Character of woodland fragments affects distribution of myriapod assemblages in agricultural landscape

. 2020 ; 930 () : 139-151. [epub] 20200428

Status PubMed-not-MEDLINE Jazyk angličtina Země Bulharsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32390751

Fragments of woodland fulfil many irreplaceable functions in the agricultural landscape including being the main source of biodiversity of soil invertebrates. Due to intensive farming and land use changes, especially in the second half of the 20th century, fragments of woodland in agricultural landscape almost disappeared. This has led to a decrease in the diversity of invertebrates, especially those for which the presence of these woodland habitats in the landscape is a key element for survival. The aim of this study was to evaluate the importance of fragments of woodland (characterised by their area, vegetation structure, the amount of leaf litter layer and soil moisture) on the distribution of centipedes and millipedes (Myriapoda) in the agricultural landscape of South Moravia (Czech Republic). Myriapods were collected using pitfall traps during summer in 2016 and 2017. Results showed that activity-density of myriapods is positively correlated with thickness of the leaf litter layer. Moreover, the species richness of centipedes is positively correlated with increasing size of fragments of woodland although higher centipedes' activity-density was found in rather uniform woodlands in term of diversity of tree species.

Zobrazit více v PubMed

Agger P, Brandt J. (1988) Dynamics of small biotopes in Danish agricultural landscapes. Landscape Ecology 1(4): 227–240. 10.1007/BF00157695 DOI

Báldi A. (2008) Habitat heterogeneity overrides the species-area relationship. Journal of Biogeography 35(4): 675–681. 10.1111/j.1365-2699.2007.01825.x DOI

Baudry J, Bunce RG, Burel F. (2000) Hedgerows: An international perspective on their origin, function and management. Journal of Environmental Management 60(1): 7–22. 10.1006/jema.2000.0358 DOI

Berthold D, Vor T, Beese F. (2009) Effects of cultivating black locust (Robinia pseudoacacia L.) on soil chemical properties in Hungary. Forstarchiv 80(6): 307–313.

Blackburn J, Farrow M, Arthur W. (2002) Factors influencing the distribution, abundance and diversity of geophilomorph and lithobiomorph centipedes. Journal of Zoology 256(2): 221–232. 10.1017/S0952836902000262 DOI

Bogyó D, Magura T, Nagy DD, Tóthmérész B. (2015) Distribution of millipedes (Myriapoda, Diplopoda) along a forest interior – forest edge – grassland habitat complex. ZooKeys 510: 181–195. 10.3897/zookeys.510.8657 PubMed DOI PMC

Burel F. (1996) Hedgerows and their role in agricultural landscapes. Critical Reviews in Plant Sciences 15(2): 169–190. 10.1080/07352689.1996.10393185 DOI

Burel F, Baudry J. (1989) Hedgerow network patterns and processes in France. In: Zonneveld IS, Forman RTT. (Ed.) Changing Landscapes: An Ecological Pespective (1st edn.). Springer-Verlag, New York, 99–120. 10.1007/978-1-4612-3304-6_7 DOI

Burel F, Baudry J. (1990) Structural dynamic of a hedgerow network landscape in Brittany France. Landscape Ecology 4(4): 197–210. 10.1007/BF00129828 DOI

Burel F, Baudry J. (2005) Habitat quality and connectivity in agricultural landscapes: The role of land use systems at various scales in time. Ecological Indicators 5: 305–313. 10.1016/j.ecolind.2005.04.002 DOI

Dauber J, Purtauf T, Allspach A, Frisch J, Voigtländer K, Wolters V. (2005) Local vs. landscape controls on diversity: A test using surface-dwelling soil macroinvertebrates of differing mobility. Global Ecology and Biogeography 14(3): 213–221. 10.1111/j.1466-822X.2005.00150.x DOI

David JF. (2014) The role of litter-feeding macroarthropods in decomposition processes: A reappraisal of common views. Soil Biology and Biochemistry 76: 109–118. 10.1016/j.soilbio.2014.05.009 DOI

David JF, Handa IT. (2010) The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change. Biological Reviews 85: 881–895. 10.1111/j.1469-185X.2010.00138.x PubMed DOI

