Multiferroic/Polymer Flexible Structures Obtained by Atomic Layer Deposition

. 2022 Dec 27 ; 13 (1) : . [epub] 20221227

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36616050

The paper considers how a film of bismuth ferrite BiFeO3 (BFO) is formed on a polymeric flexible polyimide substrate at low temperature ALD (250 °C). Two samples of BFO/Polyimide with different thicknesses (42 nm, 77 nm) were studied. As the thickness increases, a crystalline BFO phase with magnetic and electrical properties inherent to a multiferroic is observed. An increase in the film thickness promotes clustering. The competition between the magnetic and electrical subsystems creates an anomalous behavior of the magnetization at a temperature of 200 K. This property is probably related to the multiferroic/polymer interface. This paper explores the prerequisites for the low-temperature growth of BFO films on organic materials as promising structural components for flexible and quantum electronics.

Zobrazit více v PubMed

Shimizu K., Kawabe R., Hojo H., Shimizu H., Yamamoto H., Katsumata M., Shigematsu K., Mibu K., Kumagai Y., Oba F., et al. Direct Observation of Magnetization Reversal by Electric Field at Room Temperature in Co-Substituted Bismuth Ferrite Thin Film. Nano Lett. 2019;19:1767–1773. doi: 10.1021/acs.nanolett.8b04765. PubMed DOI

An H., Hong H.J., Jo Y.-R., Jung S.-G., Kim S., Kim S., Lee J., Choi H., Yoon H., Kim S.-Y., et al. Reversible magnetoelectric switching in multiferroic three-dimensional nanocup heterostructure films. NPG Asia Mater. 2019;11:68. doi: 10.1038/s41427-019-0172-4. DOI

Rossell M.D., Erni R., Prange M.P., Idrobo J.-C., Luo W., Zeches R.J., Pantelides S.T., Ramesh R. Atomic Structure of Highly Strained BiFeO3Thin Films. Phys. Rev. Lett. 2012;108:047601. doi: 10.1103/PhysRevLett.108.047601. PubMed DOI

Markelova M., Nygaard R., Tsymbarenko D., Shurkina A., Abramov A., Amelichev V., Makarevich A., Vasiliev A., Kaul A. Multiferroic h-LuFeO 3 Thin Films on (111) and (100) Surfaces of YSZ Substrates: An Experimental and Theoretical Study. ACS Appl. Electron. Mater. 2021;3:1015–1022. doi: 10.1021/acsaelm.0c01127. DOI

Goswami S., Dey K., Chakraborty S., Giri S., Chowdhury U., Bhattacharya D. Large Magnetoelectric Coupling in the Thin Film of Multiferroic CuO. ACS Omega. 2020;5:22883–22890. doi: 10.1021/acsomega.0c02211. PubMed DOI PMC

Kumar M., Shankar S., Kumar A., Anshul A., Jayasimhadri M., Thakur O.P. Progress in multiferroic and magnetoelectric materials: Applications, opportunities and challenges. J. Mater. Sci. Mater. Electron. 2020;31:19487–19510. doi: 10.1007/s10854-020-04574-2. DOI

Hojo H., Kawabe R., Shimizu K., Yamamoto H., Mibu K., Samanta K., Saha-Dasgupta T., Azuma M. Ferromagnetism at Room Temperature Induced by Spin Structure Change in BiFe1−xCoxO3 Thin Films. Adv. Mater. 2017;29:1603131. doi: 10.1002/adma.201603131. PubMed DOI

Jana B., Ghosh K., Rudrapal K., Gaur P., Shihabudeen P.K., Roy Chaudhuri A. Recent Progress in Flexible Multiferroics. Front. Phys. 2022;9:810. doi: 10.3389/fphy.2021.822005. DOI

Liu B., Yang C., Li X., Wang C., Liu G., Yang H., Wang Y. Origin of antipolar clusters in BiFeO3 epitaxial thin films. J. Eur. Ceram. Soc. 2018;38:621–627. doi: 10.1016/j.jeurceramsoc.2017.09.041. DOI

Lu Q., Choi K., Nam J.-D., Choi H.J. Magnetic Polymer Composite Particles: Design and Magnetorheology. Polymers. 2021;13:512. doi: 10.3390/polym13040512. PubMed DOI PMC

