Multiferroic behavior of the functionalized surface of a flexible substrate by deposition of Bi2 O3 and Fe2 O3
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2018110
MEYS
CEITEC 2020 LQ1601
Ministry of Education, Youth and Sports of the Czech Republic
FEKT-S-20-6352
Internal Grant Agency of Vysoké Učení Technické v Brně
PubMed
34820938
DOI
10.1002/jemt.23996
Knihovny.cz E-zdroje
- Klíčová slova
- Bi2O3, BiFeO3, Fe2O3, atomic layer deposition, flexible substrate, functionalized surface, multiferroic,
- Publikační typ
- časopisecké články MeSH
Thin films of bismuth and iron oxides were obtained by atomic layer deposition (ALD) on the surface of a flexible substrate poly(4,4'-oxydiphenylene-pyromellitimide) (Kapton) at a temperature of 250°C. The layer thickness was 50 nm. The samples were examined by secondary-ion mass spectrometry, and uniform distribution of elements in the film layer was observed. Surface morphology, electrical polarization, and mechanical properties were investigated by atomic force microscope, piezoelectric force microscopy, and force modulation microscopy. The values of current in the near-surface layer varied in the range of ±80 pA when a potential of 5 V was applied. Chemical analysis was performed by X-ray photoelectron spectroscopy, where the formation of Bi2 O3 and Fe2 O3 phases, as well as intermediate phases in the Bi-Fe-O system, was observed. Magnetic measurements were carried out by a vibrating sample magnetometer that showed a ferromagnetic response. The low-temperature method of functionalization of the Kapton surface with bismuth and iron oxides will make it possible to adapt the Bi-Fe-O system to flexible electronics.
Academy of Sciences ČR Institute of Physics of Materials Brno Czech Republic
Faculty of Technology Course Design Dagestan State Technical University Makhachkala Russia
Vacuum Technology Research Group ACECR Sharif University Branch Tehran Iran
Zobrazit více v PubMed
Abdulagatov, A. I., Ramazanov, S. M., Dallaev, R. S., Murliev, E. K., Palchaev, D. K., Rabadanov, M. K., & Abdulagatov, I. M. (2018). Atomic layer deposition of aluminum nitride using Tris(diethylamido)aluminum and hydrazine or ammonia. Russian MicroElectronics, 47, 118-130. https://doi.org/10.1134/S1063739718020026
Ahlawat, A., Satapathy, S., Bhartiya, S., Singh, M. K., Choudhary, R. J., & Gupta, P. K. (2014). BiFeO3/poly(methyl methacrylate) nanocomposite films: A study on magnetic and dielectric properties. Applied Physics Letters, 104, 042902. https://doi.org/10.1063/1.4863228
Alikhanov, N. M.-R., Rabadanov, M. K., Orudzhev, F. F., Gadzhimagomedov, S. K., Emirov, R. M., Sadykov, S. A., … Sobola, D. (2021). Size-dependent structural parameters, optical, and magnetic properties of facile synthesized pure-phase BiFeO3. Journal of Materials Science: Materials in Electronics, 32, 13323-13335. https://doi.org/10.1007/S10854-021-05911-9
Amrillah, T., Hermawan, A., Yin, S., & Juang, J.-Y. (2021). Formation and physical properties of the self-assembled BFO-CFO vertically aligned nanocomposite on a CFO-buffered two-dimensional flexible mica substrate. RSC Advances, 11, 15539-15545. https://doi.org/10.1039/D1RA01158H
Bai, F., Wang, J., Wuttig, M., Li, J., Wang, N., Pyatakov, A. P., … Viehland, D. (2005). Destruction of spin cycloid in (111)c-oriented BiFeO3 thin films by epitiaxial constraint: Enhanced polarization and release of latent magnetization. Applied Physics Letters, 86, 032511. https://doi.org/10.1063/1.1851612
Barshilia, H. C., Ananth, A., Gupta, N., & Anandan, C. (2013). Superhydrophobic nanostructured Kapton surfaces fabricated through Ar + O2 plasma treatment: Effects of different environments on wetting behaviour. Applied Surface Science, 268, 464-471. https://doi.org/10.1016/j.apsusc.2012.12.130
Bedoya-Pinto, A., Donolato, M., Gobbi, M., Hueso, L. E., & Vavassori, P. (2014). Flexible spintronic devices on Kapton. Applied Physics Letters, 4, 34-45. https://doi.org/10.1063/1.4865201
Bretos, I., Jiménez, R., Ricote, J., Sirera, R., & Calzada, M. L. (2020). Photoferroelectric thin films for flexible systems by a three-in-one solution-based approach. Advanced Functional Materials, 30, 2001897. https://doi.org/10.1002/adfm.202001897
Carranza-Celis, D., Cardona-Rodríguez, A., Narváez, J., Moscoso-Londono, O., Muraca, D., Knobel, M., … Ramírez, J. G. (2019). Control of Multiferroic properties in BiFeO3 nanoparticles. Science Reports, 9, 1-9. https://doi.org/10.1038/s41598-019-39517-3
Catalan, G., & Scott, J. F. (2009). Physics and applications of bismuth ferrite. Advanced Materials, 21, 2463-2485.
