Wildflower strip establishment supports beneficial ground-dwelling arthropods and pest control but has limited effects on weed seed control and spillover to adjacent fields
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Technology Agency of the Czech Republic
PubMed
40461069
PubMed Central
PMC12133378
DOI
10.1098/rspb.2025.0752
Knihovny.cz E-zdroje
- Klíčová slova
- carabids, flower strips, myriapods, pest predation, spiders, weed seed predation,
- MeSH
- biodiverzita MeSH
- členovci * fyziologie MeSH
- ekosystém MeSH
- kontrola plevele * MeSH
- kontrola škůdců * MeSH
- pavouci fyziologie MeSH
- plevel MeSH
- predátorské chování MeSH
- semena rostlinná MeSH
- zemědělské plodiny MeSH
- zemědělství * metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Arthropod declines in agricultural landscapes can threaten biodiversity and the provision of ecosystem services. Wildflower strips (WFS) can support biodiversity and, despite the mostly positive effects on pollinators and predatory arthropods, myriapods and ecosystem services like weed seed and ground-level pest predation are less studied. In addition, time after WFS establishment is highly relevant, but most experiments are performed in a single season. Here, we evaluated the effects of WFS on ground-dwelling arthropods (carabids, spiders and myriapods) and ecosystem services (pest and weed seed predation) across three years and three crop types. Using a standardized experimental design with paired control and WFS margins in 12 fields, we assessed arthropods and ecosystem services and their spillover into adjacent fields. We found that WFS enhanced spider and carabid richness and total and rodent pest predation in all crop types, whereas benefits on carabid activity-density and insect predation were only observed at certain crops. Spillover patterns were weak, and only carabids were enhanced in parts of the field neighbouring WFS. The benefits of two-year-old WFS reinforce the important role of perennial WFS in supporting beneficial ground-dwelling arthropod groups while also highlighting that limited spillover hinders the design of general measures to support biodiversity within arable fields.
Department of Ecology Czech University of Life Sciences Prague Praha Czech Republic
Instituto Multidisciplinario de Biología Vegetal Córdoba Argentina
Zobrazit více v PubMed
Newbold T, et al. 2015. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50. ( 10.1038/nature14324) PubMed DOI
Outhwaite CL, McCann P, Newbold T. 2022. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature 605, 97–102. ( 10.1038/s41586-022-04644-x) PubMed DOI
Seibold S, et al. 2019. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674. ( 10.1038/s41586-019-1684-3) PubMed DOI
Raven PH, Wagner DL. 2021. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proc. Natl Acad. Sci. USA 118, e2002548117. ( 10.1073/pnas.2002548117) PubMed DOI PMC
Harrison PA, et al. 2014. Linkages between biodiversity attributes and ecosystem services: a systematic review. Ecosyst. Serv. 9, 191–203. ( 10.1016/j.ecoser.2014.05.006) DOI
Knapp M, Štrobl M, Venturo A, Seidl M, Jakubíková L, Tajovský K, Kadlec T, González E. 2022. Importance of grassy and forest non-crop habitat islands for overwintering of ground-dwelling arthropods in agricultural landscapes: a multi-taxa approach. Biol. Conserv. 275, 109757. ( 10.1016/j.biocon.2022.109757) DOI
Michalko R, Birkhofer K. 2021. Habitat niches suggest that non-crop habitat types differ in quality as source habitats for Central European agrobiont spiders. Agric. Ecosyst. Environ. 308, 107248. ( 10.1016/j.agee.2020.107248) DOI
