Characterization of Polyvinylidene Fluoride (PVDF) Electrospun Fibers Doped by Carbon Flakes

. 2020 Nov 24 ; 12 (12) : . [epub] 20201124

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33255198

Grantová podpora
LQ1601 CEITEC 2020
FEKT-S-20-6352 Internal Grant Agency of Brno University of Technology
19-17457S Grant Agency of Czech Republic
ID LM2015041, MEYS CR, 2016-2019 CEITEC Nano Research Infrastructure
RVO:68081731 Czech Academy of Sciences
TN01000008 Technology Agency of Czech Republic

Polyvinylidene fluoride (PVDF) is a modern polymer material used in a wide variety of ways. Thanks to its excellent resistance to chemical or thermal degradation and low reactivity, it finds use in biology, chemistry, and electronics as well. By enriching the polymer with an easily accessible and cheap variant of graphite, it is possible to affect the ratio of crystalline phases. A correlation between the ratios of crystalline phases and different properties, like dielectric constant as well as piezo- and triboelectric properties, has been found, but the relationship between them is highly complex. These changes have been observed by a number of methods from structural, chemical and electrical points of view. Results of these methods have been documented to create a basis for further research and experimentation on the usability of this combined material in more complex structures and devices.

Zobrazit více v PubMed

McKeen L.W. Fatigue and Tribological Properties of Plastics and Elastomers. Elsevier; Amsterdam, The Netherlands: 2016. Fluoropolymers; pp. 291–315.

Kitsara M., Blanquer A., Murillo G., Humblot V., De Bragança Vieira S., Nogués C., Ibáñez E., Esteve J., Barrios L. Permanently hydrophilic, piezoelectric PVDF nanofibrous scaffolds promoting unaided electromechanical stimulation on osteoblasts. Nanoscale. 2019;11:8906–8917. doi: 10.1039/C8NR10384D. PubMed DOI

Shaik H., Rachith S.N., Rudresh K.J., Sheik A.S., Thulasi Raman K.H., Kondaiah P., Mohan Rao G. Towards β-phase formation probability in spin coated PVDF thin films. J. Polym. Res. 2017;24:35. doi: 10.1007/s10965-017-1191-x. DOI

Cardoso V.F., Minas G., Lanceros-Méndez S. Multilayer spin-coating deposition of poly(vinylidene fluoride) films for controlling thickness and piezoelectric response. Sens. Actuators A Phys. 2013;192:76–80. doi: 10.1016/j.sna.2012.12.019. DOI

Castkova K., Kastyl J., Sobola D., Petrus J., Stastna E., Riha D., Tofel P. Structure–Properties Relationship of Electrospun PVDF Fibers. Nanomaterials. 2020;10:1221. doi: 10.3390/nano10061221. PubMed DOI PMC

Liu Y.Z., Zhang H., Yu J.X., Huang Z.Y., Wang C., Sun Y. Ferroelectric P(VDF-TrFE)/POSS nanocomposite films: Compatibility, piezoelectricity, energy harvesting performance, and mechanical and atomic oxygen erosion. RSC Adv. 2020;10:17377–17386. doi: 10.1039/D0RA01769H. PubMed DOI PMC

Liu Y.Z., Hao Z.W., Yu J.X., Zhou X.R., Lee P.S., Sun Y., Mu Z.C., Zeng F.L. A high-performance soft actuator based on a poly(vinylidene fluoride) piezoelectric bimorph. Smart Mater. Struct. 2019;28:055011. doi: 10.1088/1361-665X/ab0844. DOI

Cai J., Hu N., Wu L., Liu Y., Li Y., Ning H., Liu X., Lin L. Preparing carbon black/graphene/PVDF-HFP hybrid composite films of high piezoelectricity for energy harvesting technology. Compos. Part A Appl. Sci. Manuf. 2019;121:223–231. doi: 10.1016/j.compositesa.2019.03.031. DOI

Dong L., Xiong Z., Liu X., Sheng D., Zhou Y., Yang Y. Synthesis of carbon quantum dots to fabricate ultraviolet-shielding poly(vinylidene fluoride) films. J. Appl. Polym. Sci. 2019;136:47555. doi: 10.1002/app.47555. DOI

Wu L., Yuan W., Hu N., Wang Z., Chen C., Qiu J., Ying J., Li Y. Improved piezoelectricity of PVDF-HFP/carbon black composite films. J. Phys. D. Appl. Phys. 2014;47:135302. doi: 10.1088/0022-3727/47/13/135302. DOI

Liu Y., Huang Z., Gao Y. A Three-Dimensional and Bi-objective Topological Optimization Approach Based on Piezoelectric Energy Harvester. Appl. Sci. 2020;10:6772. doi: 10.3390/app10196772. DOI

Lee S. Carbon nanofiber/poly(vinylidene fluoride-hexafluoro propylene) composite films: The crystal structure and thermal properties with various drawing temperatures. Fibers Polym. 2013;14:441–446. doi: 10.1007/s12221-013-0441-8. DOI

