Characterization of Polyvinylidene Fluoride (PVDF) Electrospun Fibers Doped by Carbon Flakes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LQ1601
CEITEC 2020
FEKT-S-20-6352
Internal Grant Agency of Brno University of Technology
19-17457S
Grant Agency of Czech Republic
ID LM2015041, MEYS CR, 2016-2019
CEITEC Nano Research Infrastructure
RVO:68081731
Czech Academy of Sciences
TN01000008
Technology Agency of Czech Republic
PubMed
33255198
PubMed Central
PMC7760733
DOI
10.3390/polym12122766
PII: polym12122766
Knihovny.cz E-zdroje
- Klíčová slova
- Fourier-transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, graphite, polyvinylidene fluoride, scanning electron microscopy, triboelectric effect,
- Publikační typ
- časopisecké články MeSH
Polyvinylidene fluoride (PVDF) is a modern polymer material used in a wide variety of ways. Thanks to its excellent resistance to chemical or thermal degradation and low reactivity, it finds use in biology, chemistry, and electronics as well. By enriching the polymer with an easily accessible and cheap variant of graphite, it is possible to affect the ratio of crystalline phases. A correlation between the ratios of crystalline phases and different properties, like dielectric constant as well as piezo- and triboelectric properties, has been found, but the relationship between them is highly complex. These changes have been observed by a number of methods from structural, chemical and electrical points of view. Results of these methods have been documented to create a basis for further research and experimentation on the usability of this combined material in more complex structures and devices.
Zobrazit více v PubMed
McKeen L.W. Fatigue and Tribological Properties of Plastics and Elastomers. Elsevier; Amsterdam, The Netherlands: 2016. Fluoropolymers; pp. 291–315.
Kitsara M., Blanquer A., Murillo G., Humblot V., De Bragança Vieira S., Nogués C., Ibáñez E., Esteve J., Barrios L. Permanently hydrophilic, piezoelectric PVDF nanofibrous scaffolds promoting unaided electromechanical stimulation on osteoblasts. Nanoscale. 2019;11:8906–8917. doi: 10.1039/C8NR10384D. PubMed DOI
Shaik H., Rachith S.N., Rudresh K.J., Sheik A.S., Thulasi Raman K.H., Kondaiah P., Mohan Rao G. Towards β-phase formation probability in spin coated PVDF thin films. J. Polym. Res. 2017;24:35. doi: 10.1007/s10965-017-1191-x. DOI
Cardoso V.F., Minas G., Lanceros-Méndez S. Multilayer spin-coating deposition of poly(vinylidene fluoride) films for controlling thickness and piezoelectric response. Sens. Actuators A Phys. 2013;192:76–80. doi: 10.1016/j.sna.2012.12.019. DOI
Castkova K., Kastyl J., Sobola D., Petrus J., Stastna E., Riha D., Tofel P. Structure–Properties Relationship of Electrospun PVDF Fibers. Nanomaterials. 2020;10:1221. doi: 10.3390/nano10061221. PubMed DOI PMC
Liu Y.Z., Zhang H., Yu J.X., Huang Z.Y., Wang C., Sun Y. Ferroelectric P(VDF-TrFE)/POSS nanocomposite films: Compatibility, piezoelectricity, energy harvesting performance, and mechanical and atomic oxygen erosion. RSC Adv. 2020;10:17377–17386. doi: 10.1039/D0RA01769H. PubMed DOI PMC
Liu Y.Z., Hao Z.W., Yu J.X., Zhou X.R., Lee P.S., Sun Y., Mu Z.C., Zeng F.L. A high-performance soft actuator based on a poly(vinylidene fluoride) piezoelectric bimorph. Smart Mater. Struct. 2019;28:055011. doi: 10.1088/1361-665X/ab0844. DOI
Cai J., Hu N., Wu L., Liu Y., Li Y., Ning H., Liu X., Lin L. Preparing carbon black/graphene/PVDF-HFP hybrid composite films of high piezoelectricity for energy harvesting technology. Compos. Part A Appl. Sci. Manuf. 2019;121:223–231. doi: 10.1016/j.compositesa.2019.03.031. DOI
Dong L., Xiong Z., Liu X., Sheng D., Zhou Y., Yang Y. Synthesis of carbon quantum dots to fabricate ultraviolet-shielding poly(vinylidene fluoride) films. J. Appl. Polym. Sci. 2019;136:47555. doi: 10.1002/app.47555. DOI
