Fatigue Crack Initiation Change of Cast AZ91 Magnesium Alloy from Low to Very High Cycle Fatigue Region
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TN01000071
Technology Agency of the Czech Republic
ITMS2014+ code 313011ASK8
European Regional Development Fund
1/0153/21
Science Grant Agency of the Slovak Republic
1/0117/21
Science Grant Agency of the Slovak Republic
PubMed
34771771
PubMed Central
PMC8585000
DOI
10.3390/ma14216245
PII: ma14216245
Knihovny.cz E-zdroje
- Klíčová slova
- Mg, fatigue mechanism, focused ion beam (FIB), microstructure, scanning electron microscopy (SEM),
- Publikační typ
- časopisecké články MeSH
Fatigue tests were performed on the AZ91 cast alloy to identify the mechanisms of the fatigue crack initiation. In different fatigue regions, different mechanisms were observed. In the low and high cycle fatigue regions, slip markings formation accompanied with Mg17Al12 particles cracking were observed. Slip markings act as the fatigue crack initiation sites. The size and number of slip markings decreased with decreased stress amplitude applied. When slip markings formation was suppressed due to low stress amplitude, particle cracking became more important and the cracks continued to grow through the particle/solid solution interface. The change of the fatigue crack initiation mechanisms led the S-N curve to shift to the higher number of cycles to the fracture, demonstrated by its stepwise character. A lower fatigue limit of 60 MPa was determined at 20 kHz for 2 × 109 cycles compared to the 80 MPa determined at 60 Hz for 1 × 107 cycles.
Institute of Physics of Materials Czech Academy of Sciences Žižkova 22 616 00 Brno Czech Republic
Research Centre University of Žilina Univerzitná 8215 1 010 26 Žilina Slovakia
Zobrazit více v PubMed
Gupta M., Sharon N.M.L. Magnesium, Magnesium Alloys, and Magnesium Composites. Wiley; Hoboken, NJ, USA: 2011.
Altwicker H., Bauer A., Beck A., Bohner H., Buchmann W., Fiedler R., Gossrau G., Keinert O., Menzen P., Moschel W. Magnesium und Seine Legierungen. Springer; Berlin/Heidelberg, Germany: 1939.
Eisenmeier G., Holzwarth B., Höppel H.W., Mughrabi H. Cyclic deformation and fatigue behaviour of the magnesium alloy AZ91. Mater. Sci. Eng. A. 2001;319–321:578–582. doi: 10.1016/S0921-5093(01)01105-4. DOI
Friedrich H.E., Mordike B.L. Magnesium Technology: Metallurgy, Design Data, Automotive Applications. Springer; Berlin/Heidelberg, Germany: 2006.
Pan F., Yang M., Chen X. A Review on Casting Magnesium Alloys: Modification of Commercial Alloys and Development of New Alloys. J. Mater. Sci. Technol. 2016;32:1211–1221. doi: 10.1016/j.jmst.2016.07.001. DOI
Murugan G., Raghukandan K., Pillai U.T.S., Pai B.C., Mahadevan K. High cyclic fatigue characteristics of gravity cast AZ91 magnesium alloy subjected to transverse load. Mater. Des. 2009;30:2636–2641. doi: 10.1016/j.matdes.2008.10.032. DOI
Ramalingam V.V., Ramasamy P., Kovukkal M.D., Myilsamy G. Research and Development in Magnesium Alloys for Industrial and Biomedical Applications: A Review. Met. Mater. Int. 2020;26:409–430. doi: 10.1007/s12540-019-00346-8. DOI
Braszczyńska-Malik K.N. Precipitates of γ–Mg17Al12 Phase in AZ91 Alloy. In: Czerwinski F., editor. Magnesium Alloys—Design, Processing and Properties. InTech; Rijeka, Croatia: 2011. pp. 95–112.
