Case Study of Polyvinylidene Fluoride Doping by Carbon Nanotubes
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
LQ1601
Ministerstvo Školství, Mládeže a Tělovýchovy
FEKT-S-20-6352
Internal Grant Agency of Brno University of Technology
19-17457S
Grantová Agentura České Republiky
ID LM2015041
Ministerstvo Školství, Mládeže a Tělovýchovy
RVO:68081731
Akademie Věd České Republiky
TN01000008
Technology Agency of the Czech Republic
PubMed
33804184
PubMed Central
PMC8001382
DOI
10.3390/ma14061428
PII: ma14061428
Knihovny.cz E-resources
- Keywords
- carbon nanotubes, crystalline phases, dielectric constant, polyvinylidene fluoride,
- Publication type
- Journal Article MeSH
Modern material science often makes use of polyvinylidene fluoride thin films because of various properties, like a high thermal and chemical stability, or a ferroelectric, pyroelectric and piezoelectric activity. Fibers of this polymer material are, on the other hand, much less explored due to various issues presented by the fibrous form. By introducing carbon nanotubes via electrospinning, it is possible to affect the chemical and electrical properties of the resulting composite. In the case of this paper, the focus was on the further improvement of interesting polyvinylidene fluoride properties by incorporating carbon nanotubes, such as changing the concentration of crystalline phases and the resulting increase of the dielectric constant and conductivity. These changes in properties have been explored by several methods that focused on a structural, chemical and electrical point of view. The resulting obtained data have been documented to create a basis for further research and to increase the overall understanding of the properties and usability of polyvinylidene fluoride fiber composites.
See more in PubMed
Jia N., He Q., Sun J., Xia G., Song R. Crystallization behavior and electroactive properties of PVDF, P(VDF-TrFE) and their blend films. Polym. Test. 2017;57:302–306. doi: 10.1016/j.polymertesting.2016.12.003. DOI
Bian X., Shi L., Yang X., Lu X. Effect of Nano-TiO2 Particles on the Performance of PVDF, PVDF-g-(Maleic anhydride), and PVDF-g-Poly(acryl amide) Membranes. Ind. Eng. Chem. Res. 2011;50:12113–12123. doi: 10.1021/ie200232u. DOI
Yang J., He F., Wu H., Liang Y., Wang Y., Sun Z. Engineering Surface and Optical Properties of TiO2-Coated Electrospun PVDF Nanofibers Via Controllable Self-Assembly. Nanomaterials. 2018;8:741. doi: 10.3390/nano8090741. PubMed DOI PMC
Ma Z., Wang G., Rui X., Yang F., Wang Y. Temperature compensation of a PVDF stress sensor and its application in the test of gun propellant charge compression stress. Smart Mater. Struct. 2019;28:025018. doi: 10.1088/1361-665X/aaf2bd. DOI
Sharma M., Madras G., Bose S. Unusual Fragility and Cooperativity in Glass-Forming and Crystalline PVDF/PMMA Blends in the Presence of Multiwall Carbon Nanotubes. Macromolecules. 2015;48:2740–2750. doi: 10.1021/acs.macromol.5b00418. DOI
McKeen L.W. Fluoropolymers. In: Rogers M., editor. Fatigue and Tribological Properties of Plastics and Elastomers. Elsevier BV; Amsterdam, The Netherlands: 2016. pp. 291–315.
