Multiferroic behavior of the functionalized surface of a flexible substrate by deposition of Bi2 O3 and Fe2 O3

. 2022 Apr ; 85 (4) : 1300-1310. [epub] 20211124

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34820938

Grantová podpora
LM2018110 MEYS
CEITEC 2020 LQ1601 Ministry of Education, Youth and Sports of the Czech Republic
FEKT-S-20-6352 Internal Grant Agency of Vysoké Učení Technické v Brně

Thin films of bismuth and iron oxides were obtained by atomic layer deposition (ALD) on the surface of a flexible substrate poly(4,4'-oxydiphenylene-pyromellitimide) (Kapton) at a temperature of 250°C. The layer thickness was 50 nm. The samples were examined by secondary-ion mass spectrometry, and uniform distribution of elements in the film layer was observed. Surface morphology, electrical polarization, and mechanical properties were investigated by atomic force microscope, piezoelectric force microscopy, and force modulation microscopy. The values of current in the near-surface layer varied in the range of ±80 pA when a potential of 5 V was applied. Chemical analysis was performed by X-ray photoelectron spectroscopy, where the formation of Bi2 O3 and Fe2 O3 phases, as well as intermediate phases in the Bi-Fe-O system, was observed. Magnetic measurements were carried out by a vibrating sample magnetometer that showed a ferromagnetic response. The low-temperature method of functionalization of the Kapton surface with bismuth and iron oxides will make it possible to adapt the Bi-Fe-O system to flexible electronics.

Zobrazit více v PubMed

Abdulagatov, A. I., Ramazanov, S. M., Dallaev, R. S., Murliev, E. K., Palchaev, D. K., Rabadanov, M. K., & Abdulagatov, I. M. (2018). Atomic layer deposition of aluminum nitride using Tris(diethylamido)aluminum and hydrazine or ammonia. Russian MicroElectronics, 47, 118-130. https://doi.org/10.1134/S1063739718020026

Ahlawat, A., Satapathy, S., Bhartiya, S., Singh, M. K., Choudhary, R. J., & Gupta, P. K. (2014). BiFeO3/poly(methyl methacrylate) nanocomposite films: A study on magnetic and dielectric properties. Applied Physics Letters, 104, 042902. https://doi.org/10.1063/1.4863228

Alikhanov, N. M.-R., Rabadanov, M. K., Orudzhev, F. F., Gadzhimagomedov, S. K., Emirov, R. M., Sadykov, S. A., … Sobola, D. (2021). Size-dependent structural parameters, optical, and magnetic properties of facile synthesized pure-phase BiFeO3. Journal of Materials Science: Materials in Electronics, 32, 13323-13335. https://doi.org/10.1007/S10854-021-05911-9

Amrillah, T., Hermawan, A., Yin, S., & Juang, J.-Y. (2021). Formation and physical properties of the self-assembled BFO-CFO vertically aligned nanocomposite on a CFO-buffered two-dimensional flexible mica substrate. RSC Advances, 11, 15539-15545. https://doi.org/10.1039/D1RA01158H

Bai, F., Wang, J., Wuttig, M., Li, J., Wang, N., Pyatakov, A. P., … Viehland, D. (2005). Destruction of spin cycloid in (111)c-oriented BiFeO3 thin films by epitiaxial constraint: Enhanced polarization and release of latent magnetization. Applied Physics Letters, 86, 032511. https://doi.org/10.1063/1.1851612

Barshilia, H. C., Ananth, A., Gupta, N., & Anandan, C. (2013). Superhydrophobic nanostructured Kapton surfaces fabricated through Ar + O2 plasma treatment: Effects of different environments on wetting behaviour. Applied Surface Science, 268, 464-471. https://doi.org/10.1016/j.apsusc.2012.12.130

Bedoya-Pinto, A., Donolato, M., Gobbi, M., Hueso, L. E., & Vavassori, P. (2014). Flexible spintronic devices on Kapton. Applied Physics Letters, 4, 34-45. https://doi.org/10.1063/1.4865201

