Multiferroic/Polymer Flexible Structures Obtained by Atomic Layer Deposition
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36616050
PubMed Central
PMC9823920
DOI
10.3390/nano13010139
PII: nano13010139
Knihovny.cz E-zdroje
- Klíčová slova
- BiFeO3, atomic layer deposition, flexible substrate, functionalization, multiferroic, polyimide,
- Publikační typ
- časopisecké články MeSH
The paper considers how a film of bismuth ferrite BiFeO3 (BFO) is formed on a polymeric flexible polyimide substrate at low temperature ALD (250 °C). Two samples of BFO/Polyimide with different thicknesses (42 nm, 77 nm) were studied. As the thickness increases, a crystalline BFO phase with magnetic and electrical properties inherent to a multiferroic is observed. An increase in the film thickness promotes clustering. The competition between the magnetic and electrical subsystems creates an anomalous behavior of the magnetization at a temperature of 200 K. This property is probably related to the multiferroic/polymer interface. This paper explores the prerequisites for the low-temperature growth of BFO films on organic materials as promising structural components for flexible and quantum electronics.
Zobrazit více v PubMed
Shimizu K., Kawabe R., Hojo H., Shimizu H., Yamamoto H., Katsumata M., Shigematsu K., Mibu K., Kumagai Y., Oba F., et al. Direct Observation of Magnetization Reversal by Electric Field at Room Temperature in Co-Substituted Bismuth Ferrite Thin Film. Nano Lett. 2019;19:1767–1773. doi: 10.1021/acs.nanolett.8b04765. PubMed DOI
An H., Hong H.J., Jo Y.-R., Jung S.-G., Kim S., Kim S., Lee J., Choi H., Yoon H., Kim S.-Y., et al. Reversible magnetoelectric switching in multiferroic three-dimensional nanocup heterostructure films. NPG Asia Mater. 2019;11:68. doi: 10.1038/s41427-019-0172-4. DOI
Rossell M.D., Erni R., Prange M.P., Idrobo J.-C., Luo W., Zeches R.J., Pantelides S.T., Ramesh R. Atomic Structure of Highly Strained BiFeO3Thin Films. Phys. Rev. Lett. 2012;108:047601. doi: 10.1103/PhysRevLett.108.047601. PubMed DOI
Markelova M., Nygaard R., Tsymbarenko D., Shurkina A., Abramov A., Amelichev V., Makarevich A., Vasiliev A., Kaul A. Multiferroic h-LuFeO 3 Thin Films on (111) and (100) Surfaces of YSZ Substrates: An Experimental and Theoretical Study. ACS Appl. Electron. Mater. 2021;3:1015–1022. doi: 10.1021/acsaelm.0c01127. DOI
Goswami S., Dey K., Chakraborty S., Giri S., Chowdhury U., Bhattacharya D. Large Magnetoelectric Coupling in the Thin Film of Multiferroic CuO. ACS Omega. 2020;5:22883–22890. doi: 10.1021/acsomega.0c02211. PubMed DOI PMC
Kumar M., Shankar S., Kumar A., Anshul A., Jayasimhadri M., Thakur O.P. Progress in multiferroic and magnetoelectric materials: Applications, opportunities and challenges. J. Mater. Sci. Mater. Electron. 2020;31:19487–19510. doi: 10.1007/s10854-020-04574-2. DOI
Hojo H., Kawabe R., Shimizu K., Yamamoto H., Mibu K., Samanta K., Saha-Dasgupta T., Azuma M. Ferromagnetism at Room Temperature Induced by Spin Structure Change in BiFe1−xCoxO3 Thin Films. Adv. Mater. 2017;29:1603131. doi: 10.1002/adma.201603131. PubMed DOI
Jana B., Ghosh K., Rudrapal K., Gaur P., Shihabudeen P.K., Roy Chaudhuri A. Recent Progress in Flexible Multiferroics. Front. Phys. 2022;9:810. doi: 10.3389/fphy.2021.822005. DOI
Liu B., Yang C., Li X., Wang C., Liu G., Yang H., Wang Y. Origin of antipolar clusters in BiFeO3 epitaxial thin films. J. Eur. Ceram. Soc. 2018;38:621–627. doi: 10.1016/j.jeurceramsoc.2017.09.041. DOI
Lu Q., Choi K., Nam J.-D., Choi H.J. Magnetic Polymer Composite Particles: Design and Magnetorheology. Polymers. 2021;13:512. doi: 10.3390/polym13040512. PubMed DOI PMC
Sorokin V.V., Stepanov G.V., Shamonin M., Monkman G.J., Khokhlov A.R., Kramarenko E.Y. Hysteresis of the viscoelastic properties and the normal force in magnetically and mechanically soft magnetoactive elastomers: Effects of filler composition, strain amplitude and magnetic field. Polymer. 2015;76:191–202. doi: 10.1016/j.polymer.2015.08.040. DOI
Kawakami Y., Amano T., Ohashi H., Itoh H., Nakamura Y., Kishida H., Sasaki T., Kawaguchi G., Yamamoto H.M., Yamamoto K., et al. Petahertz non-linear current in a centrosymmetric organic superconductor. Nat. Commun. 2020;11:4138. doi: 10.1038/s41467-020-17776-3. PubMed DOI PMC
Salem S., Yilmaz E. Magnetic Nanoparticle-Based Hybrid Materials. Elsevier; Amsterdam, The Netherlands: 2021. Magnetic nanoparticle-polymer hybrid materials; pp. 139–182.