De Smedt P, Baeten L, Proesmans W, Berg MP, Brunet J, Cousins SAO, Decocq G, Deconchat M, Diekmann M, Gallet-Moron E, Giffard B, Liira J, Martin L, Ooms A, Valdés A, Wulf M, Hermy M, Bonte D, Verheyen K. (2017) Linking macrodetritivore distribution to desiccation resistance in small forest fragments embedded in agricultural landscapes in Europe. Landscape Ecology 33(3): 407–421. 10.1007/s10980-017-0607-7 DOI

De Smedt P, Wasof S, Van de Weghe T, Hermy M, Bonte D, Verheyen K. (2018) Macro-detritivore identity and biomass along with moisture availability control forest leaf litter breakdown in a field experiment. Applied Soil Ecology 131: 47–54. 10.1016/j.apsoil.2018.07.010 DOI

De Smedt P, Wuyts K, Baeten L, De Schrijver A, Proesmans W, De Frenne P, Ampoorter E, Remy E, Gijbels M, Hermy M, Bonte D, Verheyen K. (2016) Complementary distribution patterns of arthropod detritivores (woodlice and millipedes) along forest edge-to-interior gradients. Insect Conservation and Diversity 9(5): 456–469. 10.1111/icad.12183 DOI

Diekötter T, Billeter R, Crist TO. (2007) Effects of landscape connectivity on the spatial distribution of insect diversity in agricultural mosaic landscapes. Basic and Applied Ecology 9: 298–307. 10.1016/j.baae.2007.03.003 DOI

Ewers RM, Didham RK. (2005) Confounding factors in the detection of species responses to habitat fragmentation. Biological Reviews 81: 117–142. 10.1017/S1464793105006949 PubMed DOI

Fahrig L. (2003) Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics 34(1): 487–515. 10.1146/annurev.ecolsys.34.011802.132419 DOI

Gava R. (2004) Vertical distribution of Diplopoda populations from deciduous forests. Archives of Biological Sciences 56(1–2): 59–64. 10.2298/ABS0402059G DOI

Grgič T, Kos I. (2005) Influence of forest development phase on centipede diversity in managed beech forests in Slovenia. Biodiversity and Conservation 14(8): 1841–1862. 10.1007/s10531-004-1040-1 DOI

Havlíček M, Skokanová H, Šarapatka B, Pavelková R, Netopil P. (2018) The significance of historical landscape structure in south Moravia for the protection of the landscape, landscape function and the protection of agricultural land resources. In: Svobodová H (Ed.) Useful Geography: Transfer from research to practice. Proceedings of the 25th Central European Conference, Masaryk University, Brno, 563 pp.

Honnay O, Jacquemyn H, Bossuyt B, Hermy M. (2005) Forest fragmentation effects on patch occupancy and population viability of herbaceous plant species. New Phytologist 166(3): 723–736. 10.1111/j.1469-8137.2005.01352.x PubMed DOI

Kicaj H, Qirjo M. (2014) The comparison of the vertical distribution of the myriapod group (Diplopoda and Chilopoda) in Vlora Region, Albania. Indian Journal of Applied Research 4(12): 192–195.

Kime RD, Golovatch SI. (2000) Trends in the ecological strategies and evolution of millipedes (Diplopoda). Biological Journal of the Linnean Society 69(3): 333–349. 10.1111/j.1095-8312.2000.tb01209.x DOI

Lazorík M, Kula E. (2015) Impact of weather and habitat on the occurrence of centipedes, millipedes and terrestrial isopods in mountain spruce forests. Folia Oecologica 42: 103–112.

Meeus JHA. (1993) The transformation of agricultural landscapes in Western Europe. Science of the Total Environment 129: 171–190. 10.1016/0048-9697(93)90169-7 DOI

Paoletti MG, D’Incà A, Tonin E, Tonon S, Migliorini C, Petruzzelli G, Pezzarossa B, Gomiero T, Sommaggio D. (2009) Soil invertebrates as bio-indicators in a natural area converted from agricultural use: The case study of Vallevecchia-Lugugnana in North-Eastern Italy. Journal of Sustainable Agriculture 34(1): 38–56. 10.1080/10440040903396698 DOI

Previati E, Fano EA, Leis M. (2007) Arthropods biodiversity in agricultural landscapes: Effects of land use and anthropization. Italian Journal of Agronomy 2: 135–141. 10.4081/ija.2007.135 DOI

Rahmonov O. (2009) The chemical composition of plant litter of black locust (Robinia pseudoacacia L.) and its ecological role in sandy ecosystems. Acta Ecologica Sinica 29(4): 237–243. 10.1016/j.chnaes.2009.08.006 DOI