Bretos, I., Jiménez, R., Ricote, J., Sirera, R., & Calzada, M. L. (2020). Photoferroelectric thin films for flexible systems by a three-in-one solution-based approach. Advanced Functional Materials, 30, 2001897. https://doi.org/10.1002/adfm.202001897

Carranza-Celis, D., Cardona-Rodríguez, A., Narváez, J., Moscoso-Londono, O., Muraca, D., Knobel, M., … Ramírez, J. G. (2019). Control of Multiferroic properties in BiFeO3 nanoparticles. Science Reports, 9, 1-9. https://doi.org/10.1038/s41598-019-39517-3

Catalan, G., & Scott, J. F. (2009). Physics and applications of bismuth ferrite. Advanced Materials, 21, 2463-2485.

Chang, L., You, L., & Wang, J. (2018). The path to flexible ferroelectrics: Approaches and progress. Japanese Journal of Applied Physics, 57, 0902A3. https://doi.org/10.7567/JJAP.57.0902A3

Chen, Z., Chen, Z., Kuo, C.-Y., Tang, Y., Dedon, L. R., Li, Q., … Martin, L. W. (2018). Complex strain evolution of polar and magnetic order in multiferroic BiFeO3 thin films. Nature Communications, 9, 1-9. https://doi.org/10.1038/s41467-018-06190-5

Cui, G., Liu, W., Yuan, L., Wu, D., & Wu, Z. (2013). Transition of polyimide/α-Fe2O3 to polyimide/Fe3O4 nanocomposite films by adjusting thermal treatment surroundings of ion-doped substrates. RSC Advances, 3, 14390-14396. https://doi.org/10.1039/C3RA41461B

Dallaev, R., Sobola, D., Tofel, P., Škvarenina, L., & Sedlák, P. (2020). Aluminum nitride nanofilms by atomic layer deposition using alternative precursors hydrazinium chloride and triisobutylaluminum. Coatings, 10, 1-14. https://doi.org/10.3390/coatings10100954

Gandhi, A. C., Cheng, C. L., & Wu, S. Y. (2020a). Structural and enhanced optical properties of stabilized γ-Bi2O3 nanoparticles: Effect of oxygen ion vacancies. Nanomaterials, 10, 1023. https://doi.org/10.3390/nano10061023

Gandhi, A. C., Lai, C. Y., Wu, K. T., Ramacharyulu, P. V. R. K., Koli, V. B., Cheng, C. L., … Wu, S. Y. (2020b). Phase transformation and room temperature stabilization of various Bi2O3 nano-polymorphs: Effect of oxygen-vacancy defects and reduced surface energy due to adsorbed carbon species. Nanoscale, 12, 24119-24137. https://doi.org/10.1039/d0nr06552h

George, S. M. (2010). Atomic layer deposition: An overview. Chemical Reviews, 110, 111-131. https://doi.org/10.1021/cr900056b

Gouzman, I., Girshevitz, O., Grossman, E., Eliaz, N., & Sukenik, C. N. (2010). Thin film oxide barrier layers: Protection of kapton from space environment by liquid phase deposition of titanium oxide. ACS Applied Materials & Interfaces, 2, 1835-1843. https://doi.org/10.1021/am100113t

Grandoni, A., Mannini, G., Glisenti, A., Manariti, A., & Galli, G. (2017). Use of statistical design of experiments for surface modification of Kapton films by CF4-O2 microwave plasma treatment. Applied Surface Science, 420, 579-585. https://doi.org/10.1016/j.apsusc.2017.05.140

Ho, J., & Schroeder, M. (2020). Polyimides as high temperature capacitor dielectrics. In Polyimide for electronic and electrical engineering applications [working title]; IntechOpen.

