.B. Karbin—The Third Allotropic Form of Carbon. Nanotechnologies: Dev. Appl. XXI Century. 2010;1:37–52.
Sencadas V., Moreira V.M., Lanceros-Mendéz S., Pouzada A.S., Gregório R., Jr. α- to -β Transformation On Pvdf Films Obtained By Uniaxial Stretch. Mater. Sci. Forum. 2006;514/516:872–876. doi: 10.4028/www.scientific.net/MSF.514-516.872. DOI
Makarevich N.I., Sushko N.I. IR spectra and crystalline modifications of IR-polyvinylidene fluoride. Zh. Butt. Spectrosc. 1965;11:917–920.
Semochkin P.S., Andreychuk V.P., Pesin L.A., Evsyukov S.E., Koryakova O.V., Belenkov E.A., Shakhova I.V. Effect of Uniaxial Tension on Phase Transformations of Polyvinylidene Fluoride Films. Bull. South Ural. State University. Ser. Mathematics. Mechanics. Phys. 2009;12/10:80–84.
Vointseva I.I., Gil’man L.M., Kudryavtsev Y.P., Evsyukov S.E., Pesin L.A., Gribov I.V., Moskvina N.A., Khvostov V.V. Chemical Dehydrochlorination of Polytrichlorobutadienes. A New Route to Carbines. Europ. Polym. J. 1996;32:61–68.
Kochervinsky V.V. Structure and properties of block polyvinylidene fluoride and systems based on it. Adv. Chem. 1996;65:936–987.
Duca M.D., PLoSceanu C.L., Pop T. Effect of X-rays on Poly (Vinylidene Fluoride) in X-ray Photoelectron Spectroscopy. J. Appl. Polym. Sci. 1998;67:2125–2129.
Pesin L.A., Gribov I.V., Kuznetsov V.L., Evsyukov S.E., Moskvina N.A., Margamov I.G. In Situ Observation of the Modification of Carbon Hybridization in Poly (Vinylidene Fluoride) during Xps/Xaes Measurements. Chem. Phys. Lett. 2003;372:825–830. doi: 10.1016/S0009-2614(03)00522-0. DOI
Brzhezinskaya M.M., Morilova V.M., Baitinger E.M., Evsyukov S.E., Pesin L.A. Study of Poly (Vinylidene Fluoride) Radiative Modification Using Core Level Spectroscopy. Polym. Degrad. Stab. 2014;99:176–179. doi: 10.1016/j.polymdegradstab.2013.11.009. DOI
Sidelnikova A.L., Andreichuk V.P., Pesin L.A., Evsyukov S.E., Gribov I.V., Moskvina N.A., Kuznetsov V.L. Kinetics of Radiation-Induced Degradation of Cf2- And Cf-Groups in Poly (Vinylidene Fluoride): Model Refinement. Polym. Degrad. Stab. 2014;110:308–311. doi: 10.1016/j.polymdegradstab.2014.09.009. DOI
le Moël A., Duraud J.P., Balanzat E. Modifications of Polyvinylidene Fluoride (Pvdf) Under High Energy Heavy Ion, X-ray and Electron Irradiation Studied by X-ray Photoelectron Spectroscopy. Nucl. Instrum. Methods Phys. Res. B. 1986;18:59–63. doi: 10.1016/S0168-583X(86)80012-X. DOI
Le Moël A., Duraud J.P., Lemaire I., Balanzat E. 1.; Ramillon, J.M.; Darnez, C. Electronic and Structural Modifications of Polyvinylidene Fluoride under High Energy Oxygen Ion Irradiation. Nucl. Instrum. Methods Phys. Res. B. 1987;19/20:891–894.
le Moël A., Duraud J.P., Lecomte C., Valin M.T., Henriot M., le Gressus C., Darnez C., Balanzat E., Demanet C.M. Modifications Induced in Polyvinylidene Fluoride by Energetic Ions. Nucl. Instrum. Methods Phys. Res. B. 1988;32:115–119.
Adem E.H., Bean S.J., Demanet C.M., le Moel A., Duraund J.P. Xps As A Tool For The Investigation of Polymers Irradiated By Energetic Ions. Nucl. Instrum. Methods Phys. Res. B. 1988;32:182–185. doi: 10.1016/0168-583X(88)90206-6. DOI
Pesin L.A., Morilova V.M., Zherebtsov D.A., Evsyukov S.E. Kinetics of Pvdf Film Degradation under Electron Bombardment. Polym. Degrad. Stab. 2013;98:666–670. doi: 10.1016/j.polymdegradstab.2012.11.007. DOI
Zhang S., Shen J., Qiu X., Wend D., Zhu W. ESR and Vibrational Spectroscopy Study on Poly (Vinylidene Fluoride) Membranes with Alkaline Treatment. J. Power Sources. 2006;153:234–238. doi: 10.1016/j.jpowsour.2005.05.020. DOI
Volegov A.A., Pesin L.A., Margamov I.G., Evsyukov S.E., Koryakova O.V., Kochedykov V.A. Evaluation of the depth and rate of penetration of a dehydrofluorinating mixture into polyvinylidene fluoride using IR spectroscopy. Proc. Chelyabinsk Sci. Cent. 2006;4:26–31.
