Surface Modification and Enhancement of Ferromagnetism in BiFeO3 Nanofilms Deposited on HOPG
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TN01000008
Technology Agency of the Czech Republic
RVO:68081731
Akademie Věd České Republiky
FEKT-S-20-6352
Internal Grant Agency of Brno University of Technology
LQ1601
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018110
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33050330
PubMed Central
PMC7600225
DOI
10.3390/nano10101990
PII: nano10101990
Knihovny.cz E-zdroje
- Klíčová slova
- BiFeO3, atomic layer deposition, ferromagnetic properties, graphite surface, perovskite structure,
- Publikační typ
- časopisecké články MeSH
BiFeO3 (BFO) films on highly oriented pyrolytic graphite (HOPG) substrate were obtained by the atomic layer deposition (ALD) method. The oxidation of HOPG leads to the formation of bubble regions creating defective regions with active centers. Chemisorption occurs at these active sites in ALD. Additionally, carbon interacts with ozone and releases carbon oxides (CO, CO2). Further annealing during the in situ XPS process up to a temperature of 923 K showed a redox reaction and the formation of oxygen vacancies (Vo) in the BFO crystal lattice. Bubble delamination creates flakes of BiFeO3-x/rGO heterostructures. Magnetic measurements (M-H) showed ferromagnetism (FM) at room temperature Ms ~ 120 emu/cm3. The contribution to magnetization is influenced by the factor of charge redistribution on Vo causing the distortion of the lattice as well as by the superstructure formed at the boundary of two phases, which causes strong hybridization due to the superexchange interaction of the BFO film with the FM sublattice of the interface region. The development of a method for obtaining multiferroic structures with high FM values (at room temperature) is promising for magnetically controlled applications.
Zobrazit více v PubMed
Baek S.-H., Choi S., Kim T.L., Jang H.W. Domain engineering in BiFeO3 thin films. Curr. Appl. Phys. 2017;17:688–703. doi: 10.1016/j.cap.2017.02.016. DOI
Guo R., You L., Zhou Y., Lim Z.S., Zou X., Chen L., Ramesh R., Wang J. Non-volatile memory based on the ferroelectric photovoltaic effect. Nat. Commun. 2013;4:1990. doi: 10.1038/ncomms2990. PubMed DOI PMC
Vila-Fungueiriño J.M., Gomez A., Antoja-Lleonart J., Gazquez J., Magen C., Noheda B., Carretero-Genevrier A. Direct and converse piezoelectric responses at the nanoscale from epitaxial BiFeO3 thin films grown by polymer assisted deposition. Nanoscale. 2018;10:20155–20161. doi: 10.1039/C8NR05737K. PubMed DOI
Huang C., Chen L. Effects of Interfaces on the Structure and Novel Physical Properties in Epitaxial Multiferroic BiFeO3 Ultrathin Films. Materials. 2014;7:5403–5426. doi: 10.3390/ma7075403. PubMed DOI PMC
Steffes J., Ristau R.A., Ramesh R., Huey B.D. Thickness scaling of ferroelectricity in BiFeO3 by tomographic atomic force microscopy. Proc. Natl. Acad. Sci. USA. 2019;116:2413–2418. doi: 10.1073/pnas.1806074116. PubMed DOI PMC
Graf M., Sepliarsky M., Machado R., Stachiotti M. Dielectric and piezoelectric properties of BiFeO3 from molecular dynamics simulations. Solid State Commun. 2015;218:10–13. doi: 10.1016/j.ssc.2015.06.002. DOI
Jeon J.H., Joo H.-Y., Kim Y.M., Lee D.H., Kim J.-S., Kim Y.S., Choi T., Park B.H. Selector-free resistive switching memory cell based on BiFeO3 nano-island showing high resistance ratio and nonlinearity factor. Sci. Rep. 2016;6:23299. doi: 10.1038/srep23299. PubMed DOI PMC
Jiang A.Q., Zhang Y. Next-generation ferroelectric domain-wall memories: Principle and architecture. NPG Asia Mater. 2019;11:2. doi: 10.1038/s41427-018-0102-x. DOI
Shima H., Naganuma H., Okamur S. Materials Science—Advanced Topics. IntechOpen; London, UK: 2013. Optical Properties of Multiferroic BiFeO3 Films.
