Temporal changes in the spatial distribution of carabid beetles around arable field-woodlot boundaries
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31222130
PubMed Central
PMC6586664
DOI
10.1038/s41598-019-45378-7
PII: 10.1038/s41598-019-45378-7
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- brouci * MeSH
- časoprostorová analýza * MeSH
- ekosystém * MeSH
- populační dynamika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Carabids are considered beneficial arthropods in agroecosystems, where they prey on crop pests or consume weed seeds. Therefore, knowledge of the spatial distribution of carabids in agricultural landscapes is crucial to efficiently manage the ecosystem services that they provide. In the present study, we investigated the spatial distribution of carabids around arable field-woodlot boundaries in different seasons: (1) early spring, (2) late spring, (3) summer and (4) late autumn. The spatial distribution of carabid abundance (activity-density) and species richness varied seasonally, and the total abundance was highest within arable fields, except in early spring when it peaked at the boundaries. The observed pattern was mainly driven by the spatial distribution of the open-habitat species, which aggregated near the field boundaries during winter and early spring. The open-habitat species penetrated into woodlots during the summer season but occurred almost exclusively outside woodlots in the other sampling periods. The abundance of the forest species was highest within woodlots with the exception of the early spring season, when their abundance peaked at the boundaries. Carabid species richness was highest within arable fields in close proximity to woodlot boundaries with the exception of the summer season, when the total species richness was similar across habitats.
Crop Research Institute Drnovská 507 CZ 161 06 Prague 6 Ruzyně Czech Republic
Institute of Botany Czech Academy of Sciences Zámek 1 CZ 252 43 Průhonice Czech Republic
Zobrazit více v PubMed
Foley JA, et al. Global consequences of land use. Science. 2005;309:570–574. doi: 10.1126/science.1111772. PubMed DOI
Robinson RA, Sutherland WJ. Post-war changes in arable farming and biodiversity in Great Britain. Journal of Applied Ecology. 2002;39:157–176. doi: 10.1046/j.1365-2664.2002.00695.x. DOI
Stoate C, et al. Ecological impacts of arable intensification in Europe. Journal of Environmental Management. 2001;63:337–365. doi: 10.1006/jema.2001.0473. PubMed DOI
van Apeldoorn DF, Kempen B, Sonneveld MPW, Kok K. Co-evolution of landscape patterns and agricultural intensification: An example of dairy farming in a traditional Dutch landscape. Agriculture Ecosystems & Environment. 2013;172:16–23. doi: 10.1016/j.agee.2013.04.002. DOI
ČSÚ. Česka republika od roku 1989 v číslech (in Czech), https://www.czso.cz/csu/czso/ceska-republika-od-roku-1989-v-cislech (accessed on 11th May 2018) (2018).
Fahrig L. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology Evolution and Systematics. 2003;34:487–515. doi: 10.1146/annurev.ecolsys.34.011802.132419. DOI
Hendrickx F, et al. How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. Journal of Applied Ecology. 2007;44:340–351. doi: 10.1111/j.1365-2664.2006.01270.x. DOI
Batary P, Holzschuh A, Orci KM, Samu F, Tscharntke T. Responses of plant, insect and spider biodiversity to local and landscape scale management intensity in cereal crops and grasslands. Agriculture Ecosystems &. Environment. 2012;146:130–136. doi: 10.1016/j.agee.2011.10.018. DOI
Garibaldi LA, et al. Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecology Letters. 2011;14:1062–1072. doi: 10.1111/j.1461-0248.2011.01669.x. PubMed DOI
Knapp Michal, Řezáč Milan. Even the Smallest Non-Crop Habitat Islands Could Be Beneficial: Distribution of Carabid Beetles and Spiders in Agricultural Landscape. PLOS ONE. 2015;10(4):e0123052. doi: 10.1371/journal.pone.0123052. PubMed DOI PMC
Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C. Contribution of small habitat fragments to conservation of insect communities of grassland-cropland landscapes. Ecological Applications. 2002;12:354–363. doi: 10.2307/3060947. DOI
Bianchi FJJA, Booij CJH, Tscharntke T. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proceedings of the Royal Society B-Biological Sciences. 2006;273:1715–1727. doi: 10.1098/rspb.2006.3530. PubMed DOI PMC
Bohan DA, Boursault A, Brooks DR, Petit S. National-scale regulation of the weed seedbank by carabid predators. Journal of Applied Ecology. 2011;48:888–898. doi: 10.1111/j.1365-2664.2011.02008.x. DOI
Aviron S, Burel F, Baudry J, Schermann N. Carabid assemblages in agricultural landscapes: impacts of habitat features, landscape context at different spatial scales and farming intensity. Agriculture Ecosystems &. Environment. 2005;108:205–217. doi: 10.1016/j.agee.2005.02.004. DOI
Purtauf T, et al. Landscape context of organic and conventional farms: Influences on carabid beetle diversity. Agriculture Ecosystems &. Environment. 2005;108:165–174. doi: 10.1016/j.agee.2005.01.005. DOI
Holland, J. M. The agroecology of carabid beetles. (Intercept, 2002).