Cardoso V.F., Minas G., Lanceros-Méndez S. Multilayer spin-coating deposition of poly(vinylidene fluoride) films for controlling thickness and piezoelectric response. Sens. Actuators A Phys. 2013;192:76–80. doi: 10.1016/j.sna.2012.12.019. DOI
Shaik H., Rachith S.N., Rudresh K.J., Sheik A.S., Raman K.H.T., Kondaiah P., Rao G.M. Towards β-phase formation probability in spin coated PVDF thin films. J. Polym. Res. 2017;24:35. doi: 10.1007/s10965-017-1191-x. DOI
Wu C.-M., Chou M.-H., Zeng W.-Y. Piezoelectric Response of Aligned Electrospun Polyvinylidene Fluoride/Carbon Nanotube Nanofibrous Membranes. Nanomaterials. 2018;8:420. doi: 10.3390/nano8060420. PubMed DOI PMC
Castkova K., Kastyl J., Sobola D., Petrus J., Stastna E., Riha D., Tofel P. Structure-Properties Relationship of Electrospun PVDF Fibers. Nanomaterials. 2020;10:1221. doi: 10.3390/nano10061221. PubMed DOI PMC
Kawai H. The Piezoelectricity of Poly (vinylidene Fluoride) Jpn. J. Appl. Phys. 1969;8:975–976. doi: 10.1143/JJAP.8.975. DOI
Fukada E., Takashita S. Piezoelectric Effect in Polarized Poly (vinylidene Fluoride) Jpn. J. Appl. Phys. 1969;8:960. doi: 10.1143/JJAP.8.960. DOI
Nakamura K., Wada Y. Piezoelectricity, pyroelectricity, and the electrostriction constant of poly(vinylidene fluoride) J. Polym. Sci. Part A-2 Polym. Phys. 1971;9:161–173. doi: 10.1002/pol.1971.160090111. DOI
Tamura M., Ogasawara K., Ono N., Hagiwara S. Piezoelectricity in uniaxially stretched poly(vinylidene fluoride) J. Appl. Phys. 1974;45:3768–3771. doi: 10.1063/1.1663857. DOI
Oshiki M., Fukada E. Inverse piezoelectric effect and electrostrictive effect in polarized poly(vinylidene fluoride) films. J. Mater. Sci. 1975;10:1–6. doi: 10.1007/BF00541025. DOI
Levi N., Czerw R., Xing S., Iyer P., Carroll D.L. Properties of Polyvinylidene Difluoride−Carbon Nanotube Blends. Nano Lett. 2004;4:1267–1271. doi: 10.1021/nl0494203. DOI
Chatterjee J., Nash N., Cottinet P.-J., Wang B. Synthesis and characterization of poly(vinylidene fluoride)/carbon nanotube composite piezoelectric powders. J. Mater. Res. 2012;27:2352–2359. doi: 10.1557/jmr.2012.230. DOI
Mousa M.S. Comparison between Single-Walled CNT, Multi-Walled CNT, and Carbon Nanotube-Fiber Pyrograf III. IOP Conf. Ser. Mater. Sci. Eng. 2018;305:012025. doi: 10.1088/1757-899X/305/1/012025. DOI
Aqeel S.M., Huang Z., Walton J., Baker C., Falkner D., Liu Z., Wang Z. Polyvinylidene fluoride (PVDF)/polyacrylonitrile (PAN)/carbon nanotube nanocomposites for energy storage and conversion. Adv. Compos. Hybrid Mater. 2017;1:185–192. doi: 10.1007/s42114-017-0002-5. PubMed DOI PMC
Ahn Y., Lim J.Y., Hong S.M., Lee J., Ha J., Choi H.J., Seo Y. Enhanced Piezoelectric Properties of Electrospun Poly(vinylidene fluoride)/Multiwalled Carbon Nanotube Composites Due to High β-Phase Formation in Poly(vinylidene fluoride) J. Phys. Chem. C. 2013;117:11791–11799. doi: 10.1021/jp4011026. DOI
Huang S., Yee W.A., Tjiu W.C., Liu Y., Kotaki M., Boey Y.C.F., Ma J., Liu T., Lu X. Electrospinning of Polyvinylidene Difluoride with Carbon Nanotubes: Synergistic Effects of Extensional Force and Interfacial Interaction on Crystalline Structures. Langmuir. 2008;24:13621–13626. doi: 10.1021/la8024183. PubMed DOI
Mago G., Kalyon D.M., Fisher F.T. Membranes of Polyvinylidene Fluoride and PVDF Nanocomposites with Carbon Nanotubes via Immersion Precipitation. J. Nanomater. 2008;2008:1–8. doi: 10.1155/2008/759825. DOI
Bokobza L., Bruneel J.-L., Couzi M. Raman spectroscopy as a tool for the analysis of carbon-based materials (highly oriented pyrolitic graphite, multilayer graphene and multiwall carbon nanotubes) and of some of their elastomeric composites. Vib. Spectrosc. 2014;74:57–63. doi: 10.1016/j.vibspec.2014.07.009. DOI
Peña-Álvarez M., Del Corro E., Langa F., Baonza V.G., Taravillo M. Morphological changes in carbon nanohorns under stress: A combined Raman spectroscopy and TEM study. RSC Adv. 2016;6:49543–49550. doi: 10.1039/C5RA27162B. DOI
Ferreira E.H.M., Moutinho M., Stavale F., Lucchese M.M., Capaz R.B., Achete C.A., Jorio A. Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys. Rev. B. 2010;82:125429. doi: 10.1103/PhysRevB.82.125429. DOI
NC7000TM—Technical Data Sheet. [(accessed on 13 November 2020)]; Available online: https://www.nanocyl.com/download/tds-nc7000/
Singh K., Chaudhary S., Venugopal R., Gaurav A. Bulk synthesis of multi-walled carbon nanotubes by AC arc discharge method. Proc. Inst. Mech. Eng. Part N J. Nanomater. Nanoeng. Nanosyst. 2017;231:141–151. doi: 10.1177/2397791417712836. DOI
Satapathy S., Pawar S., Gupta P.K., Varma K.B.R. Effect of annealing on phase transition in poly(vinylidene fluoride) films prepared using polar solvent. Bull. Mater. Sci. 2011;34:727–733. doi: 10.1007/s12034-011-0187-0. DOI
Boccaccio T., Bottino A., Capannelli G., Piaggio P. Characterization of PVDF membranes by vibrational spectroscopy. J. Membr. Sci. 2002;210:315–329. doi: 10.1016/S0376-7388(02)00407-6. DOI
Constantino C.J.L., Job A.E., Simoes R.D., Giacometti J.A., Zucolotto V., Oliveira O.N., Gozzi G., Chinaglia D.L. The Investigation of /spl alpha //spl rArr//spl beta/ Phase Transition in Poly(Vinylidene Fluoride) (PVDF); Proceedings of the 2005 12th International Symposium on Electrets, IEEE; Salvador, Bahia, Brazil. 11–14 September 2005; pp. 178–181.