Zhu M., Du Z., Liu Q., Chen B., Tsang S.H., Teo E.H.T. Ferroelectric BiFeO3 thin-film optical modulators. Appl. Phys. Lett. 2016;108:233502. doi: 10.1063/1.4953201. DOI
Liou Y.-D., Chiu Y.-Y., Hart R.T., Kuo C.-Y., Huang Y.-L., Wu Y.-C., Chopdekar R.V., Liu H.-J., Tanaka A., Chen C.-T., et al. Deterministic optical control of room temperature multiferroicity in BiFeO3 thin films. Nat. Mater. 2019;18:580–587. doi: 10.1038/s41563-019-0348-x. PubMed DOI
Pisarev R.V., Moskvin A.S., Kalashnikova A.M., Rasing T. Charge transfer transitions in multiferroic BiFeO3 and related ferrite insulators. Phys. Rev. B. 2009;79:79. doi: 10.1103/PhysRevB.79.235128. DOI
Si Y.-H., Xia Y., Shang S.-K., Xiong X.-B., Zeng X., Zhou J., Li Y.-Y. Enhanced Visible Light Driven Photocatalytic Behavior of BiFeO₃/Reduced Graphene Oxide Composites. Nanomaterials. 2018;8:526. doi: 10.3390/nano8070526. PubMed DOI PMC
Pan H., Ma J., Ma J., Zhang Q., Liu X., Guan B., Gu L., Zhang X., Zhang Y.-J., Li L., et al. Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nat. Commun. 2018;9:1813. doi: 10.1038/s41467-018-04189-6. PubMed DOI PMC
Qiao Z., Ren W., Chen H., Bellaiche L., Zhang Z., Macdonald A.H., Niu Q. Quantum Anomalous Hall Effect in Graphene Proximity Coupled to an Antiferromagnetic Insulator. Phys. Rev. Lett. 2014;112:112. doi: 10.1103/PhysRevLett.112.116404. PubMed DOI
Kumar P., Sharma V., Reboredo F.A., Yang L.-M., Pushpa R. Tunable magnetism in metal adsorbed fluorinated nanoporous graphene. Sci. Rep. 2016;6:31841. doi: 10.1038/srep31841. PubMed DOI PMC
Huang D.J., Jeng H.-T., Chang C.-F., Guo G.Y., Chen J., Wu W.P., Chung S.-C., Shyu S.G., Wu C.C., Lin H.-J., et al. Orbital magnetic moments of oxygen and chromium inCrO2. Phys. Rev. B. 2002;66:174440. doi: 10.1103/PhysRevB.66.174440. DOI
Yuan H., Chen H., Kuang A., Wu B. Spin–orbit effect and magnetic anisotropy in Pt clusters. J. Magn. Magn. Mater. 2013;331:7–16. doi: 10.1016/j.jmmm.2012.10.039. DOI
Shin H.W., Son J.Y. Multiferroic BiFeO3 thin films and nanodots grown on highly oriented pyrolytic graphite substrates. J. Cryst. Growth. 2017;480:13–17. doi: 10.1016/j.jcrysgro.2017.10.006. DOI
Catalan G., Scott J.F. Physics and Applications of Bismuth Ferrite. Adv. Mater. 2009;21:2463–2485. doi: 10.1002/adma.200802849. DOI
Zhu J., Chen M., Qu H., Luo Z., Wu S., Colorado H.A., Wei S., Guo Z. Magnetic field induced capacitance enhancement in graphene and magnetic graphene nanocomposites. Energy Environ. Sci. 2013;6:194–204. doi: 10.1039/C2EE23422J. DOI
Miao Q., Zeng M., Zhang Z., Lu X., Dai J., Gao X., Liu J.-M. Self-assembled nanoscale capacitor cells based on ultrathin BiFeO3 films. Appl. Phys. Lett. 2014;104:182903. doi: 10.1063/1.4875617. DOI
