Members of the casein kinase 1 (CK1) family have emerged as key regulators of cellular signaling and as potential drug targets. Functional annotation of the 7 human isoforms would benefit from isoform-selective inhibitors, allowing studies on the role of these enzymes in normal physiology and disease pathogenesis. However, due to significant sequence homology within the catalytic domain, isoform selectivity is difficult to achieve with conventional small molecules. Here, we used a PROTAC (Proteolysis TArgeting Chimeras) approach to develop a highly selective degrader AH078 (37) targeting CK1δ and CK1ε with excellent selectivity over the highly related CK1α isoform. The developed PROTAC, AH078 (37) selectively degraded CK1δ and CK1ε with a DC50 of 200 nM. Characterization of AH078 (37) revealed a VHL and Ubiquitin-dependent degradation mechanism. Thus, AH078 (37) represents a versatile chemical tool to study CK1δ and CK1ε function in cellular systems.
- MeSH
- Protein Kinase Inhibitors * pharmacology chemistry metabolism MeSH
- Casein Kinase Idelta * antagonists & inhibitors metabolism MeSH
- Casein Kinase 1 epsilon * antagonists & inhibitors metabolism MeSH
- Humans MeSH
- Drug Discovery MeSH
- Proteolysis * drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Juxtaglomerular cell tumor (JxGCT) is a rare type of renal neoplasm demonstrating morphologic overlap with some mesenchymal tumors such as glomus tumor (GT) and solitary fibrous tumor (SFT). Its oncogenic drivers remain elusive, and only a few cases have been analyzed with modern molecular techniques. In prior studies, loss of chromosomes 9 and 11 appeared to be recurrent. Recently, whole-genome analysis identified alterations involving genes of MAPK-RAS pathway in a subset, but no major pathogenic alterations have been discovered in prior whole transcriptome analyses. Considering the limited understanding of the molecular features of JxGCTs, we sought to assess a collaborative series with a multiomic approach to further define the molecular characteristics of this entity. Fifteen tumors morphologically compatible with JxGCTs were evaluated using immunohistochemistry for renin, single-nucleotide polymorphism array (SNP), low-pass whole-genome sequencing, and RNA sequencing (fusion assay). In addition, methylation analysis comparing JxGCT, GT, and SFT was performed. All cases tested with renin (n=11) showed positive staining. Multiple chromosomal abnormalities were identified in all cases analyzed (n=8), with gains of chromosomes 1p, 10, 17, and 19 and losses of chromosomes 9, 11, and 21 being recurrent. A pathogenic HRAS mutation was identified in one case as part of the SNP array analysis. Thirteen tumors were analyzed by RNA sequencing, with 2 revealing in-frame gene fusions: TFG::GPR128 (interpreted as stochastic) and NAB2::STAT6 . The latter, originally diagnosed as JxGCT, was reclassified as SFT and excluded from the series. No fusions were detected in the remaining 11 cases; of note, no case harbored NOTCH fusions previously described in GT. Genomic methylation analysis showed that JxGCT, GT, and SFT form separate clusters, confirming that JxGCT represents a distinct entity (ie, different from GT). The results of our study show that JxGCTs are a distinct tumor type with a recurrent pattern of chromosomal imbalances that may play a role in oncogenesis, with MAPK-RAS pathway activation being likely a driver in a relatively small subset.