Wu L., Yuan W., Hu N., Wang Z., Chen C., Qiu J., Ying J., Li Y. Improved piezoelectricity of PVDF-HFP/carbon black composite films. J. Phys. D. Appl. Phys. 2014;47:135302. doi: 10.1088/0022-3727/47/13/135302. DOI
Liu Y., Huang Z., Gao Y. A Three-Dimensional and Bi-objective Topological Optimization Approach Based on Piezoelectric Energy Harvester. Appl. Sci. 2020;10:6772. doi: 10.3390/app10196772. DOI
Lee S. Carbon nanofiber/poly(vinylidene fluoride-hexafluoro propylene) composite films: The crystal structure and thermal properties with various drawing temperatures. Fibers Polym. 2013;14:441–446. doi: 10.1007/s12221-013-0441-8. DOI
Tran M.Q., Ho K.K.C., Kalinka G., Shaffer M.S.P., Bismarck A. Carbon fibre reinforced poly(vinylidene fluoride): Impact of matrix modification on fibre/polymer adhesion. Compos. Sci. Technol. 2008;68:1766–1776. doi: 10.1016/j.compscitech.2008.02.021. DOI
Yang Y., Centrone A., Chen L., Simeon F., Alan Hatton T., Rutledge G.C. Highly porous electrospun polyvinylidene fluoride (PVDF)-based carbon fiber. Carbon. 2011;49:3395–3403. doi: 10.1016/j.carbon.2011.04.015. DOI
Elashmawi I.S., Alatawi N.S., Elsayed N.H. Preparation and characterization of polymer nanocomposites based on PVDF/PVC doped with graphene nanoparticles. Results Phys. 2017;7:636–640. doi: 10.1016/j.rinp.2017.01.022. DOI
Thomas P., Satapathy S., Dwarakanath K., Varma K.B.R. Dielectric properties of poly(vinylidene fluoride)/CaCu3Ti4O12 nanocrystal composite thick films. Express Polym. Lett. 2010;4:632–643. doi: 10.3144/expresspolymlett.2010.78. DOI
Rao K.S., Senthilnathan J., Liu Y.-F., Yoshimura M. Role of Peroxide Ions in Formation of Graphene Nanosheets by Electrochemical Exfoliation of Graphite. Sci. Rep. 2015;4:4237. doi: 10.1038/srep04237. PubMed DOI PMC
Barlow A.J., Popescu S., Artyushkova K., Scott O., Sano N., Hedley J., Cumpson P.J. Chemically specific identification of carbon in XPS imaging using Multivariate Auger Feature Imaging (MAFI) Carbon. 2016;107:190–197. doi: 10.1016/j.carbon.2016.05.073. DOI
Militello M.C., Gaarenstroom S.W. Graphite-Filled Poly(vinylidene fluoride) (PVdF) by XPS. Surf. Sci. Spectra. 1999;6:141–145. doi: 10.1116/1.1247908. DOI
Armelao L., Barreca D., Bottaro G., Gross S., Gasparotto A., Maragno C., Tondello E., Zattin A. Introduction to XPS Studies of Metal and Metal-oxide Nanosystems. Surf. Sci. Spectra. 2003;10:137–142. doi: 10.1116/11.20050199. DOI
Knipe S.W., Mycroft J.R., Pratt A.R., Nesbitt H.W., Bancroff G.M. X-ray photoelectron spectroscopic study of water adsorption on iron sulphide minerals. Geochim. Cosmochim. Acta. 1995;59:1079–1090. doi: 10.1016/0016-7037(95)00025-U. DOI
Bhunia R., Ghosh D., Ghosh B., Hussain S., Bhar R., Pal A. Free-standing flexible nanocrystalline-ZnO-impregnated polyvinylidene fluoride composite thin films. J. Compos. Mater. 2015;49:3089–3101. doi: 10.1177/0021998314559756. DOI
Bokobza L., Bruneel J.-L., Couzi M. Raman spectroscopy as a tool for the analysis of carbon-based materials (highly oriented pyrolitic graphite, multilayer graphene and multiwall carbon nanotubes) and of some of their elastomeric composites. Vib. Spectrosc. 2014;74:57–63. doi: 10.1016/j.vibspec.2014.07.009. DOI
Peña-Álvarez M., del Corro E., Langa F., Baonza V.G., Taravillo M. Morphological changes in carbon nanohorns under stress: A combined Raman spectroscopy and TEM study. RSC Adv. 2016;6:49543–49550. doi: 10.1039/C5RA27162B. DOI
Martins Ferreira E.H., Moutinho M.V.O., Stavale F., Lucchese M.M., Capaz R.B., Achete C.A., Jorio A. Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys. Rev. B. 2010;82:125429. doi: 10.1103/PhysRevB.82.125429. DOI
Constantino C.J.L., Job A.E., Simoes R.D., Giacometti J.A., Zucolotto V., Oliveira O.N., Gozzi G., Chinaglia D.L. The Investigation of alpha→beta Phase Transition In Poly(Vinylidene Fluoride) (PVDF); Proceedings of the IEEE 2005 12th International Symposium on Electrets; Salvador, Bahia, Brazil. 11–14 September 2005; pp. 178–181.