Venturo A, et al. 2024. A multi-taxa approach reveals contrasting responses of arthropod communities and related ecosystem services to field margin proximity and crop type. Agric. Ecosyst. Environ. 368, 109010. ( 10.1016/j.agee.2024.109010) DOI
Bohan DA, Boursault A, Brooks DR, Petit S. 2011. National-scale regulation of the weed seedbank by carabid predators. J. Appl. Ecol. 48, 888–898. ( 10.1111/j.1365-2664.2011.02008.x) DOI
Horňák O, Mock A, Šarapatka B, Tuf IH. 2020. Character of woodland fragments affects distribution of myriapod assemblages in agricultural landscape. ZooKeys 930, 139–151. ( 10.3897/zookeys.930.48586) PubMed DOI PMC
Jonason D, Smith HG, Bengtsson J, Birkhofer K. 2013. Landscape simplification promotes weed seed predation by carabid beetles (Coleoptera: Carabidae). Landsc. Ecol. 28, 487–494. ( 10.1007/s10980-013-9848-2) DOI
Jonsson M, Kaartinen R, Straub CS. 2017. Relationships between natural enemy diversity and biological control. Curr. Opin. Insect Sci. 20, 1–6. ( 10.1016/j.cois.2017.01.001) PubMed DOI
González E, Seidl M, Kadlec T, Ferrante M, Knapp M. 2020. Distribution of ecosystem services within oilseed rape fields: effects of field defects on pest and weed seed predation rates. Agric. Ecosyst. Environ. 295, 106894. ( 10.1016/j.agee.2020.106894) DOI
Rusch A, Binet D, Delbac L, Thiéry D. 2016. Local and landscape effects of agricultural intensification on carabid community structure and weed seed predation in a perennial cropping system. Landsc. Ecol. 31, 2163–2174. ( 10.1007/s10980-016-0390-x) DOI
Daouti E, Feit B, Jonsson M. 2022. Agricultural management intensity determines the strength of weed seed predation. Agric. Ecosyst. Environ. 339, 108132. ( 10.1016/j.agee.2022.108132) DOI
Rusch A, et al. 2016. Agricultural landscape simplification reduces natural pest control: a quantitative synthesis. Agric. Ecosyst. Environ. 221, 198–204. ( 10.1016/j.agee.2016.01.039) DOI
Dainese M, et al. 2019. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121. ( 10.1126/sciadv.aax0121) PubMed DOI PMC
González E, Landis DA, Knapp M, Valladares G. 2020. Forest cover and proximity decrease herbivory and increase crop yield via enhanced natural enemies in soybean fields. J. Appl. Ecol. 57, 2296–2306. ( 10.1111/1365-2664.13732) DOI
Batáry P, Dicks LV, Kleijn D, Sutherland WJ. 2015. The role of agri‐environment schemes in conservation and environmental management. Conserv. Biol. 29, 1006–1016. ( 10.1111/cobi.12536) PubMed DOI PMC
Tscharntke T, Grass I, Wanger TC, Westphal C, Batáry P. 2021. Beyond organic farming: harnessing biodiversity-friendly landscapes. Trends Ecol. Evol. 36, 919–930. ( 10.1016/j.tree.2021.06.010) PubMed DOI
Scheper J, Holzschuh A, Kuussaari M, Potts SG, Rundlöf M, Smith HG, Kleijn D. 2013. Environmental factors driving the effectiveness of European agri‐environmental measures in mitigating pollinator loss: a meta‐analysis. Ecol. Lett. 16, 912–920. ( 10.1111/ele.12128) PubMed DOI
Haaland C, Naisbit RE, Bersier LF. 2011. Sown wildflower strips for insect conservation: a review. Insect Conserv. Divers. 4, 60–80. ( 10.1111/j.1752-4598.2010.00098.x) DOI
Hussain RI, Walcher R, Vogel N, Krautzer B, Rasran L, Frank T. 2023. Effectiveness of flowers strips on insect’s restoration in intensive grassland. Agric. Ecosyst. Environ. 348, 108436. ( 10.1016/j.agee.2023.108436) DOI
Mei Z, de Groot GA, Kleijn D, Dimmers W, van Gils S, Lammertsma D, van Kats R, Scheper J. 2021. Flower availability drives effects of wildflower strips on ground-dwelling natural enemies and crop yield. Agric. Ecosyst. Environ. 319, 107570. ( 10.1016/j.agee.2021.107570) DOI