Sorokin V.V., Stepanov G.V., Shamonin M., Monkman G.J., Khokhlov A.R., Kramarenko E.Y. Hysteresis of the viscoelastic properties and the normal force in magnetically and mechanically soft magnetoactive elastomers: Effects of filler composition, strain amplitude and magnetic field. Polymer. 2015;76:191–202. doi: 10.1016/j.polymer.2015.08.040. DOI

Kawakami Y., Amano T., Ohashi H., Itoh H., Nakamura Y., Kishida H., Sasaki T., Kawaguchi G., Yamamoto H.M., Yamamoto K., et al. Petahertz non-linear current in a centrosymmetric organic superconductor. Nat. Commun. 2020;11:4138. doi: 10.1038/s41467-020-17776-3. PubMed DOI PMC

Salem S., Yilmaz E. Magnetic Nanoparticle-Based Hybrid Materials. Elsevier; Amsterdam, The Netherlands: 2021. Magnetic nanoparticle-polymer hybrid materials; pp. 139–182.

Kaspar P., Sobola D., Částková K., Knápek A., Burda D., Orudzhev F., Dallaev R., Tofel P., Trčka T., Grmela L., et al. Characterization of Polyvinylidene Fluoride (PVDF) Electrospun Fibers Doped by Carbon Flakes. Polymers. 2020;12:2766. doi: 10.3390/polym12122766. PubMed DOI PMC

Castkova K., Kastyl J., Sobola D., Petrus J., Stastna E., Riha D., Tofel P. Structure–Properties Relationship of Electrospun PVDF Fibers. Nanomaterials. 2020;10:1221. doi: 10.3390/nano10061221. PubMed DOI PMC

Giannelli P., Bulletti A., Capineri L. Multifunctional Piezopolymer Film Transducer for Structural Health Monitoring Applications. IEEE Sens. J. 2017;17:4583–4586. doi: 10.1109/JSEN.2017.2710425. DOI

Wang Y., Ren K., Zhang Q.M. Direct piezoelectric response of piezopolymer polyvinylidene fluoride under high mechanical strain and stress. Appl. Phys. Lett. 2007;91:222905. doi: 10.1063/1.2819531. DOI

Orudzhev F., Ramazanov S., Sobola D., Kaspar P., Trčka T., Částková K., Kastyl J., Zvereva I., Wang C., Selimov D., et al. Ultrasound and water flow driven piezophototronic effect in self-polarized flexible α-Fe2O3 containing PVDF nanofibers film for enhanced catalytic oxidation. Nano Energy. 2021;90:106586. doi: 10.1016/j.nanoen.2021.106586. DOI

Yakuphanoglu F., Şenkal B.F. Electronic and Thermoelectric Properties of Polyaniline Organic Semiconductor and Electrical Characterization of Al/PANI MIS Diode. J. Phys. Chem. C. 2007;111:1840–1846. doi: 10.1021/jp0653050. DOI

Mocioiu A.-M., Tudor I.A., Mocioiu O.C. Application of Polyaniline for Flexible Semiconductors. Coatings. 2021;11:49. doi: 10.3390/coatings11010049. DOI

Wang N., Luo X., Han L., Zhang Z., Zhang R., Olin H., Yang Y. Structure, Performance, and Application of BiFeO3 Nanomaterials. Nano-Micro Lett. 2020;12:81. doi: 10.1007/s40820-020-00420-6. PubMed DOI PMC

Alikhanov N.M.-R., Rabadanov M.K., Orudzhev F.F., Gadzhimagomedov S.K., Emirov R.M., Sadykov S.A., Kallaev S.N., Ramazanov S.M., Abdulvakhidov K.G., Sobola D. Size-dependent structural parameters, optical, and magnetic properties of facile synthesized pure-phase BiFeO3. J. Mater. Sci. Mater. Electron. 2021;32:13323–13335. doi: 10.1007/s10854-021-05911-9. DOI

Park T.-J., Papaefthymiou G.C., Viescas A.J., Moodenbaugh A.R., Wong S.S. Size-Dependent Magnetic Properties of Single-Crystalline Multiferroic BiFeO 3 Nanoparticles. Nano Lett. 2007;7:766–772. doi: 10.1021/nl063039w. PubMed DOI

