Hypoxia-inducible factors in postnatal mouse molar dental pulp development: insights into expression patterns, localisation and metabolic pathways

. 2024 Sep ; 476 (9) : 1411-1421. [epub] 20240805

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39101996
Odkazy

PubMed 39101996
DOI 10.1007/s00424-024-03003-1
PII: 10.1007/s00424-024-03003-1
Knihovny.cz E-zdroje

Hypoxia is relevant to several physiological and pathological processes and this also applies for the tooth. The adaptive response to lowering oxygen concentration is mediated by hypoxia-inducible factors (HIFs). Since HIFs were shown to participate in the promotion of angiogenesis, stem cell survival, odontoblast differentiation and dentin formation, they may play a beneficial role in the tooth reparative processes. Although some data were generated in vitro, little is known about the in vivo context of HIFs in tooth development. In order to contribute to this field, the mouse mandibular first molar was used as a model.The expression and in situ localisation of HIFs were examined at postnatal (P) days P0, P7, P14, using RT-PCR and immunostaining. The expression pattern of a broad spectrum of hypoxia-related genes was monitored by customised PCR Arrays. Metabolic aspects were evaluated by determination of the lactate level and mRNA expression of the mitochondrial marker Nd1.The results show constant high mRNA expression of Hif1a, increasing expression of Hif2a, and very low expression of Hif3a during early postnatal molar development. In the examined period the localisation of HIFs in the nuclei of odontoblasts and the subodontoblastic layer identified their presence during odontoblastic differentiation. Additionally, the lower lactate level and higher expression of mitochondrial Nd1 in advanced development points to decreasing glycolysis during differentiation. Postnatal nuclear localisation of HIFs indicates a hypoxic state in specific areas of dental pulp as oxygen demands depend on physiological events such as crown and root dentin mineralization.

Zobrazit více v PubMed

Ahmed NE-MB, Murakami M, Kaneko S, Nakashima M (2016) The effects of hypoxia on the stemness properties of human dental pulp stem cells (DPSCs). Sci Rep 6:35476. https://doi.org/10.1038/srep35476 PubMed DOI PMC

Anshida VP, Kumari RA, Murthy CS, Samuel A (2020) Extracellular matrix degradation by host matrix metalloproteinases in restorative dentistry and endodontics: An overview. J Oral Maxillofac Pathol JOMFP 24:352–360. https://doi.org/10.4103/jomfp.JOMFP_34_20 PubMed DOI

Aranha AMF, Zhang Z, Neiva KG, Costa CAS, Hebling J, Nör JE (2010) Hypoxia Enhances the Angiogenic Potential of Human Dental Pulp Cells. J Endod 36:1633–1637. https://doi.org/10.1016/j.joen.2010.05.013 PubMed DOI

Arreola A, Cowey CL, Coloff JL, Rathmell JC, Rathmell WK (2014) HIF1α and HIF2α Exert Distinct Nutrient Preferences in Renal Cells. PLoS ONE 9:e98705. https://doi.org/10.1371/journal.pone.0098705 PubMed DOI PMC

Berchner-Pfannschmidt U, Frede S, Wotzlaw C, Fandrey J (2008) Imaging of the hypoxia-inducible factor pathway: insights into oxygen sensing. Eur Respir J 32:210–217. https://doi.org/10.1183/09031936.00013408 PubMed DOI

Caviedes-Bucheli J, Lopez-Moncayo LF, Muñoz-Alvear HD, Hernandez-Acosta F, Pantoja-Mora M, Rodriguez-Guerrero AS, López-Ordoñez A, Díaz LE, Gomez-Sosa JF, Munoz HR (2020) Expression of early angiogenesis indicators in mature versus immature teeth. BMC Oral Health 20:324. https://doi.org/10.1186/s12903-020-01313-1 PubMed DOI PMC

Chen T, Liu Z, Sun W, Li J, Liang Y, Yang X, Xu Y, Yu M, Tian W, Chen G, Bai D (2015) Inhibition of Ape1 Redox Activity Promotes Odonto/osteogenic Differentiation of Dental Papilla Cells. Sci Rep 5:17483. https://doi.org/10.1038/srep17483 PubMed DOI PMC

DeFrates KG, Franco D, Heber-Katz E, Messersmith PB (2021) Unlocking mammalian regeneration through hypoxia inducible factor one alpha signaling. Biomaterials 269:120646. https://doi.org/10.1016/j.biomaterials.2020.120646 PubMed DOI PMC

