PVDF Fibers Modification by Nitrate Salts Doping
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FEKT-S-20-6352
Internal Grant Agency of Brno University of Technology
LM2015041
Ministry of Education, Youth and Science
RVO:68081731
Czech Academy of Sciences
No. 19-17457S
Grantová Agentura České Republiky
PubMed
34372042
PubMed Central
PMC8347579
DOI
10.3390/polym13152439
PII: polym13152439
Knihovny.cz E-zdroje
- Klíčová slova
- EDX, FTIR, PVDF, Raman spectroscopy, XPS, XRD, nitrate salt, permittivity,
- Publikační typ
- časopisecké články MeSH
The method of inclusion of various additives into a polymer depends highly on the material in question and the desired effect. In the case of this paper, nitride salts were introduced into polyvinylidene fluoride fibers prepared by electrospinning. The resulting changes in the structural, chemical and electrical properties of the samples were observed and compared using SEM-EDX, DSC, XPS, FTIR, Raman spectroscopy and electrical measurements. The observed results displayed a grouping of parameters by electronegativity and possibly the molecular mass of the additive salts. We virtually demonstrated elimination of the presence of the γ-phase by addition of Mg(NO3)2, Ca(NO3)2, and Zn(NO3)2 salts. The trend of electrical properties to follow the electronegativity of the nitrate salt cation is demonstrated. The performed measurements of nitrate salt inclusions into PVDF offer a new insight into effects of previously unstudied structures of PVDF composites, opening new potential possibilities of crystalline phase control of the composite and use in further research and component design.
Academy of Sciences ČR Institute of Physics of Materials Žižkova 22 616 62 Brno Czech Republic
Central European Institute of Technology BUT Purkyňova 123 612 00 Brno Czech Republic
Zobrazit více v PubMed
Roopa T., Murthy H.N., Harish D., Jain A., Angadi G. Properties of PVDF films stretched in machine direction. Polym. Polym. Compos. 2021;29:198–206. doi: 10.1177/0967391120910592. DOI
Arshad A.N., Wahid M.H.M., Rusop M., Majid W.H.A., Subban R.H.Y., Rozana M.D. Dielectric and Structural Properties of Poly(vinylidene fluoride) (PVDF) and Poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) Filled with Magnesium Oxide Nanofillers. J. Nanomater. 2019;2019:1–12. doi: 10.1155/2019/5961563. DOI
Ruan L., Yao X., Chang Y., Zhou L., Qin G., Zhang X. Properties and Applications of the β Phase Poly(vinylidene fluoride) Polymers. 2018;10:228. doi: 10.3390/polym10030228. PubMed DOI PMC
McKeen L.W. Fatigue and Tribological Properties of Plastics and Elastomers. Elsevier; Kidlington, UK: 2016. Fluorpolymers; pp. 291–315.
Wu C.-M., Chou M.-H., Zeng W.-Y. Piezoelectric Response of Aligned Electrospun Polyvinylidene Fluoride/Carbon Nanotube Nanofibrous Membranes. Nanomaterials. 2018;8:420. doi: 10.3390/nano8060420. PubMed DOI PMC
Castkova K., Kastyl J., Sobola D., Petrus J., Stastna E., Riha D., Tofel P. Structure–properties relationship of electrospun pvdf fibers. Nanomaterials. 2020;10:1221. doi: 10.3390/nano10061221. PubMed DOI PMC
Mokhtari F., Shamshirsaz M., Latifi M. Investigation of β phase formation in piezoelectric response of electrospun polyvinylidene fluoride nanofibers: LiCl additive and increasing fibers tension. Polym. Eng. Sci. 2016;56:61–70. doi: 10.1002/pen.24192. DOI
