Comprehensive Characterization of PVDF Nanofibers at Macro- and Nanolevel

. 2022 Feb 01 ; 14 (3) : . [epub] 20220201

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35160582

Grantová podpora
FEKT-S-20-6352 Brno University of Technology
19-17457S Grant Agency of Czech Republic
FSI-S-20-6292 Brno University of Technology

This study is focused on the characterization and investigation of polyvinylidene fluoride (PVDF) nanofibers from the point of view of macro- and nanometer level. The fibers were produced using electrostatic spinning process in air. Two types of fibers were produced since the collector speed (300 rpm and 2000 rpm) differed as the only one processing parameter. Differences in fiber's properties were studied by scanning electron microscopy (SEM) with cross-sections observation utilizing focused ion beam (FIB). The phase composition was determined by Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy. The crystallinity was determined by differential scanning calorimetry (DSC), and chemical analysis of fiber's surfaces and bonding states were studied using X-ray photoelectron spectroscopy (XPS). Other methods, such as atomic force microscopy (AFM) and piezoelectric force microscopy (PFM), were employed to describe morphology and piezoelectric response of single fiber, respectively. Moreover, the wetting behavior (hydrophobicity or hydrophilicity) was also studied. It was found that collector speed significantly affects fibers alignment and wettability (directionally ordered fibers produced at 2000 rpm almost super-hydrophobic in comparison with disordered fibers spun at 300 rpm with hydrophilic behavior) as properties at macrolevel. However, it was confirmed that these differences at the macrolevel are closely connected and originate from nanolevel attributes. The study of single individual fibers revealed some protrusions on the fiber's surface, and fibers spun at 300 rpm had a core-shell design, while fibers spun at 2000 rpm were hollow.

Zobrazit více v PubMed

Černohorský P., Pisarenko T., Papež N., Sobola D., Ţălu Ş., Částková K., Kaštyl J., Macků R., Škarvada P., Sedlák P. Structure Tuning and Electrical Properties of Mixed PVDF and Nylon Nanofibers. Materials. 2021;14:6096. doi: 10.3390/ma14206096. PubMed DOI PMC

Sobola D., Kaspar P., Částková K., Dallaev R., Papež N., Sedlák P., Trčka T., Orudzhev F., Kaštyl J., Weiser A., et al. PVDF Fibers Modification by Nitrate Salts Doping. Polymers. 2021;13:2439. doi: 10.3390/polym13152439. PubMed DOI PMC

Naga Kumar C., Prabhakar M.N., Song J.-I. Synthesis of vinyl ester resin-carrying PVDF green nanofibers for self-healing applications. Sci. Rep. 2021;11:908. doi: 10.1038/s41598-020-78706-3. PubMed DOI PMC

Pan F., Amarjargal A., Altenried S., Liu M., Zuber F., Zeng Z., Rossi R.M., Maniura-Weber K., Ren Q. Bioresponsive Hybrid Nanofibers Enable Controlled Drug Delivery through Glass Transition Switching at Physiological Temperature. ACS Appl. Bio Mater. 2021;4:4271–4279. doi: 10.1021/acsabm.1c00099. PubMed DOI

Částková K., Kaštyl J., Sobola D., Petruš J., Šťastná E., Říha D., Tofel P. Structure—Properties Relationship of Electrospun PVDF Fibers. Nanomaterials. 2020;10:1221. doi: 10.3390/nano10061221. PubMed DOI PMC

Orudzhev F., Ramazanov S., Sobola D., Kaspar P., Trčka T., Částková K., Kastyl J., Zvereva I., Wang C., Selimov D., et al. Ultrasound and water flow driven piezophototronic effect in self-polarized flexible α-Fe2O3 containing PVDF nanofibers film for enhanced catalytic oxidation. Nano Energy. 2021;90:106586. doi: 10.1016/j.nanoen.2021.106586. DOI

Roy R.E., Bhuvaneswari S., Vijayalakshmi K.P., Dimple R., Soumyamol P.B., Rajeev R.S.N. Energy-induced polymorphic changes in poly(vinylidene fluoride): How ultrasonication results in polymer with predominantly γ phase. J. Polym. Sci. Part B Polym. Phys. 2019;57:40–50. doi: 10.1002/polb.24752. DOI