Dunwoodie SL (2009) The Role of Hypoxia in Development of the Mammalian Embryo. Dev Cell 17:755–773. https://doi.org/10.1016/j.devcel.2009.11.008 PubMed DOI

Gomez-Sosa JF, Cardier JE, Caviedes-Bucheli J (2022) The hypoxia-dependent angiogenic process in dental pulp. J Oral Biosci 64:381–391. https://doi.org/10.1016/j.job.2022.08.004 PubMed DOI

Gomez-Sosa JF, Caviedes-Bucheli J, Diaz-Barrera LE, Munoz HR (2019) Gene expression of growth factors with angiogenic potential in human dental pulp tissue from teeth with complete and incomplete root development. Int Endod J 52:1716–1722. https://doi.org/10.1111/iej.13188 PubMed DOI

Gritli-Linde A, Linde A (1994) Localization of ornithine decarboxylase in mouse teeth. An in vitro and in vivo study. Int J Dev Biol 38:107–115 PubMed

Han Y, Koohi-Moghadam M, Chen Q, Zhang L, Chopra H, Zhang J, Dissanayaka WL (2022) HIF-1α Stabilization Boosts Pulp Regeneration by Modulating Cell Metabolism. J Dent Res 101:1214–1226. https://doi.org/10.1177/00220345221091528 PubMed DOI

Hasegawa N (1989) Effects of various culture conditions on matrix formative functions of rat incisor odontoblasts in a pulp-dentin slice culture system. Shika Kiso Igakkai Zasshi 31:392–403. https://doi.org/10.2330/joralbiosci1965.31.392 PubMed DOI

Heikkilä M, Pasanen A, Kivirikko KI, Myllyharju J (2011) Roles of the human hypoxia-inducible factor (HIF)-3α variants in the hypoxia response. Cell Mol Life Sci 68:3885–3901. https://doi.org/10.1007/s00018-011-0679-5 PubMed DOI PMC

Hu C-J, Iyer S, Sataur A, Covello KL, Chodosh LA, Simon MC (2006) Differential Regulation of the Transcriptional Activities of Hypoxia-Inducible Factor 1 Alpha (HIF-1α) and HIF-2α in Stem Cells. Mol Cell Biol 26:3514–3526. https://doi.org/10.1128/MCB.26.9.3514-3526.2006 PubMed DOI PMC

Janaszak-Jasiecka A, Bartoszewska S, Kochan K, Piotrowski A, Kalinowski L, Kamysz W, Ochocka RJ, Bartoszewski R, Collawn JF (2016) miR-429 regulates the transition between Hypoxia-Inducible Factor (HIF)1A and HIF3A expression in human endothelial cells. Sci Rep 6:22775. https://doi.org/10.1038/srep22775 PubMed DOI PMC

Jaskiewicz M, Moszynska A, Serocki M, Króliczewski J, Bartoszewska S, Collawn JF, Bartoszewski R (2022) Hypoxia-inducible factor (HIF)-3a2 serves as an endothelial cell fate executor during chronic hypoxia. EXCLI J 21:454–469. https://doi.org/10.17179/excli2021-4622 PubMed DOI PMC

Jewell UR, Kvietikova I, Scheid A, Bauer C, Wenger RH, Gassmann M (2001) Induction of HIF–1α in response to hypoxia is instantaneous. FASEB J 15:1312–1314. https://doi.org/10.1096/fj.00-0732fje PubMed DOI

Kaluz S, Kaluzová M, Stanbridge EJ (2008) Regulation of gene expression by hypoxia: integration of the HIF-transduced hypoxic signal at the hypoxia-responsive element. Clin Chim Acta Int J Clin Chem 395:6–13. https://doi.org/10.1016/j.cca.2008.05.002 DOI

Keith B, Simon MC (2007) Hypoxia Inducible Factors, stem cells and cancer. Cell 129:465–472. https://doi.org/10.1016/j.cell.2007.04.019 PubMed DOI PMC

Khan WS, Adesida AB, Hardingham TE (2007) Hypoxic conditions increase hypoxia-inducible transcription factor 2α and enhance chondrogenesis in stem cells from the infrapatellar fat pad of osteoarthritis patients. Arthritis Res Ther 9:R55. https://doi.org/10.1186/ar2211 PubMed DOI PMC

Kim J-H, Lee E-H, Park H, Park E-K, Kwon T-G, Shin H-I, Cho J-Y (2013) The Role of Lysyl Oxidase-like 2 in the Odontogenic Differentiation of Human Dental Pulp Stem Cells. Mol Cells 35:543–549. https://doi.org/10.1007/s10059-013-0080-3 PubMed DOI PMC