Riutta T, Slade EM, Bebber DP, Taylor ME, Malhi Y, Riordan P, Macdonald DW, Morecroft MD. (2012) Experimental evidence for the interacting effects of forest edge, moisture and soil macrofauna on leaf litter decomposition. Soil Biology and Biochemistry 49: 124–131. 10.1016/j.soilbio.2012.02.028 DOI

Scheu S, Albers D, Alphei J, Buryn R, Klages U, Migge S, Platner Ch, Salamon JA. (2003) The soil fauna community in pure and mixed stands of beech and spruce of different age: trophic structure and structuring forces. Oikos 101(2): 225–238. 10.1034/j.1600-0706.2003.12131.x DOI

Scheu S, Poser G. (1996) The soil macrofauna (Diplopoda, Isopoda, Lumbricidae and Chilopoda) near tree trunks in a beechwood on limestone: indications for stemflow induced changes in community structure. Applied Soil Ecology 3(2): 115–125. 10.1016/0929-1393(95)00079-8 DOI

Stašiov S, Diviaková A, Svitok M, Novikmec M. (2017) Myriapod (Chilopoda, Diplopoda) communities in hedgerows of upland agricultural landscape. Biologia 72(11): 1320–1326. 10.1515/biolog-2017-0147 DOI

Stašiov S, Stašiová A, Svitok M, Michalková E, Slobodník B, Lukáčik I. (2012) Millipede (Diplopoda) communities in an arboretum: Influence of tree species and soil properties. Biologia 67(5): 945–952. 10.2478/s11756-012-0097-7 DOI

Šarapatka B, Štěrba O. (1998) Optimization of agriculture in relation to the multifunctional role of the landscape. Landscape and Urban Planning 41(2): 145–148. 10.1016/S0169-2046(97)00069-8 DOI

Šmilauer P, Lepš J. (2014) Multivariate Analysis of Ecological Data using Canoco 5 (2nd edn.). Cambridge University Press, Cambridge, 527 pp 10.1017/CBO9781139627061 DOI

Štrobl M, Saska P, Seidl M, Kocian M, Tajovský K, Řezáč M, Skuhrovec J, Marhoul P, Zbuzek B, Jakubec P, Knapp M, Kadlec T. (2019) Impact of an invasive tree on arthropod assemblages in woodlots isolated within an intensive agricultural landscape. Diversity and Distributions 25(11): 1800–1813. 10.1111/ddi.12981 DOI

Tajovský K, Wytwer J. (2009) Millipedes and centipedes in wetland alder stands in north-eastern Poland. Soil Organisms 81(3): 761–772.

Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F. (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography 31: 79–92. 10.1046/j.0305-0270.2003.00994.x DOI

Tuf IH. (2015) Different collecting methods reveal different ecological groups of centipedes. Zoologia, Curitiba 32: 345–350. 10.1590/S1984-46702015000500003 DOI

Vasconcelos HL, Laurance WF. (2005) Influence of habitat, litter type, and soil invertebrates on leaf-litter decomposition in a fragmented Amazonian landscape. Oecologia 144(3): 456–462. 10.1007/s00442-005-0117-1 PubMed DOI

Voigtländer K. (2011) Chilopoda – Ecology. In: Minelli A (Ed.) Treatise on Zoology – Anatomy, Taxonomy, Biology. The Myriapoda (Vol. 1). Brill, Leiden, 546 pp 10.1163/9789004188266_016 DOI

Wade TG, Riitters KH, Wickham JD, Jones KB. (2003) Distribution and causes of global forest fragmentation. Conservation Ecology 7(2): 1–7. 10.5751/ES-00530-070207 DOI

Weibull ACH, Östman Ö, Granqvist Å. (2003) Species richness in agroecosystems: The effect of landscape, habitat and farm management. Biodiversity and Conservation 12: 1335–1355. 10.1023/A:1023617117780 DOI

Wytwer J, Golovatch SI, Penev L. (2009) Variation in millipede (Diplopoda) assemblages in oak woodlands of the Eastern European Plain. Soil Organisms 81(3): 791–813.

Young A, Mitchell N. (1994) Microclimate and vegetation edge effects in a fragmented podocarp-broadleaf forest in New Zealand. Biological Conservation 67(1): 63–72. 10.1016/0006-3207(94)90010-8 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...