Structure-Properties Relationship of Electrospun PVDF Fibers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA 19-17457S
Grantová Agentura České Republiky
PubMed
32585824
PubMed Central
PMC7353113
DOI
10.3390/nano10061221
PII: nano10061221
Knihovny.cz E-zdroje
- Klíčová slova
- electroactive phase, electrospinning, nanofiber, piezoelectric activity, poly(vinylidene fluoride), surfactant,
- Publikační typ
- časopisecké články MeSH
Electrospinning as a versatile technique producing nanofibers was employed to study the influence of the processing parameters and chemical and physical parameters of solutions on poly(vinylidene fluoride) (PVDF) fibers' morphology, crystallinity, phase composition and dielectric and piezoelectric characteristics. PVDF fibrous layers with nano- and micro-sized fiber diameters were prepared by a controlled and reliable electrospinning process. The fibers with diameters from 276 nm to 1392 nm were spun at a voltage of 25 kV-50 kV from the pure PVDF solutions or in the presence of a surfactant-Hexadecyltrimethylammonium bromide (CTAB). Although the presence of the CTAB decreased the fibers' diameter and increased the electroactive phase content, the piezoelectric performance of the PVDF material was evidently deteriorated. The maximum piezoelectric activity was achieved in the fibrous PVDF material without the use of the surfactant, when a piezoelectric charge of 33 pC N-1 was measured in the transversal direction on a mean fiber diameter of 649 nm. In this direction, the material showed a higher piezoelectric activity than in the longitudinal direction.
Zobrazit více v PubMed
Martins P., Lopes A.C., Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014;39:683–706. doi: 10.1016/j.progpolymsci.2013.07.006. DOI
Rajabi A.H., Jaffe M., Arinzeh T.L. Piezoelectric materials for tissue regeneration: A review. Acta Biomater. 2015;24:12–23. doi: 10.1016/j.actbio.2015.07.010. PubMed DOI
Zheng Q., Shi B., Li Z., Wang Z.L. Recent Progress on Piezoelectric and Triboelectric Energy Harvesters in Biomedical Systems. Adv. Sci. 2017;4:1700029. doi: 10.1002/advs.201700029. PubMed DOI PMC
Yan J., Liu M., Jeong Y.G., Kang W.M., Li L., Zhao Y.X., Deng N.P., Cheng B.W., Yang G. Performance enhancements in poly(vinylidene fluoride)-based piezoelectric nanogenerators for efficient energy harvesting. Nano Energy. 2019;56:662–692. doi: 10.1016/j.nanoen.2018.12.010. DOI
Mokhtari F., Latifi M., Shamshirsaz M. Electrospinning/electrospray of polyvinylidene fluoride (PVDF): Piezoelectric nanofibers. J. Text. Inst. 2016;107:1037–1055. doi: 10.1080/00405000.2015.1083300. DOI
Gebrekrstos A., Madras G., Bose S. Journey of Electroactive beta-Polymorph of Poly(vinylidenefluoride) from Crystal Growth to Design to Applications. Cryst. Growth Des. 2019;19:5441–5456. doi: 10.1021/acs.cgd.9b00381. DOI
Saha S., Yauvana V., Chakraborty S., Sanyal D. Synthesis and Characterization of Polyvinylidene-fluoride (PVDF) Nanofiber for Application as Piezoelectric Force Sensor. Mater. Today Proc. 2019;18:1450–1458. doi: 10.1016/j.matpr.2019.06.613. DOI
Tarasova E., Tamberg K.G., Viirsalu M., Savest N., Gudkova V., Krasnou I., Märtson T., Krumme A. Formation of uniform PVDF fibers under ultrasound exposure in presence of anionic surfactant. J. Electrost. 2015;76:39–47. doi: 10.1016/j.elstat.2015.05.004. DOI
Hu P.H., Zheng D.C., Zhao C.X., Zhang Y.Y., Niu J. Linear dependence between content of effective piezo-phase and mechanical-to-electrical conversion in electrospun poly(vinylidene fluoride) fibrous membrane. Mater. Lett. 2018;218:71–75. doi: 10.1016/j.matlet.2018.01.142. DOI
Shao H., Fang J., Wang H.X., Lin T. Effect of electrospinning parameters and polymer concentrations on mechanical-to-electrical energy conversion of randomly-oriented electrospun poly(vinylidene fluoride) nanofiber mats. RSC Adv. 2015;5:14345–14350. doi: 10.1039/C4RA16360E. DOI