Raderschall CA, Lundin O, Lindström SAM, Bommarco R. 2022. Annual flower strips and honeybee hive supplementation differently affect arthropod guilds and ecosystem services in a mass-flowering crop. Agric. Ecosyst. Environ. 326, 107754. ( 10.1016/j.agee.2021.107754) DOI
Jachowicz N, Sigsgaard L. 2025. Highly diverse flower strips promote natural enemies more in annual field crops: a review and meta-analysis. Agric. Ecosyst. Environ. 381, 109412. ( 10.1016/j.agee.2024.109412) DOI
Pfiffner L, Luka H. 2000. Overwintering of arthropods in soils of arable fields and adjacent semi-natural habitats. Agric. Ecosyst. Environ. 78, 215–222. ( 10.1016/s0167-8809(99)00130-9) DOI
Albrecht M, et al. 2020. The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecol. Lett. 23, 1488–1498. ( 10.1111/ele.13576) PubMed DOI PMC
Schmied H, Getrost L, Hamm A, Dünzkofer T. 2023. The flower strip dilemma (FSD): an overlooked challenge in nature conservation and a possible first step towards a solution by combining different aged flower strips. Agric. Ecosyst. Environ. 347, 108375. ( 10.1016/j.agee.2023.108375) DOI
Frank T, Aeschbacher S, Barone M, Künzle I, Lethmayer C, Mosimann C. 2009. Beneficial arthropods respond differentially to wildflower areas of different age. Ann. Zool. Fenn. 46, 465–480. ( 10.5735/086.046.0607) DOI
Frank T, Aeschbacher S, Zaller JG. 2012. Habitat age affects beetle diversity in wildflower areas. Agric. Ecosyst. Environ. 152, 21–26. ( 10.1016/j.agee.2012.01.027) DOI
Frank T, Reichhart B. 2004. Staphylinidae and Carabidae overwintering in wheat and sown wildflower areas of different age. Bull. Entomol. Res. 94, 209–217. ( 10.1079/ber2004301) PubMed DOI
Ganser D, Knop E, Albrecht M. 2019. Sown wildflower strips as overwintering habitat for arthropods: effective measure or ecological trap? Agric. Ecosyst. Environ. 275, 123–131. ( 10.1016/j.agee.2019.02.010) DOI
Harman RR, Kim TN. 2024. Differentiating spillover: an examination of cross-habitat movement in ecology spillover in ecology. Proc. R. Soc. B 291, 20232707. ( 10.1098/rspb.2023.2707) PubMed DOI PMC
Rand TA, Tylianakis JM, Tscharntke T. 2006. Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol. Lett. 9, 603–614. ( 10.1111/j.1461-0248.2006.00911.x) PubMed DOI
Boetzl FA, et al. 2024. Distance functions of carabids in crop fields depend on functional traits, crop type and adjacent habitat: a synthesis. Proc. R. Soc. B 291, 20232383. ( 10.1098/rspb.2023.2383) PubMed DOI PMC
González E, Salvo A, Valladares G. 2015. Sharing enemies: evidence of forest contribution to natural enemy communities in crops, at different spatial scales. Insect Conserv. Divers. 8, 359–366. ( 10.1111/icad.12117) DOI
González E, Bianchi FJJA, Eckerter PW, Pfaff V, Weiler S, Entling MH. 2022. Ecological requirements drive the variable responses of wheat pests and natural enemies to the landscape context. J. Appl. Ecol. 59, 444–456. ( 10.1111/1365-2664.14062) DOI
Lövei GL, Ferrante M. 2017. A review of the sentinel prey method as a way of quantifying invertebrate predation under field conditions. Insect Sci. 24, 528–542. ( 10.1111/1744-7917.12405) PubMed DOI
Westerman PR, Hofman A, Vet LEM, van der Werf W. 2003. Relative importance of vertebrates and invertebrates in epigeaic weed seed predation in organic cereal fields. Agric. Ecosyst. Environ. 95, 417–425. ( 10.1016/S0167-8809(02)00224-4) DOI
R Core Development Team . 2022. R: a language and environment for statistical computing, 4.2.2. Vienna, Austria: R Foundation for Statistical Computing. See http://www.r-project.org/ (accessed December 5 December 2019).