Kartavtseva M., Gorbenko O., Kaul A., Murzina T., Savinov S., Barthélémy A. BiFeO3 thin films prepared using metalorganic chemical vapor deposition. Thin Solid Films. 2007;515:6416–6421. doi: 10.1016/j.tsf.2006.11.133. DOI
Huang Y.Q. Study on preparation and property of BiFeO3 thin films by PLD. Gongneng Cailiao/J. Funct. Mater. 2013;44:1469–1471. doi: 10.3969/j.issn.1001-9731.2013.10.022. DOI
Cha J., Ahn J., Lee K., JeongOk C., JeungSun A., KwangBae L. Multiferroic BiFeO3 Thin Films Prepared by Using a Conventional RF Magnetron Sputtering Method. J. Korean Phys. Soc. 2009;54:844–848. doi: 10.3938/jkps.54.844. DOI
Akbashev A.R., Chen G., Spanier J.E. A Facile Route for Producing Single-Crystalline Epitaxial Perovskite Oxide Thin Films. Nano Lett. 2013;14:44–49. doi: 10.1021/nl4030038. PubMed DOI
Marchand B., Jalkanen P., Tuboltsev V., Vehkamäki M., Puttaswamy M., Kemell M., Mizohata K., Hatanpää T., Savin A.M., Räisänen J., et al. Electric and Magnetic Properties of ALD-Grown BiFeO3 Films. J. Phys. Chem. C. 2016;120:7313–7322. doi: 10.1021/acs.jpcc.5b11583. PubMed DOI
Coll M., Gazquez J., Fina I., Khayat Z., Quindeau A., Alexe M., Varela M., Trolier-McKinstry S., Obradors X., Puig T. Nanocrystalline Ferroelectric BiFeO3 Thin Films by Low-Temperature Atomic Layer Deposition. Chem. Mater. 2015;27:6322–6328. doi: 10.1021/acs.chemmater.5b02093. DOI
Cavanagh A.S., Wilson C.A., Weimer A.W., George S.M. Atomic layer deposition on gram quantities of multi-walled carbon nanotubes. Nanotechnol. 2009;20:255602. doi: 10.1088/0957-4484/20/25/255602. PubMed DOI
Xuan Y., Wu Y.Q., Shen T., Qi M., Capano M.A., Cooper J.A., Ye P.D. Atomic-layer-deposited nanostructures for graphene-based nanoelectronics. Appl. Phys. Lett. 2008;92:013101. doi: 10.1063/1.2828338. DOI
Young M.J., Musgrave C.B., George S.M. Growth and Characterization of Al2O3 Atomic Layer Deposition Films on sp2-Graphitic Carbon Substrates Using NO2/Trimethylaluminum Pretreatment. ACS Appl. Mater. Interfaces. 2015;7:12030–12037. doi: 10.1021/acsami.5b02167. PubMed DOI
Wang X., Mao W., Wang Q., Zhu Y., Min Y., Zhang J., Yang T., Yang J., Li X., Huang W. Low-temperature fabrication of Bi25FeO40 /rGO nanocomposites with efficient photocatalytic performance under visible light irradiation. RSC Adv. 2017;7:10064–10069. doi: 10.1039/C6RA27025E. DOI
Knápek A., Sobola D., Tománek P., Pokorná Z., Urbánek M. Field emission from the surface of highly ordered pyrolytic graphite. Appl. Surf. Sci. 2017;395:157–161. doi: 10.1016/j.apsusc.2016.05.002. DOI
Papež N., Sobola D., Škvarenina Ľ., Skarvada P., Hemzal D., Tofel P., Grmela L. Degradation analysis of GaAs solar cells at thermal stress. Appl. Surf. Sci. 2018;461:212–220. doi: 10.1016/j.apsusc.2018.05.093. DOI