Mokhtari F., Shamshirsaz M., Latifi M., Asadi S. Comparative evaluation of piezoelectric response of electrospun PVDF (polyvinilydine fluoride) nanofiber with various additives for energy scavenging application. J. Text. Inst. 2016;108:906–914. doi: 10.1080/00405000.2016.1202091. DOI
Al Abdullah K., Batal M.A., Hamdan R., Khalil T., Zaraket J., Aillerie M., Salame C. The Enhancement of PVDF Pyroelectricity (Pyroelectric Coefficient and Dipole Moment) by Inclusions. Energy Procedia. 2017;119:545–555. doi: 10.1016/j.egypro.2017.07.074. DOI
Kaspar P., Sobola D., Částková K., Knápek A., Burda D., Orudzhev F., Dallaev R., Tofel P., Trčka T., Grmela L., et al. Characterization of polyvinylidene fluoride (Pvdf) electrospun fibers doped by carbon flakes. Polymers. 2020;12:2766. doi: 10.3390/polym12122766. PubMed DOI PMC
Kaspar P., Sobola D., Částková K., Dallaev R., Šťastná E., Sedlák P., Knápek A., Trčka T., Holcman V. Case study of polyvinylidene fluoride doping by carbon nanotubes. Materials. 2021;14:1428. doi: 10.3390/ma14061428. PubMed DOI PMC
Wissbrun K.F., Hannon M.J. Interaction of inorganic salts with polar polymers. II. Infrared studies of polymer–inorganic nitrate systems. J. Polym. Sci. Polym. Phys. Ed. 1975;13:223–241. doi: 10.1002/pol.1975.180130201. DOI
Prasad G., Sathiyanathan P., Prabu A.A., Kim K.J. Piezoelectric characteristics of electrospun PVDF as a function of phase-separation temperature and metal salt content. Macromol. Res. 2017;25:981–988. doi: 10.1007/s13233-017-5127-4. DOI
Akashi N., Kuroda S. Protein immobilization onto poly (vinylidene fluoride) microporous membranes activated by the atmospheric pressure low temperature plasma. Polymer. 2014;55:2780–2791. doi: 10.1016/j.polymer.2014.04.029. DOI
Fernadéz V., Sotiropoulus T., Brown P. Foliar Fertilization: Scientific Principles and Field Practices. Vol. 1. Statewide Agricultural Land Use Baseline; Honolulu, HI, USA: 2013. p. 112.
Ghodsi A., Fashandi H., Zarrebini M., Abolhasani M.M., Gorji M. Highly effective CO2 capture using super-fine PVDF hollow fiber membranes with sub-layer large cavities. RSC Adv. 2015;5:92234–92253. doi: 10.1039/C5RA19022C. DOI
Bormashenko Y., Pogreb R., Stanevsky O., Bormashenko E. Vibrational spectrum of PVDF and its interpretation. Polym. Test. 2004;23:791–796. doi: 10.1016/j.polymertesting.2004.04.001. DOI
Patro T.U., Mhalgi M.V., Khakhar D.V., Misra A. Studies on poly(vinylidene fluoride)–clay nanocomposites: Effect of different clay modifiers. Polymer. 2008;49:3486–3499. doi: 10.1016/j.polymer.2008.05.034. DOI
Baji A., Mai Y.-W., Li Q., Liu Y. Electrospinning induced ferroelectricity in poly(vinylidene fluoride) fibers. Nanoscale. 2011;3:3068. doi: 10.1039/c1nr10467e. PubMed DOI
Thakur P., Kool A., Bagchi B., Hoque N.A., Das S., Nandy P. In situ synthesis of Ni(OH) 2 nanobelt modified electroactive poly(vinylidene fluoride) thin films: Remarkable improvement in dielectric properties. Phys. Chem. Chem. Phys. 2015;17:13082–13091. doi: 10.1039/C5CP01207D. PubMed DOI
Cai X., Lei T., Sun D., Lin L. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 2017;7:15382–15389. doi: 10.1039/C7RA01267E. DOI
Gregorio R. Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. J. Appl. Polym. Sci. 2006;100:3272–3279. doi: 10.1002/app.23137. DOI
Sarkar R., Kundu T.K. Hydrogen bond interactions of hydrated aluminum nitrate with PVDF, PVDF-TrFE, and PVDF-HFP: A density functional theory-based illustration. Int. J. Quantum Chem. 2020;120:e26328. doi: 10.1002/qua.26278. DOI