Brooks ME, Kristensen K, Benthem KJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Mächler M, Bolker BM. 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400. ( 10.32614/RJ-2017-066) DOI
Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM. 2009. Mixed effects models and extensions in ecology with R. New York, NY: Springer. ( 10.1007/978-0-387-87458-6) DOI
Lenth RV, et al. 2023. emmeans: estimated marginal means, aka least-squares means. R package version 1.8.9. ( 10.32614/cran.package.emmeans) DOI
Hartig F. 2021. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.4.1. See https://CRAN.R-project.org/package=DHARMa.
Lüdecke D. 2018. ggeffects: tidy data frames of marginal effects from regression models. J. Open Source Softw. 3, 772. ( 10.21105/joss.00772) DOI
Wickham H. 2011. ggplot2. WIREs Comput. Stat. 3, 180–185. ( 10.1002/wics.147) DOI
Denys C, Tscharntke T. 2002. Plant-insect communities and predator-prey ratios in field margin strips, adjacent crop fields, and fallows. Oecologia 130, 315–324. ( 10.1007/s004420100796) PubMed DOI
Dennis P, Skartveit J, Kunaver A, McCracken DI. 2015. The response of spider (Araneae) assemblages to structural heterogeneity and prey abundance in sub-montane vegetation modified by conservation grazing. Glob. Ecol. Conserv. 3, 715–728. ( 10.1016/j.gecco.2015.03.007) DOI
Horváth R, Magura T, Szinetár C, Eichardt J, Kovács É, Tóthmérész B. 2015. In stable, unmanaged grasslands local factors are more important than landscape-level factors in shaping spider assemblages. Agric. Ecosyst. Environ. 208, 106–113. ( 10.1016/j.agee.2015.04.033) DOI
Langellotto GA, Denno RF. 2004. Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139, 1–10. ( 10.1007/s00442-004-1497-3) PubMed DOI
Knapp M, et al. 2022. Artificial field defects: a low-cost measure to support arthropod diversity in arable fields. Agric. Ecosyst. Environ. 325, 107748. ( 10.1016/j.agee.2021.107748) DOI
Schneider G, Krauss J, Boetzl FA, Fritze MA, Steffan-Dewenter I. 2016. Spillover from adjacent crop and forest habitats shapes carabid beetle assemblages in fragmented semi-natural grasslands. Oecologia 182, 1141–1150. ( 10.1007/s00442-016-3710-6) PubMed DOI
Yang Q, Men X, Zhao W, Li C, Zhang Q, Cai Z, Ge F, Ouyang F. 2021. Flower strips as a bridge habitat facilitate the movement of predatory beetles from wheat to maize crops. Pest Manag. Sci. 77, 1839–1850. ( 10.1002/ps.6209) PubMed DOI
Pollier A, Tricault Y, Plantegenest M, Bischoff A. 2019. Sowing of margin strips rich in floral resources improves herbivore control in adjacent crop fields. Agric. For. Entomol. 21, 119–129. ( 10.1111/afe.12318) DOI
Tschumi M, Albrecht M, Collatz J, Dubsky V, Entling MH, Najar‐Rodriguez AJ, Jacot K. 2016. Tailored flower strips promote natural enemy biodiversity and pest control in potato crops. J. Appl. Ecol. 53, 1169–1176. ( 10.1111/1365-2664.12653) DOI
Tschumi M, Albrecht M, Bärtschi C, Collatz J, Entling MH, Jacot K. 2016. Perennial, species-rich wildflower strips enhance pest control and crop yield. Agric. Ecosyst. Environ. 220, 97–103. ( 10.1016/j.agee.2016.01.001) DOI
Ferrante M, Lövei GL, Lavigne L, Vicente MC, Tarantino E, Lopes DH, Monjardino P, Borges PAV. 2023. Flowering coriander (Coriandrum sativum) strips do not enhance ecosystem services in Azorean orchards. Insects 14, 634. ( 10.3390/insects14070634) PubMed DOI PMC