Chandra Das S., Majumdar A., Katiyal S., Poojitha B., Saha S., Shripathi T. Phase pure epitaxial growth of BiFeO3 films: An effect of oxygen partial pressure. Solid State Commun. 2017;264:10–15. doi: 10.1016/j.ssc.2017.07.013. DOI

Sobola D., Ramazanov S., Konečný M., Orudzhev F., Kaspar P., Papež N., Knápek A., Potoček M. Complementary SEM-AFM of Swelling Bi-Fe-O Film on HOPG Substrate. Materials. 2020;13:2402. doi: 10.3390/ma13102402. PubMed DOI PMC

Signore M.A., Taurino A., Catalano M., Kim M., Che Z., Quaranta F., Siciliano P. Growth assessment of (002)-oriented AlN thin films on Ti bottom electrode deposited on silicon and kapton substrates. Mater. Des. 2017;119:151–158. doi: 10.1016/j.matdes.2017.01.035. DOI

Zhai D., Yang Y., Geng Z., Cui B., Zhao R. A High-selectivity THz Filter Based on A Flexible Polyimide Film. IEEE Trans. Terahertz Sci. Technol. 2018;8:719–724. doi: 10.1109/TTHZ.2018.2872414. DOI

Bretos I., Jiménez R., Ricote J., Sirera R., Calzada M.L. Photoferroelectric Thin Films for Flexible Systems by a Three-in-One Solution-Based Approach. Adv. Funct. Mater. 2020;30:2001897. doi: 10.1002/adfm.202001897. DOI

Li Z., Wang Z.L., Wang Z. In situ tuning of crystallization pathways by electron beam irradiation and heating in amorphous bismuth ferrite films. RSC Adv. 2018;8:23522–23528. doi: 10.1039/C8RA02447B. PubMed DOI PMC

Almjasheva O.V., Popkov V.I., Proskurina O.V., Gusarov V.V. Phase formation under conditions of self-organization of particle growth restrictions in the reaction system. Nanosyst. Phys. Chem. Math. 2022;13:164–180. doi: 10.17586/2220-8054-2022-13-2-164-180. DOI

Gridnev S.A., Kalinin Y.E., Dybov V.A., Popov I.I., Kashirin M.A., Tolstykh N.A. Internal friction in thin-film ferrite bismuth with an amorphous structure. J. Alloys Compd. 2022;918:165610. doi: 10.1016/j.jallcom.2022.165610. DOI

Catalan G., Scott J.F. Physics and applications of bismuth ferrite. Adv. Mater. 2009;21:2463–2485. doi: 10.1002/adma.200802849. DOI

Marchand B., Jalkanen P., Tuboltsev V., Vehkamäki M., Puttaswamy M., Kemell M., Mizohata K., Hatanpää T., Savin A., Räisänen J., et al. Electric and Magnetic Properties of ALD-Grown BiFeO 3 Films. J. Phys. Chem. C. 2016;120:7313–7322. doi: 10.1021/acs.jpcc.5b11583. PubMed DOI

Ramazanov S., Sobola D., Orudzhev F., Knápek A., Polčák J., Potoček M., Kaspar P., Dallaev R. Surface modification and enhancement of ferromagnetism in BiFeO3 nanofilms deposited on HOPG. Nanomaterials. 2020;10:1990. doi: 10.3390/nano10101990. PubMed DOI PMC

Orudzhev F., Ramazanov S., Sobola D., Isaev A., Wang C., Magomedova A., Kadiev M., Kaviyarasu K. Atomic layer deposition of mixed-layered aurivillius phase on TiO2 nanotubes: Synthesis, characterization and photoelectrocatalytic properties. Nanomaterials. 2020;10:2183. doi: 10.3390/nano10112183. PubMed DOI PMC

Orudzhev F.F., Ramazanov S.M., Isaev A.B., Alikhanov N.M.-R., Sobola D., Presniakov M.Y., Kaviyarasu K. Self-organization of layered perovskites on TiO2 nanotubes surface by atomic layer deposition. Mater. Today Proc. 2021;36:364–367. doi: 10.1016/j.matpr.2020.04.153. DOI

Knápek A., Dallaev R., Burda D., Sobola D., Allaham M.M., Horáček M., Kaspar P., Matějka M., Mousa M.S. Field Emission Properties of Polymer Graphite Tips Prepared by Membrane Electrochemical Etching. Nanomaterials. 2020;10:1294. doi: 10.3390/nano10071294. PubMed DOI PMC