Ross G.J., Watts J.F., Hill M.P., Morrissey P. Surface Modification of Poly (Vinylidene Fluoride) by Alkaline Treatment 1. the Degradation Mechanism. Polymer. 2000;41:1685–1696.
Ross G.J., Watts J.F., Hill M.P., Morrissey P. Surface Modification of Poly (Vinylidene Fluoride) by Alkaline Treatment. Part 2. Process Modification by the Use of Phase Transfer Catalysts. Polymer. 2001;42:403–413. doi: 10.1016/S0032-3861(00)00328-1. DOI
Zhivulin V.E., Zherebtsov D.A., Pesin L.A. Molecular structure of chemically carbonized films of polyvinylidene fluoride (according to IR spectroscopy) Bull. Tomsk. Polytech. Univ. Eng. Georesources. 2018;329:80–87.
Zhivulin V.E., Pesin L.A., Morilova V.M., Koryakova O.V. Influence of heat treatment on the magnetic activity of the products of chemical carbonization of polyvinylidene fluoride. Bull. Juurgu Ser. Math. Mech. Phys. 2014;6:56–62.
Zhivulin V.E., Pesin L.A., Mezhenina O.A., Kovalev I.N., Zlobina N.A., Gavrilov M.A., Morilova V.M., Koryakova O.V. Influence of the duration of isothermal holding on the magnetic and structural properties of the products of chemical carbonization of polyvinylidene fluoride. Proc. Tomsk. Polytech. Univ. Math. Mech. Phys. 2014;325:149–157.
Zhivulin V.E., Pesin L.A., Ivanov D.V. Peculiarities of temperature dependence of EPR absorption of chemically carbonized derivatives of polyvinylidene fluoride. Solid State Phys. 2016;58:87–91. doi: 10.1134/S1063783416010340. DOI
Mavrinskaya N.A., Pesin L.A., Baumgarten M., Baitinger E.M., Mavrinsky A.V., Evsyukov S.E. Optical properties and EPR absorption of chemically dehydrofluorinated polyvinylidene fluoride. 123 Bull. Juurgu Ser. Math. Phys. Chem. 2008;7:80–88.
Mavrinskaya N.A., Mavrinsky A.V., Baumgarten M., Baitinger E.M., Evsyukov S.E., Pesin L.A. Influence of conditions and duration of storage on the intensity of the EPR signal of chemically dehydrofluorinated derivatives of polyvinylidene fluoride. Bull. Juurgu Ser. Math. Phys. Chem. 2008;22:89–91.
Kudryavtsev Y.P., Evsyukov S.E., Babaev V.G. Effective dehydrofluorinating system for polyvinylidene fluoride. Proc. Acad. Sci. Chem. Ser. 1992;5:1223–1225.
Gordon A., Ford R. A Companion to Chemistry. Mir; Moscow, Russia: 1976. 134p
Korshak V.V., Kudryavtsev Y.P., Korshak Y.V., Evsyukov S.E., Litovchenko G.D. Dehydrofluorination of polyvinylidene fluoride in the presence of tetrahydrofuran. Rep. Acad. Sci. USSR. 1987;294:127–130.
Pesin L.A., Chebotarev S.S., Kuvshinov A.M., Bespal I.I., Gribov I.V., Moskvina N.A., Kuznetsov V.L., Evsyukov S.E., Vyazovtsev A.V., Kravets N.S. Peculiarities of electron emission spectra of products of radiation carbonization of polyvinylidene fluoride. Surf. X-Ray Synchrotron Neutron Res. 2010;3:37–44.
Voinkova L.A., Pesin A.A., Volegov A.A., Evsyukov S. Depth distribution of fluorine concentration during radiation carbonization of PVDF. Surf. X-Ray Synchrotron Neutron Stud. 2007;8:1–5.
Kochervinsky V.V. Structural aspects of piezoelectricity in crystallizing ferroelectric polymers on the example of homopolymer and copolymers of vinylidene fluoride. VMS Ser. B. 2003;11:1922–1964.
Kochervinskii V.V. Ferroelectricity of polymers based on vinylidene fluoride. Russ. Chem. Rev. 1999;68:821–857. doi: 10.1070/RC1999v068n10ABEH000446. DOI
Kochervinskii V.V. The properties and applications of fluorine-containing polymer films with piezo- and pyro-activity. Russ. Chem. Rev. 1994;63:367–371. doi: 10.1070/RC1994v063n04ABEH000090. DOI
Wang T.T., Herbert J.M., editors. The Application of Ferroelectric Polymers. Blackie; Glasgow, UK: London, UK: Chapman and Hall; New York, NY, USA: 1988.
