Distance functions of carabids in crop fields depend on functional traits, crop type and adjacent habitat: a synthesis

. 2024 Jan 10 ; 291 (2014) : 20232383. [epub] 20240110

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38196355

Natural pest and weed regulation are essential for agricultural production, but the spatial distribution of natural enemies within crop fields and its drivers are mostly unknown. Using 28 datasets comprising 1204 study sites across eight Western and Central European countries, we performed a quantitative synthesis of carabid richness, activity densities and functional traits in relation to field edges (i.e. distance functions). We show that distance functions of carabids strongly depend on carabid functional traits, crop type and, to a lesser extent, adjacent non-crop habitats. Richness of both carnivores and granivores, and activity densities of small and granivorous species decreased towards field interiors, whereas the densities of large species increased. We found strong distance decays in maize and vegetables whereas richness and densities remained more stable in cereals, oilseed crops and legumes. We conclude that carabid assemblages in agricultural landscapes are driven by the complex interplay of crop types, adjacent non-crop habitats and further landscape parameters with great potential for targeted agroecological management. In particular, our synthesis indicates that a higher edge-interior ratio can counter the distance decay of carabid richness per field and thus likely benefits natural pest and weed regulation, hence contributing to agricultural sustainability.

'Lendület' Landscape and Conservation Ecology Institute of Ecology and Botany HUN REN Centre for Ecological Research 2163 Vácrátót Alkotmány út 2 4 Hungary

Agroecology and Environment Agroscope Reckenholzstrasse 191 Zurich 8046 Switzerland

Agroecology Department of Crop Science University of Göttingen Göttingen Germany

British Trust for Ornithology The Nunnery Thetford Norfolk IP24 2PU UK

CEBC UMR 7372 CNRS and La Rochelle Université 79360 Villiers en Bois France

CREAF Cerdanyola del Vallès 08193 Spain

CSIC Cerdanyola del Vallès 08193 Spain

Department of Animal Ecology and Tropical Biology Biocenter University of Würzburg Am Hubland Würzburg 97074 Germany

Department of Animal Ecology Justus Liebig University Giessen Heinrich Buff Ring 26 32 35392 Giessen Germany

Department of Botany and Biodiversity Research Division of Biodiversity Dynamics and Conservation University of Vienna Rennweg 14 1030 Vienna Austria

Department of Ecology Brandenburg University of Technology Cottbus Senftenberg Cottbus 03046 Germany

Department of Ecology Environment and Evolution School of Life Science La Trobe University Bundoora Victoria 3086 Australia

Department of Ecology Swedish University of Agricultural Sciences Uppsala SE 750 07 Sweden

Department of Zoology and Biology Faculty of Sciences Pir Mehr Ali Shah Arid Agriculture University Rawalpindi Rawalpindi Pakistan

Ecologie et Dynamique des Systèmes Anthropisés Université de Picardie Jules Verne Amiens France

Faculty of Bioscience Engineering Department of Forest and Water Management Forest and Nature Lab Ghent University Geraardsbergsesteenweg 267 9090 Gontrode Belgium

Faculty of Environmental Sciences Czech University of Life Sciences Prague Kamýcká 129 Praha Suchdol 165 00 Czech Republic

Fenner School of Environment and Society The Australian National University Canberra Australia

iES Landau Institute for Environmental Sciences Ecosystem Analysis University of Kaiserslautern Landau Fortstrasse 7 Landau 76829 Germany

INRAE Institut Agro ESA UMR BAGAP 35042 Rennes France

Institut Agro Univ Rennes1 INRAE IGEPP 35000 Rennes France

Institute of Zoology University of Natural Resources and Life Sciences Vienna 1180 Austria

Instituto Multidisciplinario de Biología Vegetal Av Velez Sarsfield 1611 5000 Córdoba Argentina

Landscape Dynamics and Biodiversity Program Forest Science and Technology Centre of Catalonia Crtra Sant Llorenç de Morunys km 2 25280 Solsona Spain

LTSER 'Zone Atelier Plaine and Val de Sèvre' CNRS 79360 Villiers en Bois France

LTSER Zone Atelier « PYRÉNÉES GARONNE » 31320 Auzeville Tolosane France

Plant Production Systems Agroscope Route des Eterpys 18 1964 Conthey Switzerland

Research Institute of Organic Agriculture Ackerstrasse 113 Postfach Frick 5070 Switzerland

Swiss Ornithological Institute Seerose 1 CH 6204 Sempach Switzerland

Tour du Valat Research Institute for the conservation of Mediterranean wetlands Le Sambuc 13200 Arles France