Jalil M.A., Chowdhury S.S., Alam Sakib M., Yousuf S.M.E.H., Ashik E.K., Firoz S.H., Basith M.A. Temperature-dependent phase transition and comparative investigation on enhanced magnetic and optical properties between sillenite and perovskite bismuth ferrite-rGO nanocomposites. J. Appl. Phys. 2017;122:084902. doi: 10.1063/1.4985840. DOI
Zhang Y., Wang Y., Qi J., Tian Y., Sun M., Zhang J., Hu T., Wei M., Liu Y., Yang J. Enhanced Magnetic Properties of BiFeO3 Thin Films by Doping: Analysis of Structure and Morphology. Nanomaterials. 2018;8:711. doi: 10.3390/nano8090711. PubMed DOI PMC
Lesiak B., Kövér L., Tóth J., Zemek J., Jiříček P., Kromka A., Rangam N. C sp2/sp3 hybridisations in carbon nanomaterials—XPS and (X)AES study. Appl. Surf. Sci. 2018;452:223–231. doi: 10.1016/j.apsusc.2018.04.269. DOI
Webb M., Palmgren P., Pal P., Karis O., Grennberg H. A simple method to produce almost perfect graphene on highly oriented pyrolytic graphite. Carbon. 2011;49:3242–3249. doi: 10.1016/j.carbon.2011.03.050. DOI
Liu L., Zhou Z., Tian H., Li J. Effect of Bismuth Oxide on the Microstructure and Electrical Conductivity of Yttria Stabilized Zirconia. Sensors. 2016;16:369. doi: 10.3390/s16030369. PubMed DOI PMC
Pang X., Liu Z.-Q., Wang S., Shang J. First-principles Investigation of Bi Segregation at the Solder Interface of Cu/Cu3Sn (010) J. Mater. Sci. Technol. 2010;26:1057–1062. doi: 10.1016/S1005-0302(11)60001-7. DOI
Yang C.-W., Lu Y.-H., Hwang I.-S. Imaging surface nanobubbles at graphite–water interfaces with different atomic force microscopy modes. J. Physics: Condens. Matter. 2013;25:184010. doi: 10.1088/0953-8984/25/18/184010. PubMed DOI
Teshima H., Nishiyama T., Takahashi K. Nanoscale pinning effect evaluated from deformed nanobubbles. J. Chem. Phys. 2017;146:014708. doi: 10.1063/1.4973385. PubMed DOI
Backreedy R., Pourkashanian M., Jones J.M., Williams A. A study of the reaction of oxygen with graphite: Model chemistry. Faraday Discuss. 2001;119:385–394. doi: 10.1039/b102063n. PubMed DOI
Yang B., Jin L., Wei R., Tang X., Hu L., Tong P., Yang J., Song W., Dai J., Zhu X., et al. Chemical Solution Route for High-Quality Multiferroic BiFeO3 Thin Films. Small. 2019:e1903663. doi: 10.1002/smll.201903663. PubMed DOI
Ahmad M., Al-Hawat S., Akel M., Mrad O. Characterization of bismuth nanospheres deposited by plasma focus device. J. Appl. Phys. 2015;117:63301. doi: 10.1063/1.4907579. DOI
Terajima H., Fujiwara S. Temperature dependence of the surface diffusion distance of bismuth atoms adsorbed on mica, carbon and silicon monoxide surfaces. Thin Solid Films. 1975;30:55–64. doi: 10.1016/0040-6090(75)90304-1. DOI
Sobola D., Papež N., Dallaev R., Ramazanov S., Hemzal D., Holcman V. Characterization of nanoblisters on HOPG surface Obtaining AlN thin films using hydrazine chloride N2H5Cl View project Plasmon-enhanced Raman spectroscopy View project Characterization of nanoblisters on HOPG surface. Artic. J. Electr. Eng. 2019;70:1–5. doi: 10.2478/jee-2019-00xx. DOI
