Comprehensive Characterization of PVDF Nanofibers at Macro- and Nanolevel
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FEKT-S-20-6352
Brno University of Technology
19-17457S
Grant Agency of Czech Republic
FSI-S-20-6292
Brno University of Technology
PubMed
35160582
PubMed Central
PMC8839271
DOI
10.3390/polym14030593
PII: polym14030593
Knihovny.cz E-zdroje
- Klíčová slova
- AFM, DSC, FIB, FTIR, PFM, PVDF, Raman spectroscopy, SEM, STEM, XPS, core-shell, electrostatic spinning, hollow, hydrophilic, hydrophobic, nanofibers,
- Publikační typ
- časopisecké články MeSH
This study is focused on the characterization and investigation of polyvinylidene fluoride (PVDF) nanofibers from the point of view of macro- and nanometer level. The fibers were produced using electrostatic spinning process in air. Two types of fibers were produced since the collector speed (300 rpm and 2000 rpm) differed as the only one processing parameter. Differences in fiber's properties were studied by scanning electron microscopy (SEM) with cross-sections observation utilizing focused ion beam (FIB). The phase composition was determined by Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy. The crystallinity was determined by differential scanning calorimetry (DSC), and chemical analysis of fiber's surfaces and bonding states were studied using X-ray photoelectron spectroscopy (XPS). Other methods, such as atomic force microscopy (AFM) and piezoelectric force microscopy (PFM), were employed to describe morphology and piezoelectric response of single fiber, respectively. Moreover, the wetting behavior (hydrophobicity or hydrophilicity) was also studied. It was found that collector speed significantly affects fibers alignment and wettability (directionally ordered fibers produced at 2000 rpm almost super-hydrophobic in comparison with disordered fibers spun at 300 rpm with hydrophilic behavior) as properties at macrolevel. However, it was confirmed that these differences at the macrolevel are closely connected and originate from nanolevel attributes. The study of single individual fibers revealed some protrusions on the fiber's surface, and fibers spun at 300 rpm had a core-shell design, while fibers spun at 2000 rpm were hollow.
Central European Institute of Technology Purkyňova 656 123 61200 Brno the Czech Republic
Institute of Physics of Materials Czech Academy of Sciences Žižkova 22 61662 Brno the Czech Republic
Zobrazit více v PubMed
Černohorský P., Pisarenko T., Papež N., Sobola D., Ţălu Ş., Částková K., Kaštyl J., Macků R., Škarvada P., Sedlák P. Structure Tuning and Electrical Properties of Mixed PVDF and Nylon Nanofibers. Materials. 2021;14:6096. doi: 10.3390/ma14206096. PubMed DOI PMC
Sobola D., Kaspar P., Částková K., Dallaev R., Papež N., Sedlák P., Trčka T., Orudzhev F., Kaštyl J., Weiser A., et al. PVDF Fibers Modification by Nitrate Salts Doping. Polymers. 2021;13:2439. doi: 10.3390/polym13152439. PubMed DOI PMC
Naga Kumar C., Prabhakar M.N., Song J.-I. Synthesis of vinyl ester resin-carrying PVDF green nanofibers for self-healing applications. Sci. Rep. 2021;11:908. doi: 10.1038/s41598-020-78706-3. PubMed DOI PMC
Pan F., Amarjargal A., Altenried S., Liu M., Zuber F., Zeng Z., Rossi R.M., Maniura-Weber K., Ren Q. Bioresponsive Hybrid Nanofibers Enable Controlled Drug Delivery through Glass Transition Switching at Physiological Temperature. ACS Appl. Bio Mater. 2021;4:4271–4279. doi: 10.1021/acsabm.1c00099. PubMed DOI