UMR Dynafor INRAE Toulouse University 31326 Castanet Tolosan France

Université Paris Saclay INRAE AgroParisTech UMR EcoSys 91120 Palaiseau France

Wildlife Ecology and Conservation Group Wageningen University Droevendaalsesteeg 3 6708 PB Wageningen the Netherlands

Zobrazit více v PubMed

Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A. 2019. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 430-439. (10.1038/s41559-018-0793-y) PubMed DOI

Foley JA, et al. 2011. Solutions for a cultivated planet. Nature 478, 337-342. (10.1038/nature10452) PubMed DOI

Pimentel D. 2005. Environmental and economic costs of the application of pesticides primarily in the United States. Environ. Dev. Sustain. 7, 229-252. (10.1007/s10668-005-7314-2) DOI

Janssen A, van Rijn PCJ. 2021. Pesticides do not significantly reduce arthropod pest densities in the presence of natural enemies. Ecol. Lett. 24, 2010-2024. (10.1111/ele.13819) PubMed DOI PMC

Dainese M, et al. 2019. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121. (10.1126/sciadv.aax0121) PubMed DOI PMC

Bommarco R, Kleijn D, Potts SG. 2013. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230-238. (10.1016/j.tree.2012.10.012) PubMed DOI

Sirami C, et al. 2019. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl Acad. Sci. USA. 116, 16 442-16 447. (10.1073/pnas.1906419116) PubMed DOI PMC

Martin AE, et al. 2020. Effects of farmland heterogeneity on biodiversity are similar to—or even larger than—the effects of farming practices. Agric. Ecosyst. Environ. 288, 13. (10.1016/j.agee.2019.106698) DOI

Martin EA, et al. 2019. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083-1094. (10.1111/ele.13265) PubMed DOI

Chaplin-Kramer R, O'Rourke ME, Blitzer EJ, Kremen C. 2011. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922-932. (10.1111/j.1461-0248.2011.01642.x) PubMed DOI

Albrecht M, et al. 2020. Global synthesis of the effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield. Ecol. Lett. 23, 1488-1498. (10.1111/ele.13576) PubMed DOI PMC

Ricci B, et al. 2019. Local pesticide use intensity conditions landscape effects on biological pest control. Proc. R. Soc. B 286, 20182898. (10.1098/rspb.2018.2898) PubMed DOI PMC

Tscharntke T, Rand TA, Bianchi F. 2005. The landscape context of trophic interactions: insect spillover across the crop–noncrop interface. Ann. Zool. Fenn. 42, 421-432.

Raatz L, Bacchi N, Pirhofer Walzl K, Glemnitz M, Müller MEH, Joshi J, Scherber C. 2019. How much do we really lose?—Yield losses in the proximity of natural landscape elements in agricultural landscapes. Ecol. Evol. 9, 7838-7848. (10.1002/ece3.5370) PubMed DOI PMC

Clough Y, Kirchweger S, Kantelhardt J. 2020. Field sizes and the future of farmland biodiversity in European landscapes. Conserv. Lett. 13, e12752. (10.1111/conl.12752) PubMed DOI PMC

Rand TA, Tylianakis JM, Tscharntke T. 2006. Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol. Lett. 9, 603-614. (10.1111/j.1461-0248.2006.00911.x) PubMed DOI

Boetzl FA, Krimmer E, Krauss J, Steffan-Dewenter I. 2019. Agri-environmental schemes promote ground-dwelling predators in adjacent oilseed rape fields: diversity, species traits and distance-decay functions. J. Appl. Ecol. 56, 10-20. (10.1111/1365-2664.13162) DOI

Hof AR, Bright PW. 2010. The impact of grassy field margins on macro-invertebrate abundance in adjacent arable fields. Agric. Ecosyst. Environ. 139, 280-283. (10.1016/j.agee.2010.08.014) DOI

Tschumi M, Albrecht M, Bärtschi C, Collatz J, Entling MH, Jacot K. 2016. Perennial, species-rich wildflower strips enhance pest control and crop yield. Agric. Ecosyst. Environ. 220, 97-103. (10.1016/j.agee.2016.01.001) DOI

Fusser MS, Holland JM, Jeanneret P, Pfister SC, Entling MH, Schirmel J. 2018. Interactive effects of local and landscape factors on farmland carabids. Agric. For. Entomol. 20, 549-557. (10.1111/afe.12288) DOI

Pollier A, Tricault Y, Plantegenest M, Bischoff A. 2019. Sowing of margin strips rich in floral resources improves herbivore control in adjacent crop fields. Agric. For Entomol. 21, 119-129. (10.1111/afe.12318) DOI