Kochervinskii V.V. The structure and properties of block poly(vinylidene fluoride) and systems based on it. Russ. Chem. Rev. 1996;65:865–913. doi: 10.1070/RC1996v065n10ABEH000328. DOI
Kochervinsky V.V. Piezoelectricity in crystallizing ferroelectric polymers by the example of polyvinylidene fluoride and its copolymers. Crystallography. 2003;48:699–726.
Ohigashi H. Electromechanical properties of polarized polyvinylidene fluoride films as studied by the piezoelectric resonance method. J. Appl. Phys. 1976;47:949–955. doi: 10.1063/1.322685. DOI
Sussner H. Physical interpretation of the anisotropy and temperature dependence of the piezoelectric constant of polyvinylidene fluoride. Phys. Lett. A. 1976;58:426. doi: 10.1016/0375-9601(76)90687-3. DOI
Furukawa T., Aiba J., Fukada E. Piezoelectric relaxation in polyvinylidene fluoride. J. Appl. Phys. 1979;50:3615–3621. doi: 10.1063/1.326310. DOI
Kochervinsky V.V., Sokolov V.G., Zubkov V.M. Influence of the molecular structure on the characteristics of the electrical hysteresis of polyvinylidene fluoride and its copolymers. [(accessed on 7 November 2022)];High Mol. Weight. Compd. A. 1991 :530–537. Available online: https://cyberleninka.ru/article/n/vliyanie-molekulyarnoy-struktury-na-harakteristiki-elektricheskogo-gisterezisa-polivinilidenftorida-i-ego-sopolimerov.
Scheinbeim J.J., Chung K.T., Rae C.D., Newman B.A. The dependence of the piezoelectric response of poly (vinylidene fluoride) on phase-I volume fraction. J. Appl. Phys. 1979;50:6101.
Nix E.L., Holt L., Mcgrath J.C., Ward I.M. Highly drawn poly (vinylidene fluoride) with enhanced mechanical and electrical properties. Ferroelectrics. 1981;32:103–114. doi: 10.1080/00150198108238680. DOI
Tasaka S., Niki J., Ojio T., Miyata S. Structure and Piezoelectricity of Poly (vinylidene fluoride) Films Obtained by Solid-State Extrusion. Polym. J. 1984;16:41–48.
Wang T.T. Piezoelectricity in β-phase poly (vinylidene fluoride) having a “single-crystal” orientation. J. Appl. Phys. 1979;50:6091–6094.
Nagai M., Uehara H., Kanamoto T. Drawing of poly (vinylidene fluoride): Effects of initial morphology and technique on the structure and properties of drawn products. Kobunshi Ronbunshu. 1996;53:555–562. doi: 10.1295/koron.53.555. DOI
Nagai M., Nakamura K., Uehara H., Kanamoto T., Takahashi Y., Furukawa T. Enhanced electrical properties of highly oriented poly (vinylidene fluoride) films prepared by solid-state coextrusion. J. Polym. Sci. Polym. Phys. 1999;37:2549–2556. doi: 10.1002/(SICI)1099-0488(19990915)37:18<2549::AID-POLB1>3.0.CO;2-S. DOI
Ibragimova A.I., Zhuravleva I.I., Kuznetsov S.I., Panin A.S., Tarasova E.Y. Structure and phase composition of polyvinylidene fluoride films obtained by laser synthesis. Bull. Lebedev Phys. Inst. 2019;46:118–121. doi: 10.3103/S1068335619040031. DOI
Wachtler M., Wagner M.R., Schmied M., Winter M., Besenhard J.O. The Effect of the Binder Morphology on the Cycling Stability of LiAlloy Composite Electrodes. J. Electroanal. Chem. 2001;510:12–19. doi: 10.1016/S0022-0728(01)00532-0. DOI
Yoo M., Frank C.W., Mori S., Yamaguchi S. Interaction of Poly(Vinylidene Fluoride) with Graphite Particles. 2. Effect of Solvent Evaporation Kinetics and Chemical Properties of Pvdf on the Surface Morphology of a Composite Film and Its Relation to Electrochemical Performance. Chem. Mater. 2004;16:1945–1953. doi: 10.1021/cm0304593. DOI
Sedov V.M., Gostevskoy A.A., Tarbaev S.D., Gorelov A.S., Chulkhovin A.B., Nutfullina G.M., Zhukovsky V.A. Polyvinylidene fluoride mesh implants in the treatment of hernias abdominal wall. Surg. Her. 2008;2:17–21. PubMed
Egiev V.N., Voskresensky P.K., Emelyanov S.I. Tension-Free Hernioplasty. Medpraktika-M.; Moscow, Russia: 2002. pp. 1–147.
Eremeev V.P., Rekhachev V.P., Kivermna Z.I. Treatment of postoperative ventral hernia. Surg. Her. 1984;6:17–21. PubMed