Knápek A., Sýkora J., Chlumská J., Sobola D. Programmable set-up for electrochemical preparation of STM tips and ultra-sharp field emission cathodes. Microelectron. Eng. 2017;173:42–47. doi: 10.1016/j.mee.2017.04.002. DOI

Tuttle J., DiPirro M., Canavan E., Hait T., Balachandran U., Amm K., Evans D., Gregory E., Lee P., Osofsky M., et al. Thermal properties of double-aluminized kapton at low temperatures. AIP Conf. Proc. 2008;986:34–41.

Ramazanov S., Sobola D., Ţălu Ş., Orudzev F., Arman A., Kaspar P., Dallaev R., Ramazanov G. Multiferroic behavior of the functionalized surface of a flexible substrate by deposition of Bi2O3 and Fe2O3. Microsc. Res. Tech. 2022;85:1300–1310. doi: 10.1002/jemt.23996. PubMed DOI

Perla V.K., Ghosh S.K., Mallick K. Nonvolatile switchable resistive behaviour via organic–inorganic hybrid interactions. J. Mater. Sci. 2019;54:2324–2332. doi: 10.1007/s10853-018-2969-x. DOI

Ţălu Ş., Stach S., Ramazanov S., Sobola D., Ramazanov G. Multifractal characterization of epitaxial silicon carbide on silicon. Mater. Sci. 2017;35:539–547. doi: 10.1515/msp-2017-0049. DOI

Zhang Q., Rana A., Liu X., Valanoor N. Electrode Dependence of Local Electrical Properties of Chemical-Solution-Deposition-Derived BiFeO 3 Thin Films. ACS Appl. Electron. Mater. 2019;1:154–162. doi: 10.1021/acsaelm.8b00064. DOI

Chisca S., Sava I., Musteata V.-E., Bruma M. Dielectric and conduction properties of polyimide films; Proceedings of the CAS 2011 Proceedings (2011 International Semiconductor Conference); Sinaia, Romania. 17–19 October 2011; pp. 253–256.

He J.-J., Yang H.-X., Zheng F., Yang S.-Y. Dielectric Properties of Fluorinated Aromatic Polyimide Films with Rigid Polymer Backbones. Polymers. 2022;14:649. doi: 10.3390/polym14030649. PubMed DOI PMC

Sun Y., Sun Z., Wei R., Huang Y., Wang L., Leng J., Xiang P., Lan M. First principles study of the magnetic properties and charge transfer of Ni-doped BiFeO3. J. Magn. Magn. Mater. 2018;449:10–16. doi: 10.1016/j.jmmm.2017.09.063. DOI

Yoo S.-J., Kim J.-J. Charge Transport in Electrically Doped Amorphous Organic Semiconductors. Macromol. Rapid Commun. 2015;36:984–1000. doi: 10.1002/marc.201500026. PubMed DOI

Pyatakov A.P., Sergeev A.S., Nikolaeva E.P., Kosykh T.B., Nikolaev A.V., Zvezdin K.A., Zvezdin A.K. Micromagnetism and topological defects in magnetoelectric media. Physics. 2015;58:981–992. doi: 10.3367/UFNe.0185.201510k.1077. DOI

Orudzhev F.F., Ramazanov S.M., Sobola D., Alikhanov N.M.R., Dallaev R.S. Property Management of BiFeO3-Based Multifunctional Perovskite Nanomaterials: Nanoparticles, Ceramics, and Thin Films. In: Kasinathan K., Elshikh M.S., Al Farraj D.A.A., editors. Nanomaterials for Energy Conversion, Biomedical and Environmental Applications. Springer; Singapore: 2022. Materials Horizons: From Nature to Nanomaterials. DOI

Yastrebov S.G., Lomanova N.A. Specific Features in the Interaction between BiFeO3 Nanoclusters Synthesized by Solution Combustion. Tech. Phys. Lett. 2021;47:1–4. doi: 10.1134/S1063785021010144. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Exploring RF Magnetron Sputtering Growth Composite Thin Film BiFeO3-Bi2Fe4O9 on C-Plane Al2O3 Substrate

. 2023 Oct 31 ; 16 (21) : . [epub] 20231031

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...