Částková K., Kaštyl J., Sobola D., Petruš J., Šťastná E., Říha D., Tofel P. Structure—Properties Relationship of Electrospun PVDF Fibers. Nanomaterials. 2020;10:1221. doi: 10.3390/nano10061221. PubMed DOI PMC
Orudzhev F., Ramazanov S., Sobola D., Kaspar P., Trčka T., Částková K., Kastyl J., Zvereva I., Wang C., Selimov D., et al. Ultrasound and water flow driven piezophototronic effect in self-polarized flexible α-Fe2O3 containing PVDF nanofibers film for enhanced catalytic oxidation. Nano Energy. 2021;90:106586. doi: 10.1016/j.nanoen.2021.106586. DOI
Roy R.E., Bhuvaneswari S., Vijayalakshmi K.P., Dimple R., Soumyamol P.B., Rajeev R.S.N. Energy-induced polymorphic changes in poly(vinylidene fluoride): How ultrasonication results in polymer with predominantly γ phase. J. Polym. Sci. Part B Polym. Phys. 2019;57:40–50. doi: 10.1002/polb.24752. DOI
Szewczyk P.K., Metwally S., Karbowniczek J.E., Marzec M.M., Stodolak-Zych E., Gruszczyński A., Bernasik A., Stachewicz U. Surface-Potential-Controlled Cell Proliferation and Collagen Mineralization on Electrospun Polyvinylidene Fluoride (PVDF) Fiber Scaffolds for Bone Regeneration. ACS Biomater. Sci. Eng. 2019;5:582–593. doi: 10.1021/acsbiomaterials.8b01108. PubMed DOI
Li T., Feng Z.Q., Qu M., Yan K., Yuan T., Gao B., Wang T., Dong W., Zheng J. Core/Shell Piezoelectric Nanofibers with Spatial Self-Orientated β-Phase Nanocrystals for Real-Time Micropressure Monitoring of Cardiovascular Walls. ACS Nano. 2019;13:10062–10073. doi: 10.1021/acsnano.9b02483. PubMed DOI
Akduman C., Akcakoca Kumbasar E.P. Nanofibers in face masks and respirators to provide better protection. IOP Conf. Ser. Mater. Sci. Eng. 2018;460:012013. doi: 10.1088/1757-899X/460/1/012013. DOI
Ullah S., Ullah A., Lee J., Jeong Y., Hashmi M., Zhu C., Joo K.I., Cha H.J., Kim I.S. Reusability Comparison of Melt-Blown vs Nanofiber Face Mask Filters for Use in the Coronavirus Pandemic. ACS Appl. Nano Mater. 2020;3:7231–7241. doi: 10.1021/acsanm.0c01562. PubMed DOI
Zhang J.X., Hoshino K. Molecular Sensors and Nanodevices. Elsevier; Amsterdam, The Netherlands: 2014. Implantable Sensors; pp. 415–465. DOI
Soin N., Anand S., Shah T. Handbook of Technical Textiles. Elsevier; Amsterdam, The Netherlands: 2016. Energy harvesting and storage textiles; pp. 357–396. DOI
Houis S., Engelhardt E.M., Wurm F., Gries T. Medical and Healthcare Textiles. Elsevier; Amsterdam, The Netherlands: 2010. Application of Polyvinylidene Fluoride (PVDF) as a Biomaterial in Medical Textiles; pp. 342–352. DOI
Lee D.W., Jeong D.G., Kim J.H., Kim H.S., Murillo G., Lee G.H., Song H.C., Jung J.H. Polarization-controlled PVDF-based hybrid nanogenerator for an effective vibrational energy harvesting from human foot. Nano Energy. 2020;76:105066. doi: 10.1016/j.nanoen.2020.105066. DOI
Wankhade S.H., Tiwari S., Gaur A., Maiti P. PVDF–PZT nanohybrid based nanogenerator for energy harvesting applications. Energy Rep. 2020;6:358–364. doi: 10.1016/j.egyr.2020.02.003. DOI
Cong J., Jing J., Chen C., Dai Z. Development of a PVDF Sensor Array for Measurement of the Dynamic Pressure Field of the Blade Tip in an Axial Flow Compressor. Sensors. 2019;19:1404. doi: 10.3390/s19061404. PubMed DOI PMC
Du G., Li Z., Song G. A PVDF-Based Sensor for Internal Stress Monitoring of a Concrete-Filled Steel Tubular (CFST) Column Subject to Impact Loads. Sensors. 2018;18:1682. doi: 10.3390/s18061682. PubMed DOI PMC