Lei T.P., Yu L.K., Zheng G.F., Wang L.Y., Wu D.Z., Sun D.H. Electrospinning-induced preferred dipole orientation in PVDF fibers. J. Mater. Sci. 2015;50:4342–4347. doi: 10.1007/s10853-015-8986-0. DOI
Yang L., Ji H., Qiu J., Zhu K., Shao B. Effect of temperature on the crystalline phase and dielectric and ferroelectric properties of poly(vinylidene fluoride) film. J. Intell. Mater. Syst. Struct. 2014;25:858–864. doi: 10.1177/1045389X13510217. DOI
Chinaglia D.L., Gregorio R., Jr., Stefanello J.C., Pisani Altafim R.A., Wirges W., Wang F., Gerhard R. Influence of the solvent evaporation rate on the crystalline phases of solution-cast poly(vinylidene fluoride) films. J. Appl. Polym. Sci. 2010;116:785–791. doi: 10.1002/app.31488. DOI
Davis G.T., McKinney J.E., Broadhurst M.G., Roth S.C. Electric-field-induced phase changes in poly(vinylidene fluoride) J. Appl. Phys. 1978;49:4998–5002. doi: 10.1063/1.324446. DOI
Zheng J., He A., Li J., Han C.C. Polymorphism Control of Poly(vinylidene fluoride) through Electrospinning. Macromol. Rapid Commun. 2007;28:2159–2162. doi: 10.1002/marc.200700544. DOI
Salimi A., Yousefi A.A. Analysis Method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym. Test. 2003;22:699–704. doi: 10.1016/S0142-9418(03)00003-5. DOI
Huang F.L., Wei Q.F., Wang J.X., Cai Y.B., Huang Y.B. Effect of temperature on structure, morphology and crystallinity of PVDF nanofibers via electrospinning. e-Polymers. 2008 doi: 10.1515/epoly.2008.8.1.1758. DOI
Liu J., Lu X.L., Wu C.R., Zhao C. Effect of preparation conditions on the morphology, polymorphism and mechanical properties of polyvinylidene fluoride membranes formed via thermally induced phase separation. J. Polym. Res. 2013;20 doi: 10.1007/s10965-013-0321-3. DOI
Cai X., Lei T., Sun D., Lin L. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 2017;7:15382–15389. doi: 10.1039/C7RA01267E. DOI
Roy R.E., Bhuvaneswari S., Vijayalakshmi K.P., Dimple R., Soumyamol P.B., Rajeev R.S.N. Energy-induced polymorphic changes in poly(vinylidene fluoride): How ultrasonication results in polymer with predominantly γ phase. J. Polym. Sci. Part B Polym. Phys. 2019;57:40–50. doi: 10.1002/polb.24752. DOI
Zheng J.Y., Zhuang M.F., Yu Z.J., Zheng G.F., Zhao Y., Wang H., Sun D.H. The Effect of Surfactants on the Diameter and Morphology of Electrospun Ultrafine Nanofiber. J. Nanomater. 2014 doi: 10.1155/2014/689298. DOI
Fong H., Chun I., Reneker D.H. Beaded nanofibers formed during electrospinning. Polymer. 1999;40:4585–4592. doi: 10.1016/S0032-3861(99)00068-3. DOI
Safari N.H.M., Hassan A.R., Takwa C.W.I.C.W., Rozali S. Deduction of Surfactants Effect on Performance, Morphology, Thermal and Molecular Properties of Polymeric Polyvinylidene Fluoride (PVDF) Based Ultrafiltration Membrane. Period. Polytech. Chem. Eng. 2019;63:27–35. doi: 10.3311/PPch.12423. DOI
Wu C.M., Chou M.H., Zeng W.Y. Piezoelectric Response of Aligned Electrospun Polyvinylidene Fluoride/Carbon Nanotube Nanofibrous Membranes. Nanomaterials (Basel) 2018;8:420. doi: 10.3390/nano8060420. PubMed DOI PMC
Liu X., Xu S., Kuang X., Wang X. Ultra-long MWCNTs highly oriented in electrospun PVDF/MWCNT composite nanofibers with enhanced β phase. RSC Adv. 2016;6:106690–106696. doi: 10.1039/C6RA24195F. DOI
Gregorio R., Ueno E.M. Effect of crystalline phase, orientation and temperature on the dielectric properties of poly (vinylidene fluoride) (PVDF) J. Mater. Sci. 1999;34:4489–4500. doi: 10.1023/A:1004689205706. DOI
Da Silva A.B., Wisniewski C., Esteves J.V.A., Gregorio R. Effect of drawing on the dielectric properties and polarization of pressed solution cast β-PVDF films. J. Mater. Sci. 2010;45:4206–4215. doi: 10.1007/s10853-010-4515-3. DOI
Xia W., Zhang Z. IET Nanodielectrics. Volume 1. Institution of Engineering and Technology; London, UK: 2018. PVDF-based dielectric polymers and their applications in electronic materials; pp. 17–31.