Chang, L., You, L., & Wang, J. (2018). The path to flexible ferroelectrics: Approaches and progress. Japanese Journal of Applied Physics, 57, 0902A3. https://doi.org/10.7567/JJAP.57.0902A3
Chen, Z., Chen, Z., Kuo, C.-Y., Tang, Y., Dedon, L. R., Li, Q., … Martin, L. W. (2018). Complex strain evolution of polar and magnetic order in multiferroic BiFeO3 thin films. Nature Communications, 9, 1-9. https://doi.org/10.1038/s41467-018-06190-5
Cui, G., Liu, W., Yuan, L., Wu, D., & Wu, Z. (2013). Transition of polyimide/α-Fe2O3 to polyimide/Fe3O4 nanocomposite films by adjusting thermal treatment surroundings of ion-doped substrates. RSC Advances, 3, 14390-14396. https://doi.org/10.1039/C3RA41461B
Dallaev, R., Sobola, D., Tofel, P., Škvarenina, L., & Sedlák, P. (2020). Aluminum nitride nanofilms by atomic layer deposition using alternative precursors hydrazinium chloride and triisobutylaluminum. Coatings, 10, 1-14. https://doi.org/10.3390/coatings10100954
Gandhi, A. C., Cheng, C. L., & Wu, S. Y. (2020a). Structural and enhanced optical properties of stabilized γ-Bi2O3 nanoparticles: Effect of oxygen ion vacancies. Nanomaterials, 10, 1023. https://doi.org/10.3390/nano10061023
Gandhi, A. C., Lai, C. Y., Wu, K. T., Ramacharyulu, P. V. R. K., Koli, V. B., Cheng, C. L., … Wu, S. Y. (2020b). Phase transformation and room temperature stabilization of various Bi2O3 nano-polymorphs: Effect of oxygen-vacancy defects and reduced surface energy due to adsorbed carbon species. Nanoscale, 12, 24119-24137. https://doi.org/10.1039/d0nr06552h
George, S. M. (2010). Atomic layer deposition: An overview. Chemical Reviews, 110, 111-131. https://doi.org/10.1021/cr900056b
Gouzman, I., Girshevitz, O., Grossman, E., Eliaz, N., & Sukenik, C. N. (2010). Thin film oxide barrier layers: Protection of kapton from space environment by liquid phase deposition of titanium oxide. ACS Applied Materials & Interfaces, 2, 1835-1843. https://doi.org/10.1021/am100113t
Grandoni, A., Mannini, G., Glisenti, A., Manariti, A., & Galli, G. (2017). Use of statistical design of experiments for surface modification of Kapton films by CF4-O2 microwave plasma treatment. Applied Surface Science, 420, 579-585. https://doi.org/10.1016/j.apsusc.2017.05.140
Ho, J., & Schroeder, M. (2020). Polyimides as high temperature capacitor dielectrics. In Polyimide for electronic and electrical engineering applications [working title]; IntechOpen.