Boetzl FA, Schuele M, Krauss J, Steffan-Dewenter I. 2020. Pest control potential of adjacent agri-environment schemes varies with crop type and is shaped by landscape context and within-field position. J. Appl. Ecol. 57, 1482-1493. (10.1111/1365-2664.13653) DOI

Batáry P, Holzschuh A, Orci KM, Samu F, Tscharntke T. 2012. Responses of plant, insect and spider biodiversity to local and landscape scale management intensity in cereal crops and grasslands. Agric. Ecosyst. Environ. 146, 130-136. (10.1016/j.agee.2011.10.018) DOI

Anjum-Zubair M, Schmidt-Entling MH, Querner P, Frank T. 2010. Influence of within-field position and adjoining habitat on carabid beetle assemblages in winter wheat. Agric. For. Entomol. 12, 301-306. (10.1111/j.1461-9563.2010.00479.x) DOI

Ulaby FT, Aslam A, Dobson MC. 1982. Effects of vegetation cover on the radar sensitivity to soil moisture. IEEE Trans. Geosci. Remote Sens. GE-20, 476-481. (10.1109/TGRS.1982.350413) DOI

Boetzl FA, et al. 2021. A multitaxa assessment of the effectiveness of agri-environmental schemes for biodiversity management. Proc. Natl Acad. Sci. USA. 118, e2016038118. (10.1073/pnas.2016038118) PubMed DOI PMC

Kanzler M, Böhm C, Mirck J, Schmitt D, Veste M. 2019. Microclimate effects on evaporation and winter wheat (Triticum aestivum L.) yield within a temperate agroforestry system. Agroforestry Syst. 93, 1821-1841. (10.1007/s10457-018-0289-4) DOI

Bert R, Steven B, Victoria N, Paul P, Kris V. 2017. Ecosystem service delivery of agri-environment measures: a synthesis for hedgerows and grass strips on arable land. Agric. Ecosyst. Environ. 244, 32-51. (10.1016/j.agee.2017.04.015) DOI

Holland JM, Bianchi FJ, Entling MH, Moonen A-C, Smith BM, Jeanneret P. 2016. Structure, function and management of semi-natural habitats for conservation biological control: a review of European studies. Pest Manag. Sci. 72, 1638-1651. (10.1002/ps.4318) PubMed DOI

Bianchi F, Booij CJH, Tscharntke T. 2006. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. B 273, 1715-1727. (10.1098/rspb.2006.3530) PubMed DOI PMC

Schneider G, Krauss J, Boetzl FA, Fritze M-A, Steffan-Dewenter I. 2016. Spillover from adjacent crop and forest habitats shapes carabid beetle assemblages in fragmented semi-natural grasslands. Oecologia 182, 1141-1150. (10.1007/s00442-016-3710-6) PubMed DOI

Schirmel J, Thiele J, Entling MH, Buchholz S. 2016. Trait composition and functional diversity of spiders and carabids in linear landscape elements. Agric. Ecosyst. Environ. 235, 318-328. (10.1016/j.agee.2016.10.028) DOI

Haan NL, Zhang Y, Landis DA. 2019. Predicting landscape configuration effects on agricultural pest suppression. Trends Ecol. Evol. 35, 175-186. (10.1016/j.tree.2019.10.003) PubMed DOI

Knapp M, Seidl M, Knappová J, Macek M, Saska P. 2019. Temporal changes in the spatial distribution of carabid beetles around arable field-woodlot boundaries. Sci. Rep. 9, 8967. (10.1038/s41598-019-45378-7) PubMed DOI PMC

Kulkarni SS, Dosdall LM, Willenborg CJ. 2015. The role of ground beetles (Coleoptera: Carabidae) in weed seed consumption: a review. Weed Sci. 63, 355-376. (10.1614/WS-D-14-00067.1) DOI

Kromp B. 1999. Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agric. Ecosyst. Environ. 74, 187-228. (10.1016/S0167-8809(99)00037-7) DOI

Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. 2004. Toward a metabolic theory of ecology. Ecology 85, 1771-1789. (10.1890/03-9000) DOI

Diekötter T, Wamser S, Dörner T, Wolters V, Birkhofer K. 2016. Organic farming affects the potential of a granivorous carabid beetle to control arable weeds at local and landscape scales. Agric. For. Entomol. 18, 167-173. (10.1111/afe.12150) DOI

Lorenz W. 2005. Systematic list of extant ground beetles of the world (Coleoptera ‘Geadephaga’: Trachypachidae and Carabidae, incl. Paussinae, Cicindelinae, Rhysodinae), 2nd edn. Tutzing, Germany: self-published.