Kaspar P., Sobola D., Částková K., Knápek A., Burda D., Orudzhev F., Dallaev R., Tofel P., Trčka T., Grmela L., et al. Characterization of Polyvinylidene Fluoride (PVDF) Electrospun Fibers Doped by Carbon Flakes. Polymers. 2020;12:2766. doi: 10.3390/polym12122766. PubMed DOI PMC
Castkova K., Kastyl J., Sobola D., Petrus J., Stastna E., Riha D., Tofel P. Structure–Properties Relationship of Electrospun PVDF Fibers. Nanomaterials. 2020;10:1221. doi: 10.3390/nano10061221. PubMed DOI PMC
Giannelli P., Bulletti A., Capineri L. Multifunctional Piezopolymer Film Transducer for Structural Health Monitoring Applications. IEEE Sens. J. 2017;17:4583–4586. doi: 10.1109/JSEN.2017.2710425. DOI
Wang Y., Ren K., Zhang Q.M. Direct piezoelectric response of piezopolymer polyvinylidene fluoride under high mechanical strain and stress. Appl. Phys. Lett. 2007;91:222905. doi: 10.1063/1.2819531. DOI
Orudzhev F., Ramazanov S., Sobola D., Kaspar P., Trčka T., Částková K., Kastyl J., Zvereva I., Wang C., Selimov D., et al. Ultrasound and water flow driven piezophototronic effect in self-polarized flexible α-Fe2O3 containing PVDF nanofibers film for enhanced catalytic oxidation. Nano Energy. 2021;90:106586. doi: 10.1016/j.nanoen.2021.106586. DOI
Yakuphanoglu F., Şenkal B.F. Electronic and Thermoelectric Properties of Polyaniline Organic Semiconductor and Electrical Characterization of Al/PANI MIS Diode. J. Phys. Chem. C. 2007;111:1840–1846. doi: 10.1021/jp0653050. DOI
Mocioiu A.-M., Tudor I.A., Mocioiu O.C. Application of Polyaniline for Flexible Semiconductors. Coatings. 2021;11:49. doi: 10.3390/coatings11010049. DOI
Wang N., Luo X., Han L., Zhang Z., Zhang R., Olin H., Yang Y. Structure, Performance, and Application of BiFeO3 Nanomaterials. Nano-Micro Lett. 2020;12:81. doi: 10.1007/s40820-020-00420-6. PubMed DOI PMC
Alikhanov N.M.-R., Rabadanov M.K., Orudzhev F.F., Gadzhimagomedov S.K., Emirov R.M., Sadykov S.A., Kallaev S.N., Ramazanov S.M., Abdulvakhidov K.G., Sobola D. Size-dependent structural parameters, optical, and magnetic properties of facile synthesized pure-phase BiFeO3. J. Mater. Sci. Mater. Electron. 2021;32:13323–13335. doi: 10.1007/s10854-021-05911-9. DOI
Park T.-J., Papaefthymiou G.C., Viescas A.J., Moodenbaugh A.R., Wong S.S. Size-Dependent Magnetic Properties of Single-Crystalline Multiferroic BiFeO 3 Nanoparticles. Nano Lett. 2007;7:766–772. doi: 10.1021/nl063039w. PubMed DOI
Chandra Das S., Majumdar A., Katiyal S., Poojitha B., Saha S., Shripathi T. Phase pure epitaxial growth of BiFeO3 films: An effect of oxygen partial pressure. Solid State Commun. 2017;264:10–15. doi: 10.1016/j.ssc.2017.07.013. DOI
Sobola D., Ramazanov S., Konečný M., Orudzhev F., Kaspar P., Papež N., Knápek A., Potoček M. Complementary SEM-AFM of Swelling Bi-Fe-O Film on HOPG Substrate. Materials. 2020;13:2402. doi: 10.3390/ma13102402. PubMed DOI PMC
Signore M.A., Taurino A., Catalano M., Kim M., Che Z., Quaranta F., Siciliano P. Growth assessment of (002)-oriented AlN thin films on Ti bottom electrode deposited on silicon and kapton substrates. Mater. Des. 2017;119:151–158. doi: 10.1016/j.matdes.2017.01.035. DOI