Tran M.Q., Ho K.K.C., Kalinka G., Shaffer M.S.P., Bismarck A. Carbon fibre reinforced poly(vinylidene fluoride): Impact of matrix modification on fibre/polymer adhesion. Compos. Sci. Technol. 2008;68:1766–1776. doi: 10.1016/j.compscitech.2008.02.021. DOI

Yang Y., Centrone A., Chen L., Simeon F., Alan Hatton T., Rutledge G.C. Highly porous electrospun polyvinylidene fluoride (PVDF)-based carbon fiber. Carbon. 2011;49:3395–3403. doi: 10.1016/j.carbon.2011.04.015. DOI

Elashmawi I.S., Alatawi N.S., Elsayed N.H. Preparation and characterization of polymer nanocomposites based on PVDF/PVC doped with graphene nanoparticles. Results Phys. 2017;7:636–640. doi: 10.1016/j.rinp.2017.01.022. DOI

Thomas P., Satapathy S., Dwarakanath K., Varma K.B.R. Dielectric properties of poly(vinylidene fluoride)/CaCu3Ti4O12 nanocrystal composite thick films. Express Polym. Lett. 2010;4:632–643. doi: 10.3144/expresspolymlett.2010.78. DOI

Rao K.S., Senthilnathan J., Liu Y.-F., Yoshimura M. Role of Peroxide Ions in Formation of Graphene Nanosheets by Electrochemical Exfoliation of Graphite. Sci. Rep. 2015;4:4237. doi: 10.1038/srep04237. PubMed DOI PMC

Barlow A.J., Popescu S., Artyushkova K., Scott O., Sano N., Hedley J., Cumpson P.J. Chemically specific identification of carbon in XPS imaging using Multivariate Auger Feature Imaging (MAFI) Carbon. 2016;107:190–197. doi: 10.1016/j.carbon.2016.05.073. DOI

Militello M.C., Gaarenstroom S.W. Graphite-Filled Poly(vinylidene fluoride) (PVdF) by XPS. Surf. Sci. Spectra. 1999;6:141–145. doi: 10.1116/1.1247908. DOI

Armelao L., Barreca D., Bottaro G., Gross S., Gasparotto A., Maragno C., Tondello E., Zattin A. Introduction to XPS Studies of Metal and Metal-oxide Nanosystems. Surf. Sci. Spectra. 2003;10:137–142. doi: 10.1116/11.20050199. DOI

Knipe S.W., Mycroft J.R., Pratt A.R., Nesbitt H.W., Bancroff G.M. X-ray photoelectron spectroscopic study of water adsorption on iron sulphide minerals. Geochim. Cosmochim. Acta. 1995;59:1079–1090. doi: 10.1016/0016-7037(95)00025-U. DOI

Bhunia R., Ghosh D., Ghosh B., Hussain S., Bhar R., Pal A. Free-standing flexible nanocrystalline-ZnO-impregnated polyvinylidene fluoride composite thin films. J. Compos. Mater. 2015;49:3089–3101. doi: 10.1177/0021998314559756. DOI

Bokobza L., Bruneel J.-L., Couzi M. Raman spectroscopy as a tool for the analysis of carbon-based materials (highly oriented pyrolitic graphite, multilayer graphene and multiwall carbon nanotubes) and of some of their elastomeric composites. Vib. Spectrosc. 2014;74:57–63. doi: 10.1016/j.vibspec.2014.07.009. DOI

Peña-Álvarez M., del Corro E., Langa F., Baonza V.G., Taravillo M. Morphological changes in carbon nanohorns under stress: A combined Raman spectroscopy and TEM study. RSC Adv. 2016;6:49543–49550. doi: 10.1039/C5RA27162B. DOI

Martins Ferreira E.H., Moutinho M.V.O., Stavale F., Lucchese M.M., Capaz R.B., Achete C.A., Jorio A. Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys. Rev. B. 2010;82:125429. doi: 10.1103/PhysRevB.82.125429. DOI

Constantino C.J.L., Job A.E., Simoes R.D., Giacometti J.A., Zucolotto V., Oliveira O.N., Gozzi G., Chinaglia D.L. The Investigation of alpha→beta Phase Transition In Poly(Vinylidene Fluoride) (PVDF); Proceedings of the IEEE 2005 12th International Symposium on Electrets; Salvador, Bahia, Brazil. 11–14 September 2005; pp. 178–181.