- MeSH
- Adult MeSH
- Epigenesis, Genetic MeSH
- Epigenomics MeSH
- Gene Fusion * MeSH
- Genetic Predisposition to Disease MeSH
- Genomics MeSH
- Immunohistochemistry MeSH
- Polymorphism, Single Nucleotide MeSH
- Juxtaglomerular Apparatus pathology MeSH
- Middle Aged MeSH
- Humans MeSH
- DNA Methylation MeSH
- Biomarkers, Tumor * genetics MeSH
- Kidney Neoplasms * genetics pathology chemistry MeSH
- Whole Genome Sequencing MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
OBJECTIVE: We comprehensively characterized a large pediatric cohort with focal cortical dysplasia (FCD) type 1 to expand the phenotypic spectrum and to identify predictors of postsurgical outcomes. METHODS: We included pediatric patients with histopathological diagnosis of isolated FCD type 1 and at least 1 year of postsurgical follow-up. We systematically reanalyzed clinical, electrophysiological, and radiological features. The results of this reanalysis served as independent variables for subsequent statistical analyses of outcome predictors. RESULTS: All children (N = 31) had drug-resistant epilepsy with varying impacts on neurodevelopment and cognition (presurgical intelligence quotient [IQ]/developmental quotient scores = 32-106). Low presurgical IQ was associated with abnormal slow background electroencephalographic (EEG) activity and disrupted sleep architecture. Scalp EEG showed predominantly multiregional and often bilateral epileptiform activity. Advanced epilepsy magnetic resonance imaging (MRI) protocols identified FCD-specific features in 74.2% of patients (23/31), 17 of whom were initially evaluated as MRI-negative. In six of eight MRI-negative cases, fluorodeoxyglucose-positron emission tomography (PET) and subtraction ictal single photon emission computed tomography coregistered to MRI helped localize the dysplastic cortex. Sixteen patients (51.6%) underwent invasive EEG. By the last follow-up (median = 5 years, interquartile range = 3.3-9 years), seizure freedom was achieved in 71% of patients (22/31), including seven of eight MRI-negative patients. Antiseizure medications were reduced in 21 patients, with complete withdrawal in six. Seizure outcome was predicted by a combination of the following descriptors: age at epilepsy onset, epilepsy duration, long-term invasive EEG, and specific MRI and PET findings. SIGNIFICANCE: This study highlights the broad phenotypic spectrum of FCD type 1, which spans far beyond the narrow descriptions of previous studies. The applied multilayered presurgical approach helped localize the epileptogenic zone in many previously nonlesional cases, resulting in improved postsurgical seizure outcomes, which are more favorable than previously reported for FCD type 1 patients.
- MeSH
- Child MeSH
- Electroencephalography * methods MeSH
- Epilepsy MeSH
- Focal Cortical Dysplasia MeSH
- Cohort Studies MeSH
- Infant MeSH
- Humans MeSH
- Magnetic Resonance Imaging * MeSH
- Malformations of Cortical Development, Group I * surgery complications diagnostic imaging MeSH
- Malformations of Cortical Development surgery complications diagnostic imaging MeSH
- Adolescent MeSH
- Positron-Emission Tomography MeSH
- Child, Preschool MeSH
- Drug Resistant Epilepsy * surgery diagnostic imaging physiopathology MeSH
- Treatment Outcome MeSH
- Check Tag
- Child MeSH
- Infant MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Child, Preschool MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Therapeutic plasma exchange (PLEX) is an adjunctive treatment for patients with anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis and kidney involvement. Little is known about the effect of PLEX on early changes in kidney function. This post-hoc analysis of the PEXIVAS trial investigated the effects of PLEX on changes in kidney function within 12 months. PEXIVAS was a randomized controlled trial recruiting 691 patients with ANCA-associated glomerulonephritis, of whom 349 underwent PLEX and 342 received no-PLEX. The primary outcomes of this post hoc study of PEXIVAS were change in estimated glomerular filtration rate (eGFR) from baseline and recovery of kidney function (defined as eGFR increase of 15ml/min/1.73m2 or more). Baseline eGFR was 21.7 ± 20.3 and 20.6 ± 18.7 ml/min/1.73m2 in the PLEX and no-PLEX groups, respectively. Mean improvements in eGFR at weeks two, four, and eight after initiation of therapy were greater for the PLEX vs. the no-PLEX groups. The greatest significant difference in recovery of kidney function in the PLEX compared to the no-PLEX groups was at week four (relative risk (RR): 1.41; 95% confidence interval:1.09-1.82). Increased eGFR or recovery of kidney function at week four were significantly associated with lower risk for end-stage kidney disease at week 52 (RR: 0.96: 0.95-0.97, and RR: 0.29: 0.16-0.52; respectively). Neither changes in eGFR nor recovery of kidney function differed by reduced- compared to standard-dose glucocorticoid group. Overall, our study indicates that PLEX improves early kidney function in patients with ANCA-associated glomerulonephritis.