Zhai D., Yang Y., Geng Z., Cui B., Zhao R. A High-selectivity THz Filter Based on A Flexible Polyimide Film. IEEE Trans. Terahertz Sci. Technol. 2018;8:719–724. doi: 10.1109/TTHZ.2018.2872414. DOI
Bretos I., Jiménez R., Ricote J., Sirera R., Calzada M.L. Photoferroelectric Thin Films for Flexible Systems by a Three-in-One Solution-Based Approach. Adv. Funct. Mater. 2020;30:2001897. doi: 10.1002/adfm.202001897. DOI
Li Z., Wang Z.L., Wang Z. In situ tuning of crystallization pathways by electron beam irradiation and heating in amorphous bismuth ferrite films. RSC Adv. 2018;8:23522–23528. doi: 10.1039/C8RA02447B. PubMed DOI PMC
Almjasheva O.V., Popkov V.I., Proskurina O.V., Gusarov V.V. Phase formation under conditions of self-organization of particle growth restrictions in the reaction system. Nanosyst. Phys. Chem. Math. 2022;13:164–180. doi: 10.17586/2220-8054-2022-13-2-164-180. DOI
Gridnev S.A., Kalinin Y.E., Dybov V.A., Popov I.I., Kashirin M.A., Tolstykh N.A. Internal friction in thin-film ferrite bismuth with an amorphous structure. J. Alloys Compd. 2022;918:165610. doi: 10.1016/j.jallcom.2022.165610. DOI
Catalan G., Scott J.F. Physics and applications of bismuth ferrite. Adv. Mater. 2009;21:2463–2485. doi: 10.1002/adma.200802849. DOI
Marchand B., Jalkanen P., Tuboltsev V., Vehkamäki M., Puttaswamy M., Kemell M., Mizohata K., Hatanpää T., Savin A., Räisänen J., et al. Electric and Magnetic Properties of ALD-Grown BiFeO 3 Films. J. Phys. Chem. C. 2016;120:7313–7322. doi: 10.1021/acs.jpcc.5b11583. PubMed DOI
Ramazanov S., Sobola D., Orudzhev F., Knápek A., Polčák J., Potoček M., Kaspar P., Dallaev R. Surface modification and enhancement of ferromagnetism in BiFeO3 nanofilms deposited on HOPG. Nanomaterials. 2020;10:1990. doi: 10.3390/nano10101990. PubMed DOI PMC
Orudzhev F., Ramazanov S., Sobola D., Isaev A., Wang C., Magomedova A., Kadiev M., Kaviyarasu K. Atomic layer deposition of mixed-layered aurivillius phase on TiO2 nanotubes: Synthesis, characterization and photoelectrocatalytic properties. Nanomaterials. 2020;10:2183. doi: 10.3390/nano10112183. PubMed DOI PMC
Orudzhev F.F., Ramazanov S.M., Isaev A.B., Alikhanov N.M.-R., Sobola D., Presniakov M.Y., Kaviyarasu K. Self-organization of layered perovskites on TiO2 nanotubes surface by atomic layer deposition. Mater. Today Proc. 2021;36:364–367. doi: 10.1016/j.matpr.2020.04.153. DOI
Knápek A., Dallaev R., Burda D., Sobola D., Allaham M.M., Horáček M., Kaspar P., Matějka M., Mousa M.S. Field Emission Properties of Polymer Graphite Tips Prepared by Membrane Electrochemical Etching. Nanomaterials. 2020;10:1294. doi: 10.3390/nano10071294. PubMed DOI PMC
Knápek A., Sýkora J., Chlumská J., Sobola D. Programmable set-up for electrochemical preparation of STM tips and ultra-sharp field emission cathodes. Microelectron. Eng. 2017;173:42–47. doi: 10.1016/j.mee.2017.04.002. DOI
Tuttle J., DiPirro M., Canavan E., Hait T., Balachandran U., Amm K., Evans D., Gregory E., Lee P., Osofsky M., et al. Thermal properties of double-aluminized kapton at low temperatures. AIP Conf. Proc. 2008;986:34–41.