Huang, F., Lu, X., Lin, W., Kan, Y., Zhang, J., Chen, Q., … Zhu, J. (2010). Thickness-dependent structural and magnetic properties of BiFeO3 films prepared by metal organic decomposition method. Applied Physics Letters, 97, 222901. https://doi.org/10.1063/1.3519986

Jourdan, J. S., Cruchon-Dupeyrat, S. J., Huan, Y., Kuo, P. K., & Liu, G. Y. (1999). Imaging nanoscopic elasticity of thin film materials by atomic force microscopy: Effects of force modulation frequency and amplitude. Langmuir, 15, 6495-6504. https://doi.org/10.1021/la9902183

Kabelac, J., Ghosh, S., Dobal, P., & Katiyar, R. (2007). Rf oxygen plasma assisted molecular beam epitaxy growth of BiFeO3 thin films on SrTiO3 (001). Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 25, 1049. https://doi.org/10.1116/1.2715992

Kao, C.-Y., Li, B., Lu, Y., Yoo, J.-W., & Epstein, A. J. (2014). Thin films of organic-based magnetic materials of vanadium and cobalt tetracyanoethylene by molecular layer deposition. Journal of Materials Chemistry C, 2, 6171-6176. https://doi.org/10.1039/C4TC00673A

Kaspar, P., Sobola, D., Dallaev, R., Ramazanov, S., Nebojsa, A., Rezaee, S., & Grmela, L. (2019). Characterization of Fe2O3 thin film on highly oriented pyrolytic graphite by AFM, ellipsometry and XPS. Applied Surface Science, 493, 673-678. https://doi.org/10.1016/j.apsusc.2019.07.058

Larosa, C., Terencio, T., Converti, A., & Eggenhöffner, R. (2014). Anodic porous alumina array for cyanine fluorophore Cy3 confinement. Journal of Materials Science and Nanotechnology, 1, 109. https://doi.org/10.15744/2348-9812.1.S109

Le, T. H., Hao, N. V., Thoan, N. H., Hong, N. T. M., Hai, P. V., Thang, N. V., … Nguyen, X. C. (2019). Origin of enhanced magnetization in (La,Co) codoped BiFeO3 at the morphotropic phase boundary. Ceramics International, 45, 18480-18486. https://doi.org/10.1016/J.CERAMINT.2019.06.066

Lindner, E., Cosofret, V. V., Ufer, S., Buck, R. P., Kusy, R. P., Ash, R. B., & Nagle, H. T. (1993). Flexible (Kapton-based) microsensor arrays of high stability for cardiovascular applications. Journal of the Chemical Society, Faraday Transactions, 12, 253-274. https://doi.org/10.1039/FT9938900361

Liu, G., Li, S., Lu, Y., Zhang, J., Feng, Z., & Li, C. (2016). Controllable synthesis of α-Bi2O3 and γ-Bi2O3 with high photocatalytic activity by α-Bi2O3→γ-Bi2O3→α-Bi2O3 transformation in a facile precipitation method. Journal of Alloys and Compounds, 689, 787-799. https://doi.org/10.1016/j.jallcom.2016.08.047

Liu, Y.-W., Zhan, Q.-F., & Li, R.-W. (2013). Fabrication, properties, and applications of flexible magnetic films. Chinese Physics B, 22, 127502. https://doi.org/10.1088/1674-1056/22/12/127502

Martin, L. W., Chu, Y. H., & Ramesh, R. (2010). Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Materials Science and Engineering R: Reports, 68, 89-133.

Nicolini, C., Correia, T. B., Stura, E., Larosa, C., Spera, R., & Pechkova, E. (2013). Atomic force microscopy and anodic porous allumina of nucleic acid programmable protein arrays. Recent Patents on Biotechnology, 7, 112-121.

Nikkola, J., Sievänen, J., Raulio, M., Wei, J., Vuorinen, J., & Tang, C. Y. (2014). Surface modification of thin film composite polyamide membrane using atomic layer deposition method. Journal of Membrane Science, 450, 174-180. https://doi.org/10.1016/j.memsci.2013.09.005

Orudzhev, F., Ramazanov, S., Sobola, D., Isaev, A., Wang, C., Magomedova, A., … Kaviyarasu, K. (2020). Atomic layer deposition of mixed-layered aurivillius phase on TiO2 nanotubes: Synthesis, characterization and photoelectrocatalytic properties. Nanomaterials, 10, 1-16. https://doi.org/10.3390/nano10112183