Homburg K, Homburg N, Schäfer F, Schuldt A, Assmann T. 2014. Carabids.org—a dynamic online database of ground beetle species traits (Coleoptera, Carabidae). Insect Conserv. Divers. 7, 195-205. (10.1111/icad.12045) DOI

Winqvist C, et al. 2014. Species' traits influence ground beetle responses to farm and landscape level agricultural intensification in Europe. J. Insect Conserv. 18, 837-846. (10.1007/s10841-014-9690-0) DOI

Redlich S, Martin EA, Steffan-Dewenter I. 2018. Landscape-level crop diversity benefits biological pest control. J. Appl. Ecol. 55, 2419-2428. (10.1111/1365-2664.13126) DOI

Gelman A. 2005. Analysis of variance: why it is more important than ever. Ann. Stat. 33, 1-31. (10.1214/009053604000001048) DOI

Oberauer K. 2022. The importance of random slopes in mixed models for Bayesian hypothesis testing. Psychol. Sci. 33, 648-665. (10.1177/09567976211046884) PubMed DOI

Lenth RV. 2022. Emmeans: estimated marginal means, aka least-squares means. Comprehensive R Archive Network (CRAN). 1.7.3 ed. See https://CRAN.Rproject.org/package=emmeans.

Sarthou JP, Badoz A, Vaissiere B, Chevallier A, Rusch A. 2014. Local more than landscape parameters structure natural enemy communities during their overwintering in semi-natural habitats. Agric. Ecosyst. Environ. 194, 17-28. (10.1016/j.agee.2014.04.018) DOI

Yvoz S, Petit S, Cadet E, Dessaint F, Cordeau S. 2021. Taxonomic and functional characteristics of field edge weed communities along a gradient of crop management intensity. Basic Appl. Ecol. 57, 14-27. (10.1016/j.baae.2021.10.001) DOI

Woodward G, Ebenman B, Emmerson M, Montoya JM, Olesen JM, Valido A, Warren PH. 2005. Body size in ecological networks. Trends Ecol. Evol. 20, 402-409. (10.1016/j.tree.2005.04.005) PubMed DOI

Schneider FD, Scheu S, Brose U. 2012. Body mass constraints on feeding rates determine the consequences of predator loss. Ecol. Lett. 15, 436-443. (10.1111/j.1461-0248.2012.01750.x) PubMed DOI

Martin EA, Feit B, Requier F, Friberg H, Jonsson M. 2019. Assessing the resilience of biodiversity-driven functions in agroecosystems under environmental change. In Advances in ecological research, vol. 60. (eds Bohan DA, Dumbrell AJ), pp. 59-123. New York, NY: Academic Press.

Sutter L, Amato M, Jeanneret P, Albrecht M. 2018. Overwintering of pollen beetles and their predators in oilseed rape and semi-natural habitats. Agric. Ecosyst. Environ. 265, 275-281. (10.1016/j.agee.2018.06.030) DOI

Mestre L, et al. 2018. Both woody and herbaceous semi-natural habitats are essential for spider overwintering in European farmland. Agric. Ecosyst. Environ. 267, 141-146. (10.1016/j.agee.2018.08.018) DOI

Hanson HI, Birkhofer K, Smith HG, Palmu E, Hedlund K. 2017. Agricultural land use affects abundance and dispersal tendency of predatory arthropods. Basic Appl. Ecol. 18, 40-49. (10.1016/j.baae.2016.10.004) DOI

Alarcón-Segura V, Grass I, Breustedt G, Rohlfs M, Tscharntke T. 2022. Strip intercropping of wheat and oilseed rape enhances biodiversity and biological pest control in a conventionally managed farm scenario. J. Appl. Ecol. 59, 1513-1523. (10.1111/1365-2664.14161) DOI

Tscharntke T, Grass I, Wanger TC, Westphal C, Batáry P. 2021. Beyond organic farming—harnessing biodiversity-friendly landscapes. Trends Ecol. Evol. 36, 919-930. (10.1016/j.tree.2021.06.010) PubMed DOI

Boetzl FA, et al. 2024. Data from: Distance functions of carabids in crop fields depend on functional traits, crop type and adjacent habitat: a synthesis. Dryad Digital Repository. (10.5061/dryad.ns1rn8q0w) PubMed DOI PMC

Boetzl FA, et al. 2024. Distance functions of carabids in crop fields depend on functional traits, crop type and adjacent habitat: a synthesis. Figshare. (10.6084/m9.figshare.c.6984205) PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...