Ko D, (Jihyung), Kelly T, Thompson L, Uppal JK, Rostampour N, Webb MA, Zhu N, Belev G, Mondal P, Cooper DML, Boughner JC, (2021) Timing of Mouse Molar Formation Is Independent of Jaw Length Including Retromolar Space. J Dev Biol 9:8. https://doi.org/10.3390/jdb9010008 PubMed DOI

Krock BL, Skuli N, Simon MC (2011) Hypoxia-Induced Angiogenesis. Genes. Cancer 2:1117–1133. https://doi.org/10.1177/1947601911423654 DOI

Labedz-Maslowska A, Bryniarska N, Kubiak A, Kaczmarzyk T, Sekula-Stryjewska M, Noga S, Boruczkowski D, Madeja Z, Zuba-Surma E (2020) Multilineage Differentiation Potential of Human Dental Pulp Stem Cells—Impact of 3D and Hypoxic Environment on Osteogenesis In Vitro. Int J Mol Sci 21:6172. https://doi.org/10.3390/ijms21176172 PubMed DOI PMC

Li L, Zhu Y-Q, Jiang L, Peng W, Ritchie HH (2011) Hypoxia Promotes Mineralization of Human Dental Pulp Cells. J Endod 37:799–802. https://doi.org/10.1016/j.joen.2011.02.028 PubMed DOI

Lin Q, Lee Y-J, Yun Z (2006) Differentiation Arrest by Hypoxia*. J Biol Chem 281:30678–30683. https://doi.org/10.1074/jbc.C600120200 PubMed DOI

Lungová V, Radlanski RJ, Tucker AS, Renz H, Míšek I, Matalová E (2011) Tooth-bone morphogenesis during postnatal stages of mouse first molar development. J Anat 218:699–716. https://doi.org/10.1111/j.1469-7580.2011.01367.x PubMed DOI PMC

Makino Y, Kanopka A, Wilson WJ, Tanaka H, Poellinger L (2002) Inhibitory PAS Domain Protein (IPAS) Is a Hypoxia-inducible Splicing Variant of the Hypoxia-inducible Factor-3α Locus*. J Biol Chem 277:32405–32408. https://doi.org/10.1074/jbc.C200328200 PubMed DOI

Mekkawy AH, Pourgholami MH, Morris DL (2014) Involvement of Urokinase-Type Plasminogen Activator System in Cancer: An Overview. Med Res Rev 34:918–956. https://doi.org/10.1002/med.21308 PubMed DOI

Molnar J, Fong KSK, He QP, Hayashi K, Kim Y, Fong SFT, Fogelgren B, Molnarne Szauter K, Mink M, Csiszar K (2003) Structural and functional diversity of lysyl oxidase and the LOX-like proteins. Biochim Biophys Acta BBA - Proteins Proteomics 1647:220–224. https://doi.org/10.1016/S1570-9639(03)00053-0 PubMed DOI

Moszyńska A, Jaśkiewicz M, Serocki M, Cabaj A, Crossman DK, Bartoszewska S, Gebert M, Dąbrowski M, Collawn JF, Bartoszewski R (2022) The hypoxia induced changes in miRNA-mRNA in RNA-induced silencing complexes and HIF-2 induced miRNAs in human endothelial cells. FASEB J Off Publ Fed Am Soc Exp Biol 36:e22412. https://doi.org/10.1096/fj.202101987R DOI

Mylotte LA, Duffy AM, Murphy M, O’Brien T, Samali A, Barry F, Szegezdi E (2008) Metabolic Flexibility Permits Mesenchymal Stem Cell Survival in an Ischemic Environment. STEM CELLS 26:1325–1336. https://doi.org/10.1634/stemcells.2007-1072 PubMed DOI

Nait Lechguer A, Kuchler-Bopp S, Hu B, Haïkel Y, Lesot H (2008) Vascularization of Engineered Teeth. J Dent Res 87:1138–1143. https://doi.org/10.1177/154405910808701216 PubMed DOI

Orikasa S, Kawashima N, Tazawa K, Hashimoto K, Sunada-Nara K, Noda S, Fujii M, Akiyama T, Okiji T (2022) Hypoxia-inducible factor 1α induces osteo/odontoblast differentiation of human dental pulp stem cells via Wnt/β-catenin transcriptional cofactor BCL9. Sci Rep 12:1–13. https://doi.org/10.1038/s41598-021-04453-8 DOI