Constantino C.J.L., Job A.E., Simões R.D., Giacometti J.A., Zucolotto V., Oliveira O.N., Gozzi G., Chinaglia D.L. Phase Transition in Poly(Vinylidene Fluoride) Investigated with Micro-Raman Spectroscopy. Appl. Spectrosc. 2005;59:275–279. doi: 10.1366/0003702053585336. PubMed DOI
Brooker M.H. Raman and i.r. spectra of zinc, cadmium and calcium nitrate: A study of the low temperature phase transitions in calcium nitrate. Spectrochim. Acta Part. A Mol. Spectrosc. 1976;32:369–377. doi: 10.1016/0584-8539(76)80090-6. DOI
Yaqoob U., Uddin A.S.M.I., Chung G.-S. The effect of reduced graphene oxide on the dielectric and ferroelectric properties of PVDF–BaTiO 3 nanocomposites. RSC Adv. 2016;6:30747–30754. doi: 10.1039/C6RA03155B. DOI
Huang N., Short M., Zhao J., Wang H., Lui H., Korbelik M., Zeng H. Full range characterization of the Raman spectra of organs in a murine model. Opt. Express. 2011;19:22892. doi: 10.1364/OE.19.022892. PubMed DOI
Xu Y., Lin Y., Lee M., Malde C., Wang R. Development of low mass-transfer-resistance fluorinated TiO2-SiO2/PVDF composite hollow fiber membrane used for biogas upgrading in gas-liquid membrane contactor. J. Memb. Sci. 2018;552:253–264. doi: 10.1016/j.memsci.2018.02.016. DOI
Seki T., Chiang K.-Y., Yu C.-C., Yu X., Okuno M., Hunger J., Nagata Y., Bonn M. The Bending Mode of Water: A Powerful Probe for Hydrogen Bond Structure of Aqueous Systems. J. Phys. Chem. Lett. 2020;11:8459–8469. doi: 10.1021/acs.jpclett.0c01259. PubMed DOI PMC
Yu L., Wang S., Li Y., Chen D., Liang C., Lei T., Sun D., Zhao Y., Wang L. Piezoelectric performance of aligned PVDF nanofibers fabricated by electrospinning and mechanical spinning; Proceedings of the 2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013); Beijing, China. 5–8 August 2013; Beijing, China: IEEE; 2013. pp. 962–966. DOI
Fortunato M., Chandraiahgari C.R., De Bellis G., Ballirano P., Sarto F., Tamburrano A., Sarto M.S. Piezoelectric Effect and Electroactive Phase Nucleation in Self-Standing Films of Unpoled PVDF Nanocomposite Films. Nanomater. 2018;8:743. doi: 10.3390/nano8090743. PubMed DOI PMC
Francisco O.A., Glor H.M., Khajehpour M. Salt Effects on Hydrophobic Solvation: Is the Observed Salt Specificity the Result of Excluded Volume Effects or Water Mediated Ion-Hydrophobe Association? ChemPhysChem. 2020;21:484–493. doi: 10.1002/cphc.201901000. PubMed DOI
Merlini C., Barra G.M.O., Medeiros Araujo T., Pegoretti A. Electrically pressure sensitive poly(vinylidene fluoride)/polypyrrole electrospun mats. RSC Adv. 2014;4:15749–15758. doi: 10.1039/C4RA01058B. DOI
Dhakras D., Borkar V., Ogale S., Jog J. Enhanced piezoresponse of electrospun PVDF mats with a touch of nickel chloride hexahydrate salt. Nanoscale. 2012;4:752–756. doi: 10.1039/c2nr11841f. PubMed DOI
Correlation of Dielectric Properties and Vibrational Spectra of Composite PVDF/Salt Fibers
Piezo-Enhanced Photocatalytic Activity of the Electrospun Fibrous Magnetic PVDF/BiFeO3 Membrane
Brief Review of PVDF Properties and Applications Potential
Comprehensive Characterization of PVDF Nanofibers at Macro- and Nanolevel
Triboelectric Response of Electrospun Stratified PVDF and PA Structures
Structure Tuning and Electrical Properties of Mixed PVDF and Nylon Nanofibers
Surface Analyses of PVDF/NMP/[EMIM][TFSI] Solid Polymer Electrolyte