Szewczyk P.K., Metwally S., Karbowniczek J.E., Marzec M.M., Stodolak-Zych E., Gruszczyński A., Bernasik A., Stachewicz U. Surface-Potential-Controlled Cell Proliferation and Collagen Mineralization on Electrospun Polyvinylidene Fluoride (PVDF) Fiber Scaffolds for Bone Regeneration. ACS Biomater. Sci. Eng. 2019;5:582–593. doi: 10.1021/acsbiomaterials.8b01108. PubMed DOI

Li T., Feng Z.Q., Qu M., Yan K., Yuan T., Gao B., Wang T., Dong W., Zheng J. Core/Shell Piezoelectric Nanofibers with Spatial Self-Orientated β-Phase Nanocrystals for Real-Time Micropressure Monitoring of Cardiovascular Walls. ACS Nano. 2019;13:10062–10073. doi: 10.1021/acsnano.9b02483. PubMed DOI

Akduman C., Akcakoca Kumbasar E.P. Nanofibers in face masks and respirators to provide better protection. IOP Conf. Ser. Mater. Sci. Eng. 2018;460:012013. doi: 10.1088/1757-899X/460/1/012013. DOI

Ullah S., Ullah A., Lee J., Jeong Y., Hashmi M., Zhu C., Joo K.I., Cha H.J., Kim I.S. Reusability Comparison of Melt-Blown vs Nanofiber Face Mask Filters for Use in the Coronavirus Pandemic. ACS Appl. Nano Mater. 2020;3:7231–7241. doi: 10.1021/acsanm.0c01562. PubMed DOI

Zhang J.X., Hoshino K. Molecular Sensors and Nanodevices. Elsevier; Amsterdam, The Netherlands: 2014. Implantable Sensors; pp. 415–465. DOI

Soin N., Anand S., Shah T. Handbook of Technical Textiles. Elsevier; Amsterdam, The Netherlands: 2016. Energy harvesting and storage textiles; pp. 357–396. DOI

Houis S., Engelhardt E.M., Wurm F., Gries T. Medical and Healthcare Textiles. Elsevier; Amsterdam, The Netherlands: 2010. Application of Polyvinylidene Fluoride (PVDF) as a Biomaterial in Medical Textiles; pp. 342–352. DOI

Lee D.W., Jeong D.G., Kim J.H., Kim H.S., Murillo G., Lee G.H., Song H.C., Jung J.H. Polarization-controlled PVDF-based hybrid nanogenerator for an effective vibrational energy harvesting from human foot. Nano Energy. 2020;76:105066. doi: 10.1016/j.nanoen.2020.105066. DOI

Wankhade S.H., Tiwari S., Gaur A., Maiti P. PVDF–PZT nanohybrid based nanogenerator for energy harvesting applications. Energy Rep. 2020;6:358–364. doi: 10.1016/j.egyr.2020.02.003. DOI

Cong J., Jing J., Chen C., Dai Z. Development of a PVDF Sensor Array for Measurement of the Dynamic Pressure Field of the Blade Tip in an Axial Flow Compressor. Sensors. 2019;19:1404. doi: 10.3390/s19061404. PubMed DOI PMC

Du G., Li Z., Song G. A PVDF-Based Sensor for Internal Stress Monitoring of a Concrete-Filled Steel Tubular (CFST) Column Subject to Impact Loads. Sensors. 2018;18:1682. doi: 10.3390/s18061682. PubMed DOI PMC

Seok Han K., Lee S., Kim M., Park P., Hyung Lee M., Nah J., Han K.S., Lee S., Kim M., Park P., et al. Electrically Activated Ultrathin PVDF-TrFE Air Filter for High-Efficiency PM1.0 Filtration. Adv. Funct. Mater. 2019;29:1903633. doi: 10.1002/ADFM.201903633. DOI

Oshima K.H., Evans-Strickfaden T.T., Highsmith A.K., Ades E.W. The Use of a Microporous Polyvinylidene Fluoride (PVDF) Membrane Filter to Separate Contaminating Viral Particles from Biologically Important Proteins. Biologicals. 1996;24:137–145. doi: 10.1006/biol.1996.0018. PubMed DOI