Huang, F., Lu, X., Lin, W., Kan, Y., Zhang, J., Chen, Q., … Zhu, J. (2010). Thickness-dependent structural and magnetic properties of BiFeO3 films prepared by metal organic decomposition method. Applied Physics Letters, 97, 222901. https://doi.org/10.1063/1.3519986
Jourdan, J. S., Cruchon-Dupeyrat, S. J., Huan, Y., Kuo, P. K., & Liu, G. Y. (1999). Imaging nanoscopic elasticity of thin film materials by atomic force microscopy: Effects of force modulation frequency and amplitude. Langmuir, 15, 6495-6504. https://doi.org/10.1021/la9902183
Kabelac, J., Ghosh, S., Dobal, P., & Katiyar, R. (2007). Rf oxygen plasma assisted molecular beam epitaxy growth of BiFeO3 thin films on SrTiO3 (001). Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 25, 1049. https://doi.org/10.1116/1.2715992
Kao, C.-Y., Li, B., Lu, Y., Yoo, J.-W., & Epstein, A. J. (2014). Thin films of organic-based magnetic materials of vanadium and cobalt tetracyanoethylene by molecular layer deposition. Journal of Materials Chemistry C, 2, 6171-6176. https://doi.org/10.1039/C4TC00673A
Kaspar, P., Sobola, D., Dallaev, R., Ramazanov, S., Nebojsa, A., Rezaee, S., & Grmela, L. (2019). Characterization of Fe2O3 thin film on highly oriented pyrolytic graphite by AFM, ellipsometry and XPS. Applied Surface Science, 493, 673-678. https://doi.org/10.1016/j.apsusc.2019.07.058
Larosa, C., Terencio, T., Converti, A., & Eggenhöffner, R. (2014). Anodic porous alumina array for cyanine fluorophore Cy3 confinement. Journal of Materials Science and Nanotechnology, 1, 109. https://doi.org/10.15744/2348-9812.1.S109
Le, T. H., Hao, N. V., Thoan, N. H., Hong, N. T. M., Hai, P. V., Thang, N. V., … Nguyen, X. C. (2019). Origin of enhanced magnetization in (La,Co) codoped BiFeO3 at the morphotropic phase boundary. Ceramics International, 45, 18480-18486. https://doi.org/10.1016/J.CERAMINT.2019.06.066
Lindner, E., Cosofret, V. V., Ufer, S., Buck, R. P., Kusy, R. P., Ash, R. B., & Nagle, H. T. (1993). Flexible (Kapton-based) microsensor arrays of high stability for cardiovascular applications. Journal of the Chemical Society, Faraday Transactions, 12, 253-274. https://doi.org/10.1039/FT9938900361
Liu, G., Li, S., Lu, Y., Zhang, J., Feng, Z., & Li, C. (2016). Controllable synthesis of α-Bi2O3 and γ-Bi2O3 with high photocatalytic activity by α-Bi2O3→γ-Bi2O3→α-Bi2O3 transformation in a facile precipitation method. Journal of Alloys and Compounds, 689, 787-799. https://doi.org/10.1016/j.jallcom.2016.08.047
Liu, Y.-W., Zhan, Q.-F., & Li, R.-W. (2013). Fabrication, properties, and applications of flexible magnetic films. Chinese Physics B, 22, 127502. https://doi.org/10.1088/1674-1056/22/12/127502
Martin, L. W., Chu, Y. H., & Ramesh, R. (2010). Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Materials Science and Engineering R: Reports, 68, 89-133.
Nicolini, C., Correia, T. B., Stura, E., Larosa, C., Spera, R., & Pechkova, E. (2013). Atomic force microscopy and anodic porous allumina of nucleic acid programmable protein arrays. Recent Patents on Biotechnology, 7, 112-121.