Seok Han K., Lee S., Kim M., Park P., Hyung Lee M., Nah J., Han K.S., Lee S., Kim M., Park P., et al. Electrically Activated Ultrathin PVDF-TrFE Air Filter for High-Efficiency PM1.0 Filtration. Adv. Funct. Mater. 2019;29:1903633. doi: 10.1002/ADFM.201903633. DOI
Oshima K.H., Evans-Strickfaden T.T., Highsmith A.K., Ades E.W. The Use of a Microporous Polyvinylidene Fluoride (PVDF) Membrane Filter to Separate Contaminating Viral Particles from Biologically Important Proteins. Biologicals. 1996;24:137–145. doi: 10.1006/biol.1996.0018. PubMed DOI
Leung W.W.F., Sun Q. Charged PVDF multilayer nanofiber filter in filtering simulated airborne novel coronavirus (COVID-19) using ambient nano-aerosols. Sep. Purif. Technol. 2020;245:116887. doi: 10.1016/j.seppur.2020.116887. PubMed DOI PMC
Wan C., Bowen C.R. Multiscale-structuring of polyvinylidene fluoride for energy harvesting: The impact of molecular-, micro- and macro-structure. J. Mater. Chem. A. 2017;5:3091–3128. doi: 10.1039/C6TA09590A. DOI
Voigtländer B. Scanning Probe Microscopy. Springer; Berlin/Heidelberg, Germany: 2015. NanoScience and Technology. DOI
He W., Guo Y., Zhao Y.B., Jiang F., Schmitt J., Yue Y., Liu J., Cao J., Wang J. Self-supporting smart air filters based on PZT/PVDF electrospun nanofiber composite membrane. Chem. Eng. J. 2021;423:130247. doi: 10.1016/j.cej.2021.130247. DOI
Pisarenko T. Proceedings of the 26th Conference STUDENT EEICT 2020. Brno University of Technology; Brno, Czech Republic: 2020. Characterization of PVDF nanofibers created by the electrospinning method; pp. 287–291.
Sasmal A., Sen S., Devi P.S. Synthesis and characterization of SmFeO3 and its effect on the electrical and energy storage properties of PVDF. Mater. Res. Bull. 2020;130:110941. doi: 10.1016/j.materresbull.2020.110941. DOI
Xin Y., Qi X., Tian H., Guo C., Li X., Lin J., Wang C. Full-fiber piezoelectric sensor by straight PVDF/nanoclay nanofibers. Mater. Lett. 2016;164:136–139. doi: 10.1016/j.matlet.2015.09.117. DOI
Pisarenko T. Proceedings of the 27th Conference STUDENT EEICT 2021. Brno University of Technology; Brno, Czech Republic: 2021. PVDF—An ideal candidate for use in nanogenerators; pp. 275–279.
Motamedi A.S., Mirzadeh H., Hajiesmaeilbaigi F., Bagheri-Khoulenjani S., Shokrgozar M. Effect of electrospinning parameters on morphological properties of PVDF nanofibrous scaffolds. Prog. Biomater. 2017;6:113–123. doi: 10.1007/s40204-017-0071-0. PubMed DOI PMC
Buršíková V., Stťahel P., Navrátil Z., Buršík J., Janča J. Vyhodnocení Povrchové Energie Materiálu Ošetřeného Plazmatem, Metodou měření Kontaktního úhlu. Masarykova Univerzita; Brno, Czech Republic: 2004.
Ueberschlag P. PVDF piezoelectric polymer. Sens. Rev. 2001;21:118–126. doi: 10.1108/02602280110388315. DOI
Manikandan N., Muruganand S., Sriram K., Balakrishnan P., Suresh Kumar A. Fabrication of Piezoelectric Polyvinylidene Fluoride (PVDF) Polymer-Based Tactile Sensor Using Electrospinning Method. Nano Hybrids Compos. 2016;12:42–50. doi: 10.4028/www.scientific.net/NHC.12.42. DOI
Huang H.S., Chen C.Y., Lo S.C., Lin C.J., Chen S.J., Lin L.J. Identification of ionic aggregates in PVDF-g-PSSA membrane by tapping mode AFM and HADDF STEM. Appl. Surf. Sci. 2006;253:2685–2689. doi: 10.1016/j.apsusc.2006.05.048. DOI
Ţălu Ş. Micro and Nanoscale Characterization of Three Dimensional Surfaces: Basics and Applications. Napoca Star Publishing House; Cluj-Napoca, Romania: 2015.