Leung W.W.F., Sun Q. Charged PVDF multilayer nanofiber filter in filtering simulated airborne novel coronavirus (COVID-19) using ambient nano-aerosols. Sep. Purif. Technol. 2020;245:116887. doi: 10.1016/j.seppur.2020.116887. PubMed DOI PMC

Wan C., Bowen C.R. Multiscale-structuring of polyvinylidene fluoride for energy harvesting: The impact of molecular-, micro- and macro-structure. J. Mater. Chem. A. 2017;5:3091–3128. doi: 10.1039/C6TA09590A. DOI

Voigtländer B. Scanning Probe Microscopy. Springer; Berlin/Heidelberg, Germany: 2015. NanoScience and Technology. DOI

He W., Guo Y., Zhao Y.B., Jiang F., Schmitt J., Yue Y., Liu J., Cao J., Wang J. Self-supporting smart air filters based on PZT/PVDF electrospun nanofiber composite membrane. Chem. Eng. J. 2021;423:130247. doi: 10.1016/j.cej.2021.130247. DOI

Pisarenko T. Proceedings of the 26th Conference STUDENT EEICT 2020. Brno University of Technology; Brno, Czech Republic: 2020. Characterization of PVDF nanofibers created by the electrospinning method; pp. 287–291.

Sasmal A., Sen S., Devi P.S. Synthesis and characterization of SmFeO3 and its effect on the electrical and energy storage properties of PVDF. Mater. Res. Bull. 2020;130:110941. doi: 10.1016/j.materresbull.2020.110941. DOI

Xin Y., Qi X., Tian H., Guo C., Li X., Lin J., Wang C. Full-fiber piezoelectric sensor by straight PVDF/nanoclay nanofibers. Mater. Lett. 2016;164:136–139. doi: 10.1016/j.matlet.2015.09.117. DOI

Pisarenko T. Proceedings of the 27th Conference STUDENT EEICT 2021. Brno University of Technology; Brno, Czech Republic: 2021. PVDF—An ideal candidate for use in nanogenerators; pp. 275–279.

Motamedi A.S., Mirzadeh H., Hajiesmaeilbaigi F., Bagheri-Khoulenjani S., Shokrgozar M. Effect of electrospinning parameters on morphological properties of PVDF nanofibrous scaffolds. Prog. Biomater. 2017;6:113–123. doi: 10.1007/s40204-017-0071-0. PubMed DOI PMC

Buršíková V., Stťahel P., Navrátil Z., Buršík J., Janča J. Vyhodnocení Povrchové Energie Materiálu Ošetřeného Plazmatem, Metodou měření Kontaktního úhlu. Masarykova Univerzita; Brno, Czech Republic: 2004.

Ueberschlag P. PVDF piezoelectric polymer. Sens. Rev. 2001;21:118–126. doi: 10.1108/02602280110388315. DOI

Manikandan N., Muruganand S., Sriram K., Balakrishnan P., Suresh Kumar A. Fabrication of Piezoelectric Polyvinylidene Fluoride (PVDF) Polymer-Based Tactile Sensor Using Electrospinning Method. Nano Hybrids Compos. 2016;12:42–50. doi: 10.4028/www.scientific.net/NHC.12.42. DOI

Huang H.S., Chen C.Y., Lo S.C., Lin C.J., Chen S.J., Lin L.J. Identification of ionic aggregates in PVDF-g-PSSA membrane by tapping mode AFM and HADDF STEM. Appl. Surf. Sci. 2006;253:2685–2689. doi: 10.1016/j.apsusc.2006.05.048. DOI

Ţălu Ş. Micro and Nanoscale Characterization of Three Dimensional Surfaces: Basics and Applications. Napoca Star Publishing House; Cluj-Napoca, Romania: 2015.