Nikkola, J., Sievänen, J., Raulio, M., Wei, J., Vuorinen, J., & Tang, C. Y. (2014). Surface modification of thin film composite polyamide membrane using atomic layer deposition method. Journal of Membrane Science, 450, 174-180. https://doi.org/10.1016/j.memsci.2013.09.005
Orudzhev, F., Ramazanov, S., Sobola, D., Isaev, A., Wang, C., Magomedova, A., … Kaviyarasu, K. (2020). Atomic layer deposition of mixed-layered aurivillius phase on TiO2 nanotubes: Synthesis, characterization and photoelectrocatalytic properties. Nanomaterials, 10, 1-16. https://doi.org/10.3390/nano10112183
Orudzhev, F. F., Ramazanov, Sh. M., Isaev, A. B., Alikhanov, N. M. -R., Sobola, D., Presniakov, M. Yu., & Kaviyarasu, K. (2021). Self-organization of layered perovskites on TiO2 nanotubes surface by atomic layer deposition. Materials Today: Proceedings, 36, 364-367. http://dx.doi.org/10.1016/j.matpr.2020.04.153
Papež, N., Gajdoš, A., Dallaev, R., Sobola, D., Sedlák, P., Motúz, R., … Grmela, L. (2020). Performance analysis of GaAs based solar cells under gamma irradiation. Applied Surface Science, 510, 543-554. https://doi.org/10.1016/j.apsusc.2020.145329
Papez, N., Škvarenina, L., Tofel, P., & Sobola, D. (2017). Thermal stability of gallium arsenide solar cells. In Proceedings of SPIE - The international society for optical engineering.
Peng, H., Sun, X., Weng, W., & Fang, X. (2017). Flexible electronic devices based on polymers. Polymer Materials for Energy and Electronic Applications, 325, 325-354. https://doi.org/10.1016/B978-0-12-811091-1.00009-4
Pérez-Mezcua, D., Bretos, I., Jiménez, R., Ricote, J., Jiménez-Rioboó, R. J., Da Silva, C. G., … Calzada, M. L. (2016). Photochemical solution processing of films of metastable phases for flexible devices: The β-Bi2O3 polymorph. Scientific Reports, 6, 1-10. https://doi.org/10.1038/srep39561
Pesquera, D., Khestanova, E., Ghidini, M., Zhang, S., Rooney, A. P., Maccherozzi, F., … Mathur, N. D. (2020). Large magnetoelectric coupling in multiferroic oxide heterostructures assembled via epitaxial lift-off. Nature Communications, 11, 1-8. https://doi.org/10.1038/s41467-020-16942-x
Philip, A., Niemelä, J. P., Tewari, G. C., Putz, B., Edwards, T. E. J., Itoh, M., … Karppinen, M. (2020). Flexible ϵ-Fe2O3-terephthalate thin-film magnets through ALD/MLD. ACS Applied Materials & Interfaces, 12, 21912-21921. https://doi.org/10.1021/acsami.0c04665
Phillips, M. R., Chan, W. K., & Schwartz, J. (2015). Enhanced quench protection in REBa 2Cu3Oδ-7-based coils by enhancing three-dimensional quench propagation via thermally conducting electrical insulation. IEEE Transactions on Applied Superconductivity, 25, 167-182. https://doi.org/10.1109/TASC.2015.2452224
Pleshakov, I. V., Volkov, M. P., Lomanova, N. A., Kuzmin, Y. I., & Gusarov, V. V. (2020). Magnetic characteristics of a nanocomposite based on bismuth ferrites. Technical Physics Letters, 46, 1072-1075. https://doi.org/10.1134/S1063785020110115
Puurunen, R. L. (2005). Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. Journal of Applied Physics, 97, 121301. https://doi.org/10.1063/1.1940727
Ramazanov, S., Sobola, D., Orudzhev, F., Knápek, A., Polčák, J., Potoček, M., … Dallaev, R. (2020). Surface modification and enhancement of ferromagnetism in BiFeO3 nanofilms deposited on HOPG. Nanomaterials, 10, 1-18. https://doi.org/10.3390/nano10101990
Shen, Y., Feng, Z., & Zhang, H. (2020). Study of indium tin oxide films deposited on colorless polyimide film by magnetron sputtering. Materials and Design, 193, 108809. https://doi.org/10.1016/j.matdes.2020.108809