- MeSH
- Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis * physiopathology therapy drug therapy complications immunology diagnosis MeSH
- Adult MeSH
- Glomerulonephritis * physiopathology immunology therapy blood MeSH
- Glucocorticoids * therapeutic use administration & dosage MeSH
- Glomerular Filtration Rate * MeSH
- Kidney * physiopathology drug effects MeSH
- Middle Aged MeSH
- Humans MeSH
- Recovery of Function MeSH
- Aged MeSH
- Plasma Exchange * MeSH
- Treatment Outcome MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Randomized Controlled Trial MeSH
The European Renal Association (ERA) Registry collects data on kidney replacement therapy (KRT) in patients with end-stage kidney disease (ESKD). This paper summarizes the ERA Registry Annual Report 2022, with a special focus on comparisons by sex. The supplement of this paper contains the complete ERA Registry Annual Report 2022. Data was collected from 53 national and regional KRT registries from 35 countries. Using this data, incidence, and prevalence of KRT, kidney transplantation rates, survival probabilities, and expected remaining lifetimes were calculated. In 2022, 530 million people of the European general population were covered by the ERA Registry. The incidence of KRT was 152 per million population (pmp). In incident patients, 54% were 65 years or older, 64% were male, and the most common primary renal disease (PRD) was diabetes mellitus (22%). At KRT initiation, 83% of patients received haemodialysis, 12% received peritoneal dialysis, and 5% underwent pre-emptive kidney transplantation. On 31 December 2022, the prevalence of KRT was 1074 pmp. In prevalent patients, 48% were 65 years or older, 62% were male, the most common PRD was of miscellaneous origin (18%), 56% of patients received haemodialysis, 5% received peritoneal dialysis, and 39% were living with a functioning graft. In 2022, the kidney transplantation rate was 40 pmp, with most kidneys coming from deceased donors (66%). For patients starting KRT between 2013 to 2017, 5-year survival probability was 52%. Compared with the general population, the expected remaining lifetime was 66% and 68% shorter for males and females, respectively, receiving dialysis, and 46% and 49% shorter for males and females, respectively, living with a functioning graft.
- Publication type
- Journal Article MeSH
- Review MeSH
OBJECTIVE: Transgenic mice with fluorescent protein (FP) reporters take full advantage of new in vivo imaging technologies. Therefore, we generated a TRPC5- and a TRPA1-reporter mouse based on FP C-terminal fusion, providing us with better alternatives for studying the physiology, interaction and coeffectors of these two TRP channels at the cellular and tissue level. METHODS: We generated transgenic constructs of the murine TRPC5- and TRPA1-gene with a 3*GGGGS linker and C-terminal fusion to mCherry and mTagBFP, respectively. We microinjected zygotes to generate reporter mice. Reporter mice were examined for visible fluorescence in trigeminal ganglia with two-photon microscopy, immunohistochemistry and calcium imaging. RESULTS: Both TRPC5-mCherry and TRPA1-mTagBFP knock-in mouse models were successful at the DNA and RNA level. However, at the protein level, TRPC5 resulted in no mCherry fluorescence. In contrast, sensory neurons derived from the TRPA1-reporter mice exhibited visible mTag-BFP fluorescence, although TRPA1 had apparently lost its ion channel function. CONCLUSIONS: Creating transgenic mice with a TRP channel tagged at the C-terminus with a FP requires detailed investigation of the structural and functional consequences in a given cellular context and fine-tuning the design of specific constructs for a given TRP channel subtype. Different degrees of functional impairment of TRPA1 and TRPC5 constructs suggest a specific importance of the distal C-terminus for the regulation of these two channels in trigeminal neurons.