Li J., Meng Q., Li W., Zhang Z. Influence of crystalline properties on the dielectric and energy storage properties of poly(vinylidene fluoride) J. Appl. Polym. Sci. 2011;122:1659–1668. doi: 10.1002/app.34020. DOI
Liao Y., Wang R., Tian M., Qiu C., Fane A.G. Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation. J. Membr. Sci. 2013;425–426:30–39. doi: 10.1016/j.memsci.2012.09.023. DOI
Lalia B.S., Guillen-Burrieza E., Arafat H.A., Hashaikeh R. Fabrication and characterization of polyvinylidenefluoride-co-hexafluoropropylene (PVDF-HFP) electrospun membranes for direct contact membrane distillation. J. Membr. Sci. 2013;428:104–115. doi: 10.1016/j.memsci.2012.10.061. DOI
Guo H., Pu B., Chen H., Yang J., Zhou Y., Yang J., Bismark B., Li H., Niu X. Surfactant-assisted solvothermal synthesis of pure nickel submicron spheres with microwave-absorbing properties. Nanoscale Res. Lett. 2016;11:352. doi: 10.1186/s11671-016-1562-y. PubMed DOI PMC
Huang F., Yuan Y., Jiang Z., Tang B., Zhang S. Microstructures and properties of glass fiber reinforced PTFE composite substrates with laminated construction. Mater. Res. Express. 2019;6:075305. doi: 10.1088/2053-1591/ab11f2. DOI
Li X., Chen S.T., Yao K., Tay F.E.H. Ferroelectric Poly(vinylidene fluoride) PVDF Films Derived from the Solutions with Retainable Water and Controlled Water Loss. J. Polym. Sci. Polym. Phys. 2009;47:2410–2418. doi: 10.1002/polb.21837. DOI
Benz M., Euler W.B., Gregory O.J. The Role of Solution Phase Water on the Deposition of Thin Films of Poly(vinylidene fluoride) Macromolecules. 2002;35:2682–2688. doi: 10.1021/ma011744f. DOI
Vahidi K., Seyed Jalili Y. Modification of surface energy and electrical and thermal properties of spherical polypyrrole nanoparticles synthesized by CTAB for potential application as a conductive ink. J. Theor. Appl. Phys. 2013;7:42. doi: 10.1186/2251-7235-7-42. DOI
Wan C., Bowen C.R. Multiscale-structuring of polyvinylidene fluoride for energy harvesting: The impact of molecular-, micro- and macro-structure. J. Mater. Chem. A. 2017;5:3091–3128. doi: 10.1039/C6TA09590A. DOI
Saedi S., Madaeni S.S., Shamsabadi A.A., Mottaghi F. The effect of surfactants on the structure and performance of PES membrane for separation of carbon dioxide from methane. Sep. Purif. Technol. 2012;99:104–119. doi: 10.1016/j.seppur.2012.08.028. DOI
Nurul Syuhada Mohd A., Abdul Rahman H. The Effect of CTAB and SDS Surfactant on the Morphology and Performance of Low Pressure Active Reverse Osmosis Membrane. Malays. J. Anal. Sci. 2016;20:510–516. doi: 10.17576/mjas-2016-2003-07. DOI
Correlation of Dielectric Properties and Vibrational Spectra of Composite PVDF/Salt Fibers
Piezo-Enhanced Photocatalytic Activity of the Electrospun Fibrous Magnetic PVDF/BiFeO3 Membrane
Multiferroic/Polymer Flexible Structures Obtained by Atomic Layer Deposition
Comprehensive Characterization of PVDF Nanofibers at Macro- and Nanolevel
Triboelectric Response of Electrospun Stratified PVDF and PA Structures
Structure Tuning and Electrical Properties of Mixed PVDF and Nylon Nanofibers
Surface Analyses of PVDF/NMP/[EMIM][TFSI] Solid Polymer Electrolyte
PVDF Fibers Modification by Nitrate Salts Doping
Case Study of Polyvinylidene Fluoride Doping by Carbon Nanotubes
Characterization of Polyvinylidene Fluoride (PVDF) Electrospun Fibers Doped by Carbon Flakes