Mansion‐Vaquié A, Ferrante M, Cook SM, Pell JK, Lövei GL. 2017. Manipulating field margins to increase predation intensity in fields of winter wheat (Triticum aestivum). J. Appl. Entomol. 141, 600–611. ( 10.1111/jen.12385) DOI
Witmer G, Sayler R, Huggins D, Capelli J. 2007. Ecology and management of rodents in no‐till agriculture in Washington, USA. Integr. Zool. 2, 154–164. ( 10.1111/j.1749-4877.2007.00058.x) PubMed DOI
Bowers C, Toews MD, Schmidt JM. 2021. Winter cover crops shape early‐season predator communities and trophic interactions. Ecosphere 12, e03635. ( 10.1002/ecs2.3635) DOI
Fox AF, Reberg-Horton SC, Orr DB, Moorman CE, Frank SD. 2013. Crop and field border effects on weed seed predation in the southeastern U.S. coastal plain. Agric. Ecosyst. Environ. 177, 58–62. ( 10.1016/j.agee.2013.06.006) DOI
Otway SJ, Hector A, Lawton JH. 2005. Resource dilution effects on specialist insect herbivores in a grassland biodiversity experiment. J. Anim. Ecol. 74, 234–240. ( 10.1111/j.1365-2656.2005.00913.x) DOI
Boetzl FA, Knapp M. 2024. On the ambivalence of granivorous carabids: weed seed bank regulators, potential crop pests or both? Agric. Ecosyst. Environ. 376, 109226. ( 10.1016/j.agee.2024.109226) DOI
Tschumi M, Albrecht M, Entling MH, Jacot K. 2015. High effectiveness of tailored flower strips in reducing pests and crop plant damage. Proc. R. Soc. B 282, 20151369. ( 10.1098/rspb.2015.1369) PubMed DOI PMC
Schmidt-Entling MH, Döbeli J. 2009. Sown wildflower areas to enhance spiders in arable fields. Agric. Ecosyst. Environ. 133, 19–22. ( 10.1016/j.agee.2009.04.015) DOI
Hološková A, Kadlec T, Reif J. 2023. Vegetation structure and invertebrate food availability for birds in intensively used arable fields: evaluation of three widespread crops. Diversity 15, 524. ( 10.3390/d15040524) DOI
Hussain RI, Brandl M, Maas B, Rabl D, Walcher R, Krautzer B, Entling MH, Moser D, Frank T. 2021. Re-established grasslands on farmland promote pollinators more than predators. Agric. Ecosyst. Environ. 319, 107543. ( 10.1016/j.agee.2021.107543) DOI
Sunderland K, Samu F. 2000. Effects of agricultural diversification on the abundance, distribution, and pest control potential of spiders: a review. Entomol. Exp. Appl. 95, 1–13. ( 10.1046/j.1570-7458.2000.00635.x) DOI
Tscharntke T, Rand T, Bianchi F. 2005. The landscape context of trophic interactions: insect spillover across the crop-noncrop interface. Ann. Zool. Fenn 42, 421–432. http://www.jstor.org/stable/23735887
Meiss H, Le Lagadec L, Munier-Jolain N, Waldhardt R, Petit S. 2010. Weed seed predation increases with vegetation cover in perennial forage crops. Agric. Ecosyst. Environ. 138, 10–16. ( 10.1016/j.agee.2010.03.009) DOI
Ferrante M, González E, Lövei GL. 2017. Predators do not spill over from forest fragments to maize fields in a landscape mosaic in central Argentina. Ecol. Evol. 7, 7699–7707. ( 10.1002/ece3.3247) PubMed DOI PMC
González E, Štrobl M, Venturo A, Pařízek V, Tajovský K, Knapp M. 2025. Data from: Wildflower strip establishment supports beneficial ground-dwelling arthropods and pest control but has limited effects on weed seed control and spillover to adjacent fields. Dryad Digital Repository. ( 10.5061/dryad.zpc866thp) PubMed DOI PMC
Gonzalez E, Štrobl M, Venturo A, Pařízek V, Tajovský K, Knapp M. 2025. Supplementary material from: Wildflower strip establishment supports beneficial ground-dwelling arthropods and pest control but with limited spillover to adjacent fields. Figshare. ( 10.6084/m9.figshare.c.7837878) PubMed DOI PMC