- MeSH
- Red Fluorescent Protein MeSH
- Trigeminal Ganglion metabolism MeSH
- Gene Knock-In Techniques * MeSH
- TRPC Cation Channels * genetics metabolism MeSH
- TRPA1 Cation Channel * genetics metabolism MeSH
- Luminescent Proteins * genetics metabolism MeSH
- Mice, Transgenic * MeSH
- Mice MeSH
- Recombinant Fusion Proteins metabolism genetics MeSH
- Calcium metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
INTRODUCTION: This study aimed to assess the impact of midline lumbar fusion with cortical bone trajectory screws (MIDLF/CBT) on the multifidus muscles, focusing on the evaluation of their postoperative atrophy. CLINICAL RATIONALE FOR THE STUDY: MIDLF/CBT is a relatively new technique increasingly used to treat spinal instability. Despite its reduced invasiveness compared to traditional posterior lumbar interbody fusion with traditional pedicle screws (PLIF/TP), concerns remain about potential damage to the multifidus muscles that are crucial for spinal stability. Understanding the extent of muscular atrophy post-MIDLF/CBT is vital for improving surgical outcomes, and potentially patient rehabilitation strategies. MATERIAL AND METHODS: This study retrospectively analysed preoperative and postoperative MRI scans of patients who underwent MIDLF/CBT for degenerative segmental spondylolisthesis. The bilateral width of the multifidus muscles at the operated segment and adjacent segments was measured using axial T2-weighted MRI scans. Statistical comparisons were made using a paired t test, with significance set at p < 0.05. RESULTS: The study included 16 patients with an average age of 57 ± 10 years, 10 of whom (62.5%) were women, and featured a mean follow-up period of 37 ± 25 months. Postoperative measurements showed a significant reduction in the width of the multifidus muscles at the operated segment (mean difference -3.3mm, p = 0.02) and the inferior adjacent segment (-7.4 mm, p < 0.01). A decrease in muscle width at the superior adjacent segment was also observed, although this was not statistically significant. CONCLUSIONS AND CLINICAL IMPLICATIONS: Our study concluded that MIDLF/CBT results in significant multifidus muscle atrophy at and below the operated segment, potentially impacting postoperative rehabilitation and recovery. These findings highlight the need for further research comparing MIDLF/CBT to other spinal stabilisation techniques. Additionally, incorporating functional electromyographic assessments of paraspinal muscles could provide deeper insights into the long-term consequences of spinal surgeries and helpdevelop new approaches and strategies to mitigate paravertebral muscles atrophy, thus enhancing patient outcomes.
- MeSH
- Lumbar Vertebrae * surgery diagnostic imaging MeSH
- Spinal Fusion * methods MeSH
- Paraspinal Muscles * diagnostic imaging pathology MeSH
- Cortical Bone surgery diagnostic imaging MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Pedicle Screws MeSH
- Postoperative Complications diagnostic imaging MeSH
- Retrospective Studies MeSH
- Aged MeSH
- Spondylolisthesis * surgery diagnostic imaging MeSH
- Muscular Atrophy * etiology diagnostic imaging MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Ceramides are key components of the skin's permeability barrier. In atopic dermatitis, pathological hydrolysis of ceramide precursors - glucosylceramides and sphingomyelin - into lysosphingolipids, specifically glucosylsphingosine (GS) and sphingosine-phosphorylcholine (SPC), and free fatty acids (FFAs) has been proposed to contribute to impaired skin barrier function. This study investigated whether replacing ceramides with lysosphingolipids and FFAs in skin lipid barrier models would exacerbate barrier dysfunction. When applied topically to human stratum corneum sheets, SPC and GS increased water loss, decreased electrical impedance, and slightly disordered lipid chains. In lipid models containing isolated human stratum corneum ceramides, reducing ceramides by ≥ 30% significantly increased permeability to four markers, likely due to loss of long-periodicity phase (LPP) lamellae and phase separation within the lipid matrix, as revealed by X-ray diffraction and infrared spectroscopy. However, when the missing ceramides were replaced by lysosphingolipids and FFAs, no further increase in permeability was observed. Conversely, these molecules partially mitigated the negative effects of ceramide deficiency, particularly with 5%-10% SPC, which reduced permeability even compared to control with "healthy" lipid composition. These findings suggest that while ceramide deficiency is a key factor in skin barrier dysfunction, the presence of lysosphingolipids and FFAs does not aggravate lipid structural or functional damage, but may provide partial compensation, raising further questions about the behavior of lyso(sphingo)lipids in rigid multilamellar lipid environments, such as the stratum corneum, that warrant further investigation.