Arjun Hari M., Rajan L., Subash C., Varghese S. Effect of nanoparticle size on the piezoelectric properties of PVDF based nanocomposite thin films. Mater. Today Proc. 2021;46:5781–5784. doi: 10.1016/j.matpr.2021.02.715. DOI
Sobola D., Ramazanov S., Konečný M., Orudzhev F., Kaspar P., Papež N., Knápek A., Potoček M. Complementary SEM-AFM of swelling Bi-Fe-O film on HOPG substrate. Materials. 2020;13:2402. doi: 10.3390/ma13102402. PubMed DOI PMC
Sencadas V., Ribeiro C., Bdikin I.K., Kholkin A.L., Lanceros-Mendez S. Local piezoelectric response of single poly(vinylidene fluoride) electrospun fibers. Phys. Status Solidi A. 2012;209:2605–2609. doi: 10.1002/pssa.201228136. DOI
Kaspar P., Sobola D., Částková K., Dallaev R., Šťastná E., Sedlák P., Knápek A., Trčka T., Holcman V. Case Study of Polyvinylidene Fluoride Doping by Carbon Nanotubes. Materials. 2021;14:1428. doi: 10.3390/ma14061428. PubMed DOI PMC
Elashmawi I.S., Gaabour L.H. Raman, morphology and electrical behavior of nanocomposites based on PEO/PVDF with multi-walled carbon nanotubes. Results Phys. 2015;5:105–110. doi: 10.1016/j.rinp.2015.04.005. DOI
Islam A., Khan A.N., Shakir M.F., Islam K. Strengthening of β polymorph in PVDF/FLG and PVDF/GO nanocomposites. Mater. Res. Express. 2019;7:015017. doi: 10.1088/2053-1591/ab5f82. DOI
Kaynak A., Mehmood T., Dai X., Magniez K., Kouzani A. Study of Radio Frequency Plasma Treatment of PVDF Film Using Ar, O2 and (Ar + O2) Gases for Improved Polypyrrole Adhesion. Materials. 2013;6:3482–3493. doi: 10.3390/ma6083482. PubMed DOI PMC
Kaspar P., Sobola D., Částková K., Knápek A., Burda D., Orudzhev F., Dallaev R., Tofel P., Trčka T., Grmela L., et al. Characterization of Polyvinylidene Fluoride (PVDF) Electrospun Fibers Doped by Carbon Flakes. Polymers. 2020;12:2766. doi: 10.3390/polym12122766. PubMed DOI PMC
Mohammadi Ghaleni M., Al Balushi A., Kaviani S., Tavakoli E., Bavarian M., Nejati S. Fabrication of Janus Membranes for Desalination of Oil-Contaminated Saline Water. ACS Appl. Mater. Interfaces. 2018;10:44871–44879. doi: 10.1021/acsami.8b16621. PubMed DOI
Yan D., Zhang H., Lu S., Yang L., Zhao X., He F. Synergistic modification effect of polyvinylidene fluoride and polydopamine on mechanical and damping properties of three-dimensional braided carbon fibers reinforced composites. J. Mater. Sci. 2019;54:5457–5471. doi: 10.1007/s10853-018-03223-8. DOI
Liao Y., Wang R., Tian M., Qiu C., Fane A.G. Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation. J. Membr. Sci. 2013;425–426:30–39. doi: 10.1016/j.memsci.2012.09.023. DOI
Peng M., Li H., Wu L., Zheng Q., Chen Y., Gu W. Porous poly(vinylidene fluoride) membrane with highly hydrophobic surface. J. Appl. Polym. Sci. 2005;98:1358–1363. doi: 10.1002/app.22303. DOI
Wang K.Y., Chung T.S., Gryta M. Hydrophobic PVDF hollow fiber membranes with narrow pore size distribution and ultra-thin skin for the fresh water production through membrane distillation. Chem. Eng. Sci. 2008;63:2587–2594. doi: 10.1016/j.ces.2008.02.020. DOI
Huang F.L., Wang Q.Q., Wei Q.F., Gao W.D., Shou H.Y., Jiang S.D. Dynamic wettability and contact angles of poly(vinylidene fluoride) nanofiber membranes grafted with acrylic acid. Express Polym. Lett. 2010;4:551–558. doi: 10.3144/expresspolymlett.2010.69. DOI
Kebede T.G., Dube S., Nindi M.M. Biopolymer electrospun nanofibres for the adsorption of pharmaceuticals from water systems. J. Environ. Chem. Eng. 2019;7:103330. doi: 10.1016/j.jece.2019.103330. DOI