Rehman J (2010) Empowering self-renewal and differentiation: the role of mitochondria in stem cells. J Mol Med 88:981–986. https://doi.org/10.1007/s00109-010-0678-2 PubMed DOI

Sakdee JB, White RR, Pagonis TC, Hauschka PV (2009) Hypoxia-amplified Proliferation of Human Dental Pulp Cells. J Endod 35:818–823. https://doi.org/10.1016/j.joen.2009.03.001 PubMed DOI

Semenza GL (1998) Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev 8:588–594. https://doi.org/10.1016/S0959-437X(98)80016-6 PubMed DOI

Senzui S, Matsuzaka K, Fukuhara F, Shintani S, Inoue T (2010) Responses of immature dental pulp cells to hypoxic stimulation. Oral Med Pathol 14:107–111. https://doi.org/10.3353/omp.14.107 DOI

Simon MC, Keith B (2008) The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol 9:285–296. https://doi.org/10.1038/nrm2354 PubMed DOI PMC

Tjäderhane L, Vered M, Pääkkönen V, Peteri A, Mäki JM, Myllyharju J, Dayan D, Salo T (2013) The expression and role of Lysyl oxidase (LOX) in dentinogenesis. Int Endod J 46:581–589. https://doi.org/10.1111/iej.12031 PubMed DOI

Ullah MS, Davies AJ, Halestrap AP (2006) The Plasma Membrane Lactate Transporter MCT4, but Not MCT1, Is Up-regulated by Hypoxia through a HIF-1α-dependent Mechanism*. J Biol Chem 281:9030–9037. https://doi.org/10.1074/jbc.M511397200 PubMed DOI

Wang L, Cheng L, Wang H, Pan H, Yang H, Shao M, Hu T (2016) Glycometabolic reprogramming associated with the initiation of human dental pulp stem cell differentiation. Cell Biol Int 40:308–317. https://doi.org/10.1002/cbin.10568 PubMed DOI

Wang V, Davis DA, Haque M, Huang LE, Yarchoan R (2005) Differential Gene Up-Regulation by Hypoxia-Inducible Factor-1α and Hypoxia-Inducible Factor-2α in HEK293T Cells. Cancer Res 65:3299–3306. https://doi.org/10.1158/0008-5472.CAN-04-4130 PubMed DOI

Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92:5510–5514 PubMed DOI PMC

Yabluchanskiy A, Ma Y, Iyer RP, Hall ME, Lindsey ML (2013) Matrix Metalloproteinase-9: Many Shades of Function in Cardiovascular Disease. Physiology 28:391–403. https://doi.org/10.1152/physiol.00029.2013 PubMed DOI PMC

Yang M, Su H, Soga T, Kranc KR, Pollard PJ (2014) Prolyl hydroxylase domain enzymes: important regulators of cancer metabolism. Hypoxia 2:127–142. https://doi.org/10.2147/HP.S47968 PubMed DOI PMC

You J, Liu M, Li M, Zhai S, Quni S, Zhang L, Liu X, Jia K, Zhang Y, Zhou Y (2023) The Role of HIF-1α in Bone Regeneration: A New Direction and Challenge in Bone Tissue Engineering. Int J Mol Sci 24:8029. https://doi.org/10.3390/ijms24098029 PubMed DOI PMC

Yu CY, Boyd NM, Cringle SJ, Alder VA, Yu DY (2002) Oxygen distribution and consumption in rat lower incisor pulp. Arch Oral Biol 47:529–536. https://doi.org/10.1016/S0003-9969(02)00036-5 PubMed DOI

Yun Z, Maecker HL, Johnson RS, Giaccia AJ (2002) Inhibition of PPARγ2 Gene Expression by the HIF-1-Regulated Gene DEC1/Stra13. Dev Cell 2:331–341. https://doi.org/10.1016/S1534-5807(02)00131-4 PubMed DOI

Zayed M, Iohara K, Watanabe H, Ishikawa M, Tominaga M, Nakashima M (2021) Characterization of stable hypoxia-preconditioned dental pulp stem cells compared with mobilized dental pulp stem cells for application for pulp regenerative therapy. Stem Cell Res Ther 12:302. https://doi.org/10.1186/s13287-021-02240-w PubMed DOI PMC

Ziello JE, Jovin IS, Huang Y (2007) Hypoxia-Inducible Factor (HIF)-1 Regulatory Pathway and its Potential for Therapeutic Intervention in Malignancy and Ischemia. Yale J Biol Med 80:51 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...