Orudzhev, F. F., Ramazanov, Sh. M., Isaev, A. B., Alikhanov, N. M. -R., Sobola, D., Presniakov, M. Yu., & Kaviyarasu, K. (2021). Self-organization of layered perovskites on TiO2 nanotubes surface by atomic layer deposition. Materials Today: Proceedings, 36, 364-367. http://dx.doi.org/10.1016/j.matpr.2020.04.153

Papež, N., Gajdoš, A., Dallaev, R., Sobola, D., Sedlák, P., Motúz, R., … Grmela, L. (2020). Performance analysis of GaAs based solar cells under gamma irradiation. Applied Surface Science, 510, 543-554. https://doi.org/10.1016/j.apsusc.2020.145329

Papez, N., Škvarenina, L., Tofel, P., & Sobola, D. (2017). Thermal stability of gallium arsenide solar cells. In Proceedings of SPIE - The international society for optical engineering.

Peng, H., Sun, X., Weng, W., & Fang, X. (2017). Flexible electronic devices based on polymers. Polymer Materials for Energy and Electronic Applications, 325, 325-354. https://doi.org/10.1016/B978-0-12-811091-1.00009-4

Pérez-Mezcua, D., Bretos, I., Jiménez, R., Ricote, J., Jiménez-Rioboó, R. J., Da Silva, C. G., … Calzada, M. L. (2016). Photochemical solution processing of films of metastable phases for flexible devices: The β-Bi2O3 polymorph. Scientific Reports, 6, 1-10. https://doi.org/10.1038/srep39561

Pesquera, D., Khestanova, E., Ghidini, M., Zhang, S., Rooney, A. P., Maccherozzi, F., … Mathur, N. D. (2020). Large magnetoelectric coupling in multiferroic oxide heterostructures assembled via epitaxial lift-off. Nature Communications, 11, 1-8. https://doi.org/10.1038/s41467-020-16942-x

Philip, A., Niemelä, J. P., Tewari, G. C., Putz, B., Edwards, T. E. J., Itoh, M., … Karppinen, M. (2020). Flexible ϵ-Fe2O3-terephthalate thin-film magnets through ALD/MLD. ACS Applied Materials & Interfaces, 12, 21912-21921. https://doi.org/10.1021/acsami.0c04665

Phillips, M. R., Chan, W. K., & Schwartz, J. (2015). Enhanced quench protection in REBa 2Cu3Oδ-7-based coils by enhancing three-dimensional quench propagation via thermally conducting electrical insulation. IEEE Transactions on Applied Superconductivity, 25, 167-182. https://doi.org/10.1109/TASC.2015.2452224

Pleshakov, I. V., Volkov, M. P., Lomanova, N. A., Kuzmin, Y. I., & Gusarov, V. V. (2020). Magnetic characteristics of a nanocomposite based on bismuth ferrites. Technical Physics Letters, 46, 1072-1075. https://doi.org/10.1134/S1063785020110115

Puurunen, R. L. (2005). Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. Journal of Applied Physics, 97, 121301. https://doi.org/10.1063/1.1940727

Ramazanov, S., Sobola, D., Orudzhev, F., Knápek, A., Polčák, J., Potoček, M., … Dallaev, R. (2020). Surface modification and enhancement of ferromagnetism in BiFeO3 nanofilms deposited on HOPG. Nanomaterials, 10, 1-18. https://doi.org/10.3390/nano10101990

Shen, Y., Feng, Z., & Zhang, H. (2020). Study of indium tin oxide films deposited on colorless polyimide film by magnetron sputtering. Materials and Design, 193, 108809. https://doi.org/10.1016/j.matdes.2020.108809

Sobola, D., Ramazanov, S., Koneĉnỳ, M., Orudzhev, F., Kaspar, P., Papež, N., … Potoĉek, M. (2020). Complementary SEM-AFM of swelling bi-Fe-O film on HOPG substrate. Materials (Basel), 13, 1-15. https://doi.org/10.3390/ma13102402