Wang G.-L., Tian Y.-M., Cao D.-X., Yu Y.-S., Sun W.-B. One-dimensional Salen-type Chain-like Lanthanide(III) Coordination Polymers: Syntheses, Crystal Structures, and Fluorescence Properties. Z. Für Anorg. Und Allg. Chem. 2010;637:583–588. doi: 10.1002/zaac.201000366. DOI
Li Z.-F., Cheng X.-X., Li G., Lu H.-J., Zhang H.-F. Syntheses, structures, fluorescence and thermal properties of three lanthanide coordination polymers built by N-benzoyl-N′-(4-benzoxy)thiourea. J. Lumin. 2010;130:2192–2200. doi: 10.1016/j.jlumin.2010.06.019. DOI
Hartschuh A., Pedrosa H.N., Novotny L., Krauss T.D. Simultaneous Fluorescence and Raman Scattering from Single Carbon Nanotubes. Science. 2003;301:1354–1356. doi: 10.1126/science.1087118. PubMed DOI
Högele A., Galland C., Winger M., Imamoğlu A. Photon Antibunching in the Photoluminescence Spectra of a Single Carbon Nanotube. Phys. Rev. Lett. 2008;100:217401. doi: 10.1103/PhysRevLett.100.217401. PubMed DOI
Okpalugo T., Papakonstantinou P., Murphy H., McLaughlin J., Brown N. High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon. 2005;43:153–161. doi: 10.1016/j.carbon.2004.08.033. DOI
Duca M.D., Plosceanu C.L., Pop T. Surface modifications of polyvinylidene fluoride (PVDF) under rf Ar plasma. Polym. Degrad. Stab. 1998;61:65–72. doi: 10.1016/S0141-3910(97)00130-4. DOI
Constantino C.J.L., Job A.E., Simões R.D., Giacometti J.A., Zucolotto V., Oliveira O.N., Gozzi G., Chinaglia D.L. Phase Transition in Poly(Vinylidene Fluoride) Investigated with Micro-Raman Spectroscopy. Appl. Spectrosc. 2005;59:275–279. doi: 10.1366/0003702053585336. PubMed DOI
Kaspar P., Sobola D., Částková K., Knápek A., Burda D., Orudzhev F., Dallaev R., Tofel P., Trčka T., Grmela L., et al. Characterization of Polyvinylidene Fluoride (PVDF) Electrospun Fibers Doped by Carbon Flakes. Polymers. 2020;12:2766. doi: 10.3390/polym12122766. PubMed DOI PMC
Cai X., Lei T., Sun D., Lin L. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 2017;7:15382–15389. doi: 10.1039/C7RA01267E. DOI
Li Q.W., Li Y., Zhang X.F., Chikkannanavar S.B., Zhao Y.H., Dangelewicz A.M., Zheng L.X., Doorn S.K., Jia Q.X., Peterson D.E., et al. Structure-Dependent Electrical Properties of Carbon Nanotube Fibers. Adv. Mater. 2007;19:3358–3363. doi: 10.1002/adma.200602966. DOI
Puértolas J., García-García J., Pascual F., González-Domínguez J., Martínez M., Ansón-Casaos A. Dielectric behavior and electrical conductivity of PVDF filled with functionalized single-walled carbon nanotubes. Compos. Sci. Technol. 2017;152:263–274. doi: 10.1016/j.compscitech.2017.09.016. DOI
Sedlak P., Gajdos A., Macku R., Majzner J., Holcman V., Sedlakova V., Kubersky P. The effect of thermal treatment on ac/dc conductivity and current fluctuations of PVDF/NMP/[EMIM][TFSI] solid polymer electrolyte. Sci. Rep. 2020;10:1–12. doi: 10.1038/s41598-020-78363-6. PubMed DOI PMC