Kotze D. Johan, Brandmayr Pietro, Casale Achille, Dauffy-Richard Emmanuelle, Dekoninck Wouter, Koivula Matti, Lovei Gabor, Mossakowski Dietrich, Noordijk Jinze, Paarmann Wilfried, Pizzoloto Roberto, Saska Pavel, Schwerk Axel, Serrano Jose, Szyszko Jan, Taboada Palomares Angela, Turin Hans, Venn Stephen, Vermeulen Rikjan, Zetto Brandmayr Tullia. Forty years of carabid beetle research in Europe – from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation. ZooKeys. 2011;100:55–148. doi: 10.3897/zookeys.100.1523. PubMed DOI PMC
Lovei GL, Magura T. Ground beetle (Coleoptera: Carabidae) diversity is higher in narrow hedges composed of a native compared to non-native trees in a Danish agricultural landscape. Insect Conservation and Diversity. 2017;10:141–150. doi: 10.1111/icad.12210. DOI
Roume A, Deconchat M, Raison L, Balent G, Ouin A. Edge effects on ground beetles at the woodlot-field interface are short-range and asymmetrical. Agricultural and Forest Entomology. 2011;13:395–403. doi: 10.1111/j.1461-9563.2011.00534.x. DOI
Andersen A. Densities of overwintering carabids and staphylinids (Col, Carabidae and Staphylinidae) in cereal and grass fields and their boundaries. Journal of Applied Entomology-Zeitschrift Fur Angewandte Entomologie. 1997;121:77–80. doi: 10.1111/j.1439-0418.1997.tb01374.x. DOI
Geiger F, Wackers F, Bianchi F. Hibernation of predatory arthropods in semi-natural habitats. Biocontrol. 2009;54:529–535. doi: 10.1007/s10526-008-9206-5. DOI
Roume A, Ouin A, Raison L, Deconchat M. Abundance and species richness of overwintering ground beetles (Coleoptera: Carabidae) are higher in the edge than in the centre of a woodlot. European Journal of Entomology. 2011;108:615–622. doi: 10.14411/eje.2011.080. DOI
Holland JM, Thomas CFG, Birkett T, Southway S, Oaten H. Farm-scale spatiotemporal dynamics of predatory beetles in arable crops. Journal of Applied Ecology. 2005;42:1140–1152. doi: 10.1111/j.1365-2664.2005.01083.x. DOI
Oberg S, Ekbom B. Recolonisation and distribution of spiders and carabids in cereal fields after spring sowing. Annals of Applied Biology. 2006;149:203–211. doi: 10.1111/j.1744-7348.2006.00088.x. DOI
Wamser S, Dauber J, Birkhofer K, Wolters V. Delayed colonisation of arable fields by spring breeding ground beetles (Coleoptera: Carabidae) in landscapes with a high availability of hibernation sites. Agriculture Ecosystems &. Environment. 2011;144:235–240. doi: 10.1016/j.agee.2011.08.019. DOI
Blitzer EJ, et al. Spillover of functionally important organisms between managed and natural habitats. Agriculture Ecosystems &. Environment. 2012;146:34–43. doi: 10.1016/j.agee.2011.09.005. DOI
Rand TA, Tylianakis JM, Tscharntke T. Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecology Letters. 2006;9:603–614. doi: 10.1111/j.1461-0248.2006.00911.x. PubMed DOI
Magura T, Lovei GL, Tothmeresz B. Edge responses are different in edges under natural versus anthropogenic influence: a meta-analysis using ground beetles. Ecology and Evolution. 2017;7:1009–1017. doi: 10.1002/ece3.2722. PubMed DOI PMC
Eyre MD, Luff ML, Leifert C. Crop, field boundary, productivity and disturbance influences on ground beetles (Coleoptera, Carabidae) in the agroecosystem. Agriculture Ecosystems & Environment. 2013;165:60–67. doi: 10.1016/j.agee.2012.12.009. DOI
Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science. 1998;281:237–240. doi: 10.1126/science.281.5374.237. PubMed DOI
Schneider G, Krauss J, Boetzl FA, Fritze MA, Steffan-Dewenter I. Spillover from adjacent crop and forest habitats shapes carabid beetle assemblages in fragmented semi-natural grasslands. Oecologia. 2016;182:1141–1150. doi: 10.1007/s00442-016-3710-6. PubMed DOI
Ohwaki A, Kaneko Y, Ikeda H. Seasonal variability in the response of ground beetles (Coleoptera: Carabidae) to a forest edge in a heterogeneous agricultural landscape in Japan. European Journal of Entomology. 2015;112:135–144. doi: 10.14411/eje.2015.022. DOI
Tscharntke T, et al. Landscape moderation of biodiversity patterns and processes - eight hypotheses. Biological Reviews. 2012;87:661–685. doi: 10.1111/j.1469-185X.2011.00216.x. PubMed DOI