- MeSH
- Models, Biological MeSH
- Ceramides * metabolism MeSH
- Phosphorylcholine analogs & derivatives MeSH
- Skin * metabolism MeSH
- Fatty Acids, Nonesterified metabolism MeSH
- Humans MeSH
- Lysophospholipids metabolism MeSH
- Permeability drug effects MeSH
- Sphingosine analogs & derivatives metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
The biosynthesis of the lincosamide antibiotics lincomycin A and celesticetin involves the pyridoxal-5'-phosphate (PLP)-dependent enzymes LmbF and CcbF, which are responsible for bifurcation of the biosynthetic pathways. Despite recognizing the same S-glycosyl-L-cysteine structure of the substrates, LmbF catalyses thiol formation through β-elimination, whereas CcbF produces S-acetaldehyde through decarboxylation-coupled oxidative deamination. The structural basis for the diversification mechanism remains largely unexplored. Here we conduct structure-function analyses of LmbF and CcbF. X-ray crystal structures, docking and molecular dynamics simulations reveal that active-site aromatic residues play important roles in controlling the substrate binding mode and the reaction outcome. Furthermore, the reaction selectivity and oxygen-utilization of LmbF and CcbF were rationally engineered through structure- and calculation-based mutagenesis. Thus, the catalytic function of CcbF was switched to that of LmbF, and, remarkably, both LmbF and CcbF variants gained the oxidative-amidation activity to produce an unnatural S-acetamide derivative of lincosamide.
OBJECTIVE: Previous retrospective studies have reported vigabatrin-associated brain abnormalities on magnetic resonance imaging (VABAM), although clinical impact is unknown. We evaluated the association between vigabatrin and predefined brain magnetic resonance imaging (MRI) changes in a large homogenous tuberous sclerosis complex (TSC) cohort and assessed to what extent VABAM-related symptoms were reported in TSC infants. METHODS: The Dutch TSC Registry and the EPISTOP cohort provided retrospective and prospective data from 80 TSC patients treated with vigabatrin (VGB) before the age of 2 years and 23 TSC patients without VGB. Twenty-nine age-matched non-TSC epilepsy patients not receiving VGB were included as controls. VABAM, specified as T2/fluid-attenuated inversion recovery hyperintensity or diffusion restriction in predefined brain areas, were examined on brain MRI before, during, and after VGB, and once in the controls (at approximately age 2 years). Additionally, the presence of VABAM accompanying symptoms was evaluated. RESULTS: Prevalence of VABAM in VGB-treated TSC patients was 35.5%. VABAM-like abnormalities were observed in 13.5% of all patients without VGB. VGB was significantly associated with VABAM (risk ratio [RR] = 3.57, 95% confidence interval [CI] = 1.43-6.39), whereas TSC and refractory epilepsy were not. In all 13 VGB-treated patients with VABAM for whom posttreatment MRIs were available, VABAM entirely resolved after VGB discontinuation. The prevalence of symptoms was 11.7% in patients with VABAM or VABAM-like MRI abnormalities and 4.3% in those without, implicating no significant association (RR = 2.76, 95% CI = .68-8.77). SIGNIFICANCE: VABAM are common in VGB-treated TSC infants; however, VABAM-like abnormalities also occurred in children without either VGB or TSC. The cause of these MRI changes is unknown. Possible contributing factors are abnormal myelination, underlying etiology, recurrent seizures, and other antiseizure medication. Furthermore, the presence of VABAM (or VABAM-like abnormalities) did not appear to be associated with clinical symptoms. This study confirms that the well-known antiseizure effects of VGB outweigh the risk of VABAM and related symptoms.
- MeSH
- Anticonvulsants * adverse effects therapeutic use MeSH
- Cohort Studies MeSH
- Infant MeSH
- Humans MeSH
- Magnetic Resonance Imaging * MeSH
- Brain * diagnostic imaging drug effects MeSH
- Child, Preschool MeSH
- Prospective Studies MeSH
- Registries MeSH
- Retrospective Studies MeSH
- Tuberous Sclerosis * diagnostic imaging complications MeSH
- Vigabatrin * therapeutic use adverse effects MeSH
- Check Tag
- Infant MeSH
- Humans MeSH
- Male MeSH
- Child, Preschool MeSH
- Female MeSH
- Publication type
- Journal Article MeSH