Elashmawi I.S., Gaabour L.H. Raman, morphology and electrical behavior of nanocomposites based on PEO/PVDF with multi-walled carbon nanotubes. Results Phys. 2015;5:105–110. doi: 10.1016/j.rinp.2015.04.005. DOI

Cai X., Lei T., Sun D., Lin L. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 2017;7:15382–15389. doi: 10.1039/C7RA01267E. DOI

Constantino C.J.L., Job A.E., Simões R.D., Giacometti J.A., Zucolotto V., Oliveira O.N., Gozzi G., Chinaglia D.L. Phase Transition in Poly(Vinylidene Fluoride) Investigated with Micro-Raman Spectroscopy. Appl. Spectrosc. 2005;59:275–279. doi: 10.1366/0003702053585336. PubMed DOI

Bodkhe S., Rajesh P.S.M., Kamle S., Verma V. Beta-phase enhancement in polyvinylidene fluoride through filler addition: Comparing cellulose with carbon nanotubes and clay. J. Polym. Res. 2014;21:434. doi: 10.1007/s10965-014-0434-3. DOI

Kabir E., Khatun M., Nasrin L., Raihan M.J., Rahman M. Pure β-phase formation in polyvinylidene fluoride (PVDF)-carbon nanotube composites. J. Phys. D. Appl. Phys. 2017;50:163002. doi: 10.1088/1361-6463/aa5f85. DOI

da Silva A.B., Wisniewski C., Esteves J.V.A., Gregorio R. Effect of drawing on the dielectric properties and polarization of pressed solution cast β-PVDF films. J. Mater. Sci. 2010;45:4206–4215. doi: 10.1007/s10853-010-4515-3. DOI

Xia W., Zhang Z. PVDF-based dielectric polymers and their applications in electronic materials. IET Nanodielectrics. 2018;1:17–31. doi: 10.1049/iet-nde.2018.0001. DOI

Gregorio R.J., Ueno E.M. Effect of crystalline phase, orientation and temperature on the dielectric properties of poly (vinylidene fluoride) (PVDF) J. Mater. Sci. 1999;34:4489–4500. doi: 10.1023/A:1004689205706. DOI

Li J., Meng Q., Li W., Zhang Z. Influence of crystalline properties on the dielectric and energy storage properties of poly(vinylidene fluoride) J. Appl. Polym. Sci. 2011;122:1659–1668. doi: 10.1002/app.34020. DOI

Gomes J., Serrado Nunes J., Sencadas V., Lanceros-Mendez S. Influence of the β-phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride) Smart Mater. Struct. 2010;19:065010. doi: 10.1088/0964-1726/19/6/065010. DOI

Zhang L., Meng B., Xia Y., Deng Z., Dai H., Hagedorn P., Peng Z., Wang L. Galloping triboelectric nanogenerator for energy harvesting under low wind speed. Nano Energy. 2020;70:104477. doi: 10.1016/j.nanoen.2020.104477. DOI

Sun W., Ding Z., Qin Z., Chu F., Han Q. Wind energy harvesting based on fluttering double-flag type triboelectric nanogenerators. Nano Energy. 2020;70:104526. doi: 10.1016/j.nanoen.2020.104526. DOI

Heo D., Chung J., Kim B., Yong H., Shin G., Cho J.-W., Kim D., Lee S. Triboelectric speed bump as a self-powered automobile warning and velocity sensor. Nano Energy. 2020;72:104719. doi: 10.1016/j.nanoen.2020.104719. DOI

Ibrahim A., Ramini A., Towfighian S. Triboelectric energy harvester with large bandwidth under harmonic and random excitations. Energy Rep. 2020;6:2490–2502. doi: 10.1016/j.egyr.2020.09.007. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Piezophotocatalytic Activity of PVDF/Fe3O4 Nanofibers: Effect of Ultrasound Frequency and Light Source on the Decomposition of Methylene Blue

. 2025 Jun 10 ; 10 (22) : 23035-23048. [epub] 20250529

Multiferroic/Polymer Flexible Structures Obtained by Atomic Layer Deposition

. 2022 Dec 27 ; 13 (1) : . [epub] 20221227

Brief Review of PVDF Properties and Applications Potential

. 2022 Nov 08 ; 14 (22) : . [epub] 20221108

Comprehensive Characterization of PVDF Nanofibers at Macro- and Nanolevel

. 2022 Feb 01 ; 14 (3) : . [epub] 20220201

Triboelectric Response of Electrospun Stratified PVDF and PA Structures

. 2022 Jan 22 ; 12 (3) : . [epub] 20220122

Surface Analyses of PVDF/NMP/[EMIM][TFSI] Solid Polymer Electrolyte

. 2021 Aug 11 ; 13 (16) : . [epub] 20210811

PVDF Fibers Modification by Nitrate Salts Doping

. 2021 Jul 24 ; 13 (15) : . [epub] 20210724

Comparative Study of PVDF Sheets and Their Sensitivity to Mechanical Vibrations: The Role of Dimensions, Molecular Weight, Stretching and Poling

. 2021 Jun 22 ; 11 (7) : . [epub] 20210622

Case Study of Polyvinylidene Fluoride Doping by Carbon Nanotubes

. 2021 Mar 15 ; 14 (6) : . [epub] 20210315

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...