Ferrante M, Gonzalez E, Lovei GL. Predators do not spill over from forest fragments to maize fields in a landscape mosaic in central Argentina. Ecology and Evolution. 2017;7:7699–7707. doi: 10.1002/ece3.3247. PubMed DOI PMC
Bedford SE, Usher MB. Distribution of Arthropod Species Across The Margins Of Farm Woodlands. Agriculture Ecosystems & Environment. 1994;48:295–305. doi: 10.1016/0167-8809(94)90111-2. DOI
Boetzl FA, Schneider G, Krauss J. Asymmetric carabid beetle spillover between calcareous grasslands and coniferous forests. Journal of Insect Conservation. 2016;20:49–57. doi: 10.1007/s10841-015-9838-6. DOI
Jung JK, Lee JH. Forest-farm edge effects on communities of ground beetles (Coleoptera: Carabidae) under different landscape structures. Ecological Research. 2016;31:799–810. doi: 10.1007/s11284-016-1388-1. DOI
Lacasella F, et al. Asymmetrical responses of forest and “beyond edge” arthropod communities across a forest-grassland ecotone. Biodiversity and Conservation. 2015;24:447–465. doi: 10.1007/s10531-014-0825-0. DOI
Leslie TW, et al. Examining Shifts in Carabidae Assemblages Across a Forest-Agriculture Ecotone. Environmental Entomology. 2014;43:18–28. doi: 10.1603/en13099. PubMed DOI
Magura T. Carabids and forest edge: spatial pattern and edge effect. Forest Ecology and Management. 2002;157:23–37. doi: 10.1016/s0378-1127(00)00654-x. DOI
Magura T. Ignoring functional and phylogenetic features masks the edge influence on ground beetle diversity across forest-grassland gradient. Forest Ecology and Management. 2017;384:371–377. doi: 10.1016/j.foreco.2016.10.056. DOI
Lovei GL, Sunderland KD. Ecology and behavior of ground beetles (Coleoptera: Carabidae) Annual Review of Entomology. 1996;41:231–256. doi: 10.1146/annurev.en.41.010196.001311. PubMed DOI
Magura T, Lovei GL. Environmental filtering is the main assembly rule of ground beetles in the forest and its edge but not in the adjacent grassland. Insect Science. 2019;26:154–163. doi: 10.1111/1744-7917.12504. PubMed DOI
Magura, T., Lovei, G. L. & Tothmeresz, B. Conversion from environmental filtering to randomness as assembly rule of ground beetle assemblages along an urbanization gradient. Scientific Reports8, 10.1038/s41598-018-35293-8 (2018). PubMed PMC
Hůrka, K. Carabidae of the Czech and Slovak Republics. Carabidae České a Slovenské republiky. (Kabourek, 1996).
Shackelford G, et al. Comparison of pollinators and natural enemies: a meta-analysis of landscape and local effects on abundance and richness in crops. Biological Reviews. 2013;88:1002–1021. doi: 10.1111/brv.12040. PubMed DOI
Labruyere S, Bohan DA, Biju-Duval L, Ricci B, Petit S. Local, neighbor and landscape effects on the abundance of weed seed-eating carabids in arable fields: A nationwide analysis. Basic and Applied Ecology. 2016;17:230–239. doi: 10.1016/j.baae.2015.10.008. DOI
Knapp M, Ruzicka J. The effect of pitfall trap construction and preservative on catch size, species richness and species composition of ground beetles (Coleoptera: Carabidae) European Journal of Entomology. 2012;109:419–426. doi: 10.14411/eje.2012.054. DOI
Saska P, et al. Temperature effects on pitfall catches of epigeal arthropods: a model and method for bias correction. Journal of Applied Ecology. 2013;50:181–189. doi: 10.1111/1365-2664.12023. PubMed DOI PMC
Huisman J, Olff H, Fresco LFM. A hierarchical set of models for species response analysis. Journal of Vegetation Science. 1993;4:37–46. doi: 10.2307/3235732. DOI
Jansen F, Oksanen J. How tomodel species responses along ecological gradients - Huisman-Olff-Fresco models revisited. Journal of Vegetation Science. 2013;24:1108–1117. doi: 10.1111/jvs.12050. DOI
R Development Core Team. A language and environment for statistical computing. (Available at, http://www.R-project.org, 2017).
Dvorsky M, Macek M, Kopecky M, Wild J, Dolezal J. Niche asymmetry of vascular plants increases with elevation. Journal of Biogeography. 2017;44:1418–1425. doi: 10.1111/jbi.13001. DOI
Smilauer, P. & Leps, J. Multivariate analysis of ecological data using CANOCO 5. (Cambridge University Press, 2014).
Legendre, P. & Legendre, L. Numerical ecology. 2nd English Edition. (Elsevier, 1998).