Elashmawi I.S., Gaabour L.H. Raman, morphology and electrical behavior of nanocomposites based on PEO/PVDF with multi-walled carbon nanotubes. Results Phys. 2015;5:105–110. doi: 10.1016/j.rinp.2015.04.005. DOI
Cai X., Lei T., Sun D., Lin L. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 2017;7:15382–15389. doi: 10.1039/C7RA01267E. DOI
Constantino C.J.L., Job A.E., Simões R.D., Giacometti J.A., Zucolotto V., Oliveira O.N., Gozzi G., Chinaglia D.L. Phase Transition in Poly(Vinylidene Fluoride) Investigated with Micro-Raman Spectroscopy. Appl. Spectrosc. 2005;59:275–279. doi: 10.1366/0003702053585336. PubMed DOI
Bodkhe S., Rajesh P.S.M., Kamle S., Verma V. Beta-phase enhancement in polyvinylidene fluoride through filler addition: Comparing cellulose with carbon nanotubes and clay. J. Polym. Res. 2014;21:434. doi: 10.1007/s10965-014-0434-3. DOI
Kabir E., Khatun M., Nasrin L., Raihan M.J., Rahman M. Pure β-phase formation in polyvinylidene fluoride (PVDF)-carbon nanotube composites. J. Phys. D. Appl. Phys. 2017;50:163002. doi: 10.1088/1361-6463/aa5f85. DOI
da Silva A.B., Wisniewski C., Esteves J.V.A., Gregorio R. Effect of drawing on the dielectric properties and polarization of pressed solution cast β-PVDF films. J. Mater. Sci. 2010;45:4206–4215. doi: 10.1007/s10853-010-4515-3. DOI
Xia W., Zhang Z. PVDF-based dielectric polymers and their applications in electronic materials. IET Nanodielectrics. 2018;1:17–31. doi: 10.1049/iet-nde.2018.0001. DOI
Gregorio R.J., Ueno E.M. Effect of crystalline phase, orientation and temperature on the dielectric properties of poly (vinylidene fluoride) (PVDF) J. Mater. Sci. 1999;34:4489–4500. doi: 10.1023/A:1004689205706. DOI
Li J., Meng Q., Li W., Zhang Z. Influence of crystalline properties on the dielectric and energy storage properties of poly(vinylidene fluoride) J. Appl. Polym. Sci. 2011;122:1659–1668. doi: 10.1002/app.34020. DOI
Gomes J., Serrado Nunes J., Sencadas V., Lanceros-Mendez S. Influence of the β-phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride) Smart Mater. Struct. 2010;19:065010. doi: 10.1088/0964-1726/19/6/065010. DOI
Zhang L., Meng B., Xia Y., Deng Z., Dai H., Hagedorn P., Peng Z., Wang L. Galloping triboelectric nanogenerator for energy harvesting under low wind speed. Nano Energy. 2020;70:104477. doi: 10.1016/j.nanoen.2020.104477. DOI
Sun W., Ding Z., Qin Z., Chu F., Han Q. Wind energy harvesting based on fluttering double-flag type triboelectric nanogenerators. Nano Energy. 2020;70:104526. doi: 10.1016/j.nanoen.2020.104526. DOI
Heo D., Chung J., Kim B., Yong H., Shin G., Cho J.-W., Kim D., Lee S. Triboelectric speed bump as a self-powered automobile warning and velocity sensor. Nano Energy. 2020;72:104719. doi: 10.1016/j.nanoen.2020.104719. DOI
Ibrahim A., Ramini A., Towfighian S. Triboelectric energy harvester with large bandwidth under harmonic and random excitations. Energy Rep. 2020;6:2490–2502. doi: 10.1016/j.egyr.2020.09.007. DOI
Multiferroic/Polymer Flexible Structures Obtained by Atomic Layer Deposition
Brief Review of PVDF Properties and Applications Potential
Comprehensive Characterization of PVDF Nanofibers at Macro- and Nanolevel
Triboelectric Response of Electrospun Stratified PVDF and PA Structures
Surface Analyses of PVDF/NMP/[EMIM][TFSI] Solid Polymer Electrolyte
PVDF Fibers Modification by Nitrate Salts Doping
Case Study of Polyvinylidene Fluoride Doping by Carbon Nanotubes