Ramazanov S., Sobola D., Ţălu Ş., Orudzev F., Arman A., Kaspar P., Dallaev R., Ramazanov G. Multiferroic behavior of the functionalized surface of a flexible substrate by deposition of Bi2O3 and Fe2O3. Microsc. Res. Tech. 2022;85:1300–1310. doi: 10.1002/jemt.23996. PubMed DOI
Perla V.K., Ghosh S.K., Mallick K. Nonvolatile switchable resistive behaviour via organic–inorganic hybrid interactions. J. Mater. Sci. 2019;54:2324–2332. doi: 10.1007/s10853-018-2969-x. DOI
Ţălu Ş., Stach S., Ramazanov S., Sobola D., Ramazanov G. Multifractal characterization of epitaxial silicon carbide on silicon. Mater. Sci. 2017;35:539–547. doi: 10.1515/msp-2017-0049. DOI
Zhang Q., Rana A., Liu X., Valanoor N. Electrode Dependence of Local Electrical Properties of Chemical-Solution-Deposition-Derived BiFeO 3 Thin Films. ACS Appl. Electron. Mater. 2019;1:154–162. doi: 10.1021/acsaelm.8b00064. DOI
Chisca S., Sava I., Musteata V.-E., Bruma M. Dielectric and conduction properties of polyimide films; Proceedings of the CAS 2011 Proceedings (2011 International Semiconductor Conference); Sinaia, Romania. 17–19 October 2011; pp. 253–256.
He J.-J., Yang H.-X., Zheng F., Yang S.-Y. Dielectric Properties of Fluorinated Aromatic Polyimide Films with Rigid Polymer Backbones. Polymers. 2022;14:649. doi: 10.3390/polym14030649. PubMed DOI PMC
Sun Y., Sun Z., Wei R., Huang Y., Wang L., Leng J., Xiang P., Lan M. First principles study of the magnetic properties and charge transfer of Ni-doped BiFeO3. J. Magn. Magn. Mater. 2018;449:10–16. doi: 10.1016/j.jmmm.2017.09.063. DOI
Yoo S.-J., Kim J.-J. Charge Transport in Electrically Doped Amorphous Organic Semiconductors. Macromol. Rapid Commun. 2015;36:984–1000. doi: 10.1002/marc.201500026. PubMed DOI
Pyatakov A.P., Sergeev A.S., Nikolaeva E.P., Kosykh T.B., Nikolaev A.V., Zvezdin K.A., Zvezdin A.K. Micromagnetism and topological defects in magnetoelectric media. Physics. 2015;58:981–992. doi: 10.3367/UFNe.0185.201510k.1077. DOI
Orudzhev F.F., Ramazanov S.M., Sobola D., Alikhanov N.M.R., Dallaev R.S. Property Management of BiFeO3-Based Multifunctional Perovskite Nanomaterials: Nanoparticles, Ceramics, and Thin Films. In: Kasinathan K., Elshikh M.S., Al Farraj D.A.A., editors. Nanomaterials for Energy Conversion, Biomedical and Environmental Applications. Springer; Singapore: 2022. Materials Horizons: From Nature to Nanomaterials. DOI
Yastrebov S.G., Lomanova N.A. Specific Features in the Interaction between BiFeO3 Nanoclusters Synthesized by Solution Combustion. Tech. Phys. Lett. 2021;47:1–4. doi: 10.1134/S1063785021010144. DOI