Song, W., Sun, Z., Zhang, D., Han, B., He, L., Wang, X., & Lei, Q. (2015). Synthesis and characterization of low density polyethylene with multiferroic bismuth ferrite nanocomposite. Journal of Materials Science: Materials in Electronics, 27, 2328-2334. https://doi.org/10.1007/S10854-015-4029-5

Tomczyk, M., Bretos, I., Jiménez, R., Mahajan, A., Venkata Ramana, E., Lourdes Calzada, M., & Vilarinho, P. M. (2017). Direct fabrication of BiFeO3 thin films on polyimide substrates for flexible electronics. Journal of Materials Chemistry C, 5, 12529-12537. https://doi.org/10.1039/c7tc04571a

Tooth, B., Etschmann, B., Pokrovski, G. S., Testemale, D., Hazemann, J. L., Grundler, P. V., & Brugger, J. (2013). Bismuth speciation in hydrothermal fluids: An X-ray absorption spectroscopy and solubility study. Geochimica et Cosmochimica Acta, 101, 156-172. https://doi.org/10.1016/j.gca.2012.10.020

Ueno, R., Okaura, S., Funakubo, H., & Saito, K. (2005). Crystal structure and electrical properties of epitaxial BiFeO3 thin films grown by metal organic chemical vapor deposition. Japanese Journal of Applied Physics, Part 2: Letters, 44, L1231. https://doi.org/10.1143/JJAP.44.L1231

Wang, J., Neaton, J. B., Zheng, H., Nagarajan, V., Ogale, S. B., Liu, B., … Ramesh, R. (2003). Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 299, 1719-1722. https://doi.org/10.1126/science.1080615

Wang, X., Min, D., & Li, S. (2020). Charging and discharging mechanism of polyimide under electron irradiation and high voltage. Polyimide for Electronic and Electrical Engineering Applications. 1, 32-45. https://doi.org/10.5772/INTECHOPEN.92251

Wei, Q., Yang, G., Liu, G., Jiang, H., & Zhang, T. (2018). Effects and mechanism on Kapton film under ozone exposure in a ground near space simulator. Applied Surface Science, 440, 1083-1090. https://doi.org/10.1016/j.apsusc.2018.01.231

Wu, H., Xue, P., Lu, Y., & Zhu, X. (2018). Microstructural, optical and magnetic characterizations of BiFeO3 multiferroic nanoparticles synthesized via a sol-gel process. Journal of Alloys and Compounds, 731, 471-477. https://doi.org/10.1016/J.JALLCOM.2017.10.087

Yamashita, T., & Hayes, P. (2008). Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied Surface Science, 254, 2441-2449. https://doi.org/10.1016/j.apsusc.2007.09.063

Yang, S. Y., Zavaliche, F., Mohaddes-Ardabili, L., Vaithyanathan, V., Schlom, D. G., Lee, Y. J., … Ramesh, R. (2005). Metalorganic chemical vapor deposition of lead-free ferroelectric BiFeO3 films for memory applications. Applied Physics Letters, 87, 102903. https://doi.org/10.1063/1.2041830

Zhang, F., Sun, G., Zhao, W., Wang, L., Zheng, L., Liu, S., … Zeng, Y. (2013). Atomic layer deposition of BiFeO3 thin films using β-diketonates and H2O. Journal of Physical Chemistry C, 117, 24579-24585. https://doi.org/10.1021/jp4080652

Zhang, M., Liu, L., & Zhang, C. (2020). Fabrication and properties of polyimide/aluminum oxide composite films via different alkali etching and ion exchange technique. In Proceedings of the IOP conference series: Materials science and engineering (Vol. 782). Vancouver, Canada: Institute of Physics Publishing.

Zhao, Y., Peng, R., Guo, Y., Liu, Z., Dong, Y., Zhao, S., … Liu, M. (2021). Ultraflexible and malleable Fe/BaTiO3 multiferroic Heterostructures for functional devices. Advanced Functional Materials. 1, 32-45. https://doi.org/10.1002/adfm.202009376

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Multiferroic/Polymer Flexible Structures Obtained by Atomic Layer Deposition

. 2022 Dec 27 ; 13 (1) : . [epub] 20221227

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...