Sobola, D., Ramazanov, S., Koneĉnỳ, M., Orudzhev, F., Kaspar, P., Papež, N., … Potoĉek, M. (2020). Complementary SEM-AFM of swelling bi-Fe-O film on HOPG substrate. Materials (Basel), 13, 1-15. https://doi.org/10.3390/ma13102402
Song, W., Sun, Z., Zhang, D., Han, B., He, L., Wang, X., & Lei, Q. (2015). Synthesis and characterization of low density polyethylene with multiferroic bismuth ferrite nanocomposite. Journal of Materials Science: Materials in Electronics, 27, 2328-2334. https://doi.org/10.1007/S10854-015-4029-5
Tomczyk, M., Bretos, I., Jiménez, R., Mahajan, A., Venkata Ramana, E., Lourdes Calzada, M., & Vilarinho, P. M. (2017). Direct fabrication of BiFeO3 thin films on polyimide substrates for flexible electronics. Journal of Materials Chemistry C, 5, 12529-12537. https://doi.org/10.1039/c7tc04571a
Tooth, B., Etschmann, B., Pokrovski, G. S., Testemale, D., Hazemann, J. L., Grundler, P. V., & Brugger, J. (2013). Bismuth speciation in hydrothermal fluids: An X-ray absorption spectroscopy and solubility study. Geochimica et Cosmochimica Acta, 101, 156-172. https://doi.org/10.1016/j.gca.2012.10.020
Ueno, R., Okaura, S., Funakubo, H., & Saito, K. (2005). Crystal structure and electrical properties of epitaxial BiFeO3 thin films grown by metal organic chemical vapor deposition. Japanese Journal of Applied Physics, Part 2: Letters, 44, L1231. https://doi.org/10.1143/JJAP.44.L1231
Wang, J., Neaton, J. B., Zheng, H., Nagarajan, V., Ogale, S. B., Liu, B., … Ramesh, R. (2003). Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 299, 1719-1722. https://doi.org/10.1126/science.1080615
Wang, X., Min, D., & Li, S. (2020). Charging and discharging mechanism of polyimide under electron irradiation and high voltage. Polyimide for Electronic and Electrical Engineering Applications. 1, 32-45. https://doi.org/10.5772/INTECHOPEN.92251
Wei, Q., Yang, G., Liu, G., Jiang, H., & Zhang, T. (2018). Effects and mechanism on Kapton film under ozone exposure in a ground near space simulator. Applied Surface Science, 440, 1083-1090. https://doi.org/10.1016/j.apsusc.2018.01.231
Wu, H., Xue, P., Lu, Y., & Zhu, X. (2018). Microstructural, optical and magnetic characterizations of BiFeO3 multiferroic nanoparticles synthesized via a sol-gel process. Journal of Alloys and Compounds, 731, 471-477. https://doi.org/10.1016/J.JALLCOM.2017.10.087
Yamashita, T., & Hayes, P. (2008). Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied Surface Science, 254, 2441-2449. https://doi.org/10.1016/j.apsusc.2007.09.063
Yang, S. Y., Zavaliche, F., Mohaddes-Ardabili, L., Vaithyanathan, V., Schlom, D. G., Lee, Y. J., … Ramesh, R. (2005). Metalorganic chemical vapor deposition of lead-free ferroelectric BiFeO3 films for memory applications. Applied Physics Letters, 87, 102903. https://doi.org/10.1063/1.2041830
Zhang, F., Sun, G., Zhao, W., Wang, L., Zheng, L., Liu, S., … Zeng, Y. (2013). Atomic layer deposition of BiFeO3 thin films using β-diketonates and H2O. Journal of Physical Chemistry C, 117, 24579-24585. https://doi.org/10.1021/jp4080652
Zhang, M., Liu, L., & Zhang, C. (2020). Fabrication and properties of polyimide/aluminum oxide composite films via different alkali etching and ion exchange technique. In Proceedings of the IOP conference series: Materials science and engineering (Vol. 782). Vancouver, Canada: Institute of Physics Publishing.
Zhao, Y., Peng, R., Guo, Y., Liu, Z., Dong, Y., Zhao, S., … Liu, M. (2021). Ultraflexible and malleable Fe/BaTiO3 multiferroic Heterostructures for functional devices. Advanced Functional Materials. 1, 32-45. https://doi.org/10.1002/adfm.202009376
Multiferroic/Polymer Flexible Structures Obtained by Atomic Layer Deposition