Majhi J., Ganguly S., Basu A., Mondal A.K. Improved corrosion response of squeeze-cast AZ91 magnesium alloy with calcium and bismuth additions. J. Alloy. Compd. 2021;873:159600. doi: 10.1016/j.jallcom.2021.159600. DOI
Choudhary L., Singh Raman R.K. Magnesium alloys as body implants: Fracture mechanism under dynamic and static loadings in a physiological environment. Acta Biomater. 2012;8:916–923. doi: 10.1016/j.actbio.2011.10.031. PubMed DOI
Wolf F.I., Cittadini A. Chemistry and biochemistry of magnesium. Mol. Asp. Med. 2003;24:3–9. doi: 10.1016/S0098-2997(02)00087-0. PubMed DOI
Saris N.-E.L., Mervaala E., Karppanen H., Khawaja J.A., Lewenstam A. Magnesium: An update on physiological, clinical and analytical aspects. Clin. Chim. Acta. 2000;294:1–26. doi: 10.1016/S0009-8981(99)00258-2. PubMed DOI
Chen Y., Xu Z., Smith C., Sankar J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014;10:4561–4573. doi: 10.1016/j.actbio.2014.07.005. PubMed DOI
Witte F., Fischer J., Nellesen J., Crostack H.-A., Kaese V., Pisch A., Beckmann F., Windhagen H. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials. 2006;27:1013–1018. doi: 10.1016/j.biomaterials.2005.07.037. PubMed DOI
Han H.-S., Kim Y.-Y., Kim Y.-C., Cho S.-Y., Cha P.-R., Seok H.-K., Yang S.-J. Bone formation within the vicinity of biodegradable magnesium alloy implant in a rat femur model. Met. Mater. Int. 2012;18:243–247. doi: 10.1007/s12540-012-2007-5. DOI
Ghali E., Revie R.W. Corrosion Resistance of Aluminum and Magnesium Alloys: Understanding, Performance, and Testing. Wiley; Hoboken, NJ, USA: 2010.
Fintová S., Kunz L. Fatigue properties of magnesium alloy AZ91 processed by severe plastic deformation. J. Mech. Behav. Biomed. Mater. 2015;42:219–228. doi: 10.1016/j.jmbbm.2014.11.019. PubMed DOI
Ebel-Wolf B., Walther F., Eifler D. Influence of elevated temperatures on the cyclic deformation behaviour of the magnesium die-cast alloys AZ91D and MRI 230D. Mater. Sci. Eng. A. 2008;486:634–640. doi: 10.1016/j.msea.2007.10.003. DOI
Chung C.W., Ding R.G., Chiu Y.L., Gao W. Effect of ECAP on microstructure and mechanical properties of cast AZ91 magnesium alloy. J. Phys. Conf. Ser. 2010;241:012101. doi: 10.1088/1742-6596/241/1/012101. DOI
Čížek L., Greger M., Pawlica L., Dobrzański L.A., Tański T. Study of selected properties of magnesium alloy AZ91 after heat treatment and forming. J. Mater. Process. Technol. 2004;157–158:466–471. doi: 10.1016/j.jmatprotec.2004.07.149. DOI
Fintová S., Anzelotti G., Konečná R., Nicoletto G. Casting Pore Characterization by X-Ray Computed Tomography and Metallography. Arch. Mech. Eng. 2010;57:263. doi: 10.2478/v10180-010-0014-y. DOI
Kunz L., Lukáš P., Konečná R., Fintová S. Casting defects and high temperature fatigue life of IN 713LC superalloy. Int. J. Fatigue. 2012;41:47–51. doi: 10.1016/j.ijfatigue.2011.12.002. DOI
Nicoletto G., Konečná R., Fintova S. Characterization of microshrinkage casting defects of Al-Si alloys by X-ray computed tomography and metallography. Int. J. Fatigue. 2012;41:39–46. doi: 10.1016/j.ijfatigue.2012.01.006. DOI