Arjun Hari M., Rajan L., Subash C., Varghese S. Effect of nanoparticle size on the piezoelectric properties of PVDF based nanocomposite thin films. Mater. Today Proc. 2021;46:5781–5784. doi: 10.1016/j.matpr.2021.02.715. DOI

Sobola D., Ramazanov S., Konečný M., Orudzhev F., Kaspar P., Papež N., Knápek A., Potoček M. Complementary SEM-AFM of swelling Bi-Fe-O film on HOPG substrate. Materials. 2020;13:2402. doi: 10.3390/ma13102402. PubMed DOI PMC

Sencadas V., Ribeiro C., Bdikin I.K., Kholkin A.L., Lanceros-Mendez S. Local piezoelectric response of single poly(vinylidene fluoride) electrospun fibers. Phys. Status Solidi A. 2012;209:2605–2609. doi: 10.1002/pssa.201228136. DOI

Kaspar P., Sobola D., Částková K., Dallaev R., Šťastná E., Sedlák P., Knápek A., Trčka T., Holcman V. Case Study of Polyvinylidene Fluoride Doping by Carbon Nanotubes. Materials. 2021;14:1428. doi: 10.3390/ma14061428. PubMed DOI PMC

Elashmawi I.S., Gaabour L.H. Raman, morphology and electrical behavior of nanocomposites based on PEO/PVDF with multi-walled carbon nanotubes. Results Phys. 2015;5:105–110. doi: 10.1016/j.rinp.2015.04.005. DOI

Islam A., Khan A.N., Shakir M.F., Islam K. Strengthening of β polymorph in PVDF/FLG and PVDF/GO nanocomposites. Mater. Res. Express. 2019;7:015017. doi: 10.1088/2053-1591/ab5f82. DOI

Kaynak A., Mehmood T., Dai X., Magniez K., Kouzani A. Study of Radio Frequency Plasma Treatment of PVDF Film Using Ar, O2 and (Ar + O2) Gases for Improved Polypyrrole Adhesion. Materials. 2013;6:3482–3493. doi: 10.3390/ma6083482. PubMed DOI PMC

Kaspar P., Sobola D., Částková K., Knápek A., Burda D., Orudzhev F., Dallaev R., Tofel P., Trčka T., Grmela L., et al. Characterization of Polyvinylidene Fluoride (PVDF) Electrospun Fibers Doped by Carbon Flakes. Polymers. 2020;12:2766. doi: 10.3390/polym12122766. PubMed DOI PMC

Mohammadi Ghaleni M., Al Balushi A., Kaviani S., Tavakoli E., Bavarian M., Nejati S. Fabrication of Janus Membranes for Desalination of Oil-Contaminated Saline Water. ACS Appl. Mater. Interfaces. 2018;10:44871–44879. doi: 10.1021/acsami.8b16621. PubMed DOI

Yan D., Zhang H., Lu S., Yang L., Zhao X., He F. Synergistic modification effect of polyvinylidene fluoride and polydopamine on mechanical and damping properties of three-dimensional braided carbon fibers reinforced composites. J. Mater. Sci. 2019;54:5457–5471. doi: 10.1007/s10853-018-03223-8. DOI

Liao Y., Wang R., Tian M., Qiu C., Fane A.G. Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation. J. Membr. Sci. 2013;425–426:30–39. doi: 10.1016/j.memsci.2012.09.023. DOI

Peng M., Li H., Wu L., Zheng Q., Chen Y., Gu W. Porous poly(vinylidene fluoride) membrane with highly hydrophobic surface. J. Appl. Polym. Sci. 2005;98:1358–1363. doi: 10.1002/app.22303. DOI

Wang K.Y., Chung T.S., Gryta M. Hydrophobic PVDF hollow fiber membranes with narrow pore size distribution and ultra-thin skin for the fresh water production through membrane distillation. Chem. Eng. Sci. 2008;63:2587–2594. doi: 10.1016/j.ces.2008.02.020. DOI

Huang F.L., Wang Q.Q., Wei Q.F., Gao W.D., Shou H.Y., Jiang S.D. Dynamic wettability and contact angles of poly(vinylidene fluoride) nanofiber membranes grafted with acrylic acid. Express Polym. Lett. 2010;4:551–558. doi: 10.3144/expresspolymlett.2010.69. DOI

Kebede T.G., Dube S., Nindi M.M. Biopolymer electrospun nanofibres for the adsorption of pharmaceuticals from water systems. J. Environ. Chem. Eng. 2019;7:103330. doi: 10.1016/j.jece.2019.103330. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A Development and Comparison Study of PVDF Membranes Enriched by Metal-Organic Frameworks

. 2025 Apr 22 ; 17 (9) : . [epub] 20250422

Adaptability of Electrospun PVDF Nanofibers in Bone Tissue Engineering

. 2025 Jan 25 ; 17 (3) : . [epub] 20250125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...