Wolf B., Fleck C., Eifler D. Characterization of the fatigue behaviour of the magnesium alloy AZ91D by means of mechanical hysteresis and temperature measurements. Int. J. Fatigue. 2004;26:1357–1363. doi: 10.1016/j.ijfatigue.2004.04.005. DOI
Park S.S., Park Y.S., Kim N.J. Microstructure and properties of strip cast AZ91 Mg alloy. Met. Mater. Int. 2002;8:551. doi: 10.1007/BF03178256. DOI
Hadzima B., Janeček M., Suchý P., Müller J., Wagner L. Microstructure and Corrosion Properties of Fine-Grained Mg-Based Alloys. Mater. Sci. Forum. 2008;584–586:994–999. doi: 10.4028/www.scientific.net/MSF.584-586.994. DOI
Yamashita A., Horita Z., Langdon T.G. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Mater. Sci. Eng. A. 2001;300:142–147. doi: 10.1016/S0921-5093(00)01660-9. DOI
Chen B., Lin D.-L., Jin L., Zeng X.-Q., Lu C. Equal-channel angular pressing of magnesium alloy AZ91 and its effects on microstructure and mechanical properties. Mater. Sci. Eng. A. 2008;483–484:113–116. doi: 10.1016/j.msea.2006.10.199. DOI
Suh J.S., Suh B.-C., Choi J.O., Kim Y.M., You B.S. Effect of Extrusion Temperature on Mechanical Properties of AZ91 Alloy in Terms of Microstructure and Texture Development. Met. Mater. Int. 2020;27:2696–2705. doi: 10.1007/s12540-020-00642-8. DOI
Khoubrou I., Nami B., Miresmaeili S.M. Investigation on the Creep Behavior of AZ91 Magnesium Alloy Processed by Severe Plastic Deformation. Met. Mater. Int. 2020;26:196–204. doi: 10.1007/s12540-019-00318-y. DOI
Periyak Gounder S. Magnesium alloys: A review of applications. Mater. Tehnol. 2019;881 doi: 10.17222/mit.2019.065. DOI
Dimitrov D., Shtarbakov V. Ultrasonic fatigue test of AZ91 magnesium alloy. Mach. Technol. Mater. 2013;11:50–53.
ISO . ISO 6892-1:2016 Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. ISO; Geneva, Swithzerland: 2016. p. 79.
ISO . EN 843-2:2006 Advanced Technical Ceramics-Mechanical Properties of Monolithic Ceramics at Room Temperature-Part 2: Determination of Young’s Modulus, Shear Modulus and Poisson’s Ratio. ISO; Brussels, Belgium: 2006. p. 42.
Bathias C., Paris P.C. Gigacycle Fatigue in Mechanical Practice. Taylor & Francis; Oxfordshire, UK: 2004.
Gu X.N., Zhou W.R., Zheng Y.F., Cheng Y., Wei S.C., Zhong S.P., Xi T.F., Chen L.J. Corrosion fatigue behaviors of two biomedical Mg alloys—AZ91D and WE43—In simulated body fluid. Acta Biomater. 2010;6:4605–4613. doi: 10.1016/j.actbio.2010.07.026. PubMed DOI
Fintová S., Kuběna I., Chlupová A., Jambor M., Šulák I., Chlup Z., Polák J. Frequency-dependent fatigue damage in polycrystalline copper analyzed by FIB tomography. Acta Mater. 2021;211:116859. doi: 10.1016/j.actamat.2021.116859. DOI
Polák J. Cyclic Plasticity and Low Cycle Fatigue Life of Metals. Elsevier; Amsterdam, The Netherlands: 1991.
Stanzl-Tschegg S.E. Influence of material properties and testing frequency on VHCF and HCF lives of polycrystalline copper. Int. J. Fatigue. 2017;105:86–96. doi: 10.1016/j.ijfatigue.2017.08.014. DOI