Sobola D., Ramazanov S., Konečný M., Orudzhev F.F., Kaspar P., Papez N., Knápek A., Potoček M. Complementary SEM-AFM of Swelling Bi-Fe-O Film on HOPG Substrate. Materials. 2020;13:2402. doi: 10.3390/ma13102402. PubMed DOI PMC
Zhang Q., Sando D., Nagarajan V. Chemical route derived bismuth ferrite thin films and nanomaterials. J. Mater. Chem. C. 2016;4:4092–4124. doi: 10.1039/C6TC00243A. DOI
Chen D., Niu F., Qin L., Wang S., Zhang N., Huang Y. Defective BiFeO3 with surface oxygen vacancies: Facile synthesis and mechanism insight into photocatalytic performance. Sol. Energy Mater. Sol. Cells. 2017;171:24–32. doi: 10.1016/j.solmat.2017.06.021. DOI
Wanger C.D., Riggs W.M., Davis L.E., Moulder J.F., Muilenberg G.E. Handbook of X-ray Photoelectron Spectroscopy, Briggs, D., Ed.; Perkin-Elmer Corp., Physical Electronics Division, Eden Prairie, MN, USA, 1979; pp. 190. Surf. Interface Anal. 1981;3 doi: 10.1002/sia.740030412. DOI
Yamashita T., Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008;254:2441–2449. doi: 10.1016/j.apsusc.2007.09.063. DOI
Mukherjee A., Chakrabarty S., Kumari N., Su W.-N., Basu S. Visible-Light-Mediated Electrocatalytic Activity in Reduced Graphene Oxide-Supported Bismuth Ferrite. ACS Omega. 2018;3:5946–5957. doi: 10.1021/acsomega.8b00708. PubMed DOI PMC
Das R., Sharma S., Mandal K. Aliovalent Ba 2+ doping: A way to reduce oxygen vacancy in multiferroic BiFeO3. J. Magn. Magn. Mater. 2016;401:129–137. doi: 10.1016/j.jmmm.2015.10.022. DOI
Barreca D., Morazzoni F., Rizzi G.A., Scotti R., Tondello E. Molecular oxygen interaction with Bi2O3: A spectroscopic and spectromagnetic investigation. Phys. Chem. Chem. Phys. 2001;3:1743–1749. doi: 10.1039/b009482j. DOI
Ohgi T., Sheng H.-Y., Dong Z.-C., Nejoh H., Fujita D. Charging effects in gold nanoclusters grown on octanedithiol layers. Appl. Phys. Lett. 2001;79:2453–2455. doi: 10.1063/1.1409585. DOI
Sarkar S., Chowdhury S., Raghunathan R., Choudhary R.J., Phase D.M. Proceedings Of The International Conference On Advanced Materials: ICAM, Kerala, India, 12–14 June 2019. Volume 2162. AIP Publishing; New York, NY, USA: 2019. Strain induced modification in physical properties of charge-ordered insulator BaBiO3 thin films; p. 020139.
Pei S., Cheng H.-M. The reduction of graphene oxide. Carbon. 2012;50:3210–3228. doi: 10.1016/j.carbon.2011.11.010. DOI
Stobinski L., Lesiak B., Malolepszy A., Mazurkiewicz M., Mierzwa B., Zemek J., Jiricek P., Bieloshapka I. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectrosc. Relat. Phenom. 2014;195:145–154. doi: 10.1016/j.elspec.2014.07.003. DOI
Gupta B., Kumar N., Panda K., Kanan V., Joshi S., Visoly-Fisher I. Role of oxygen functional groups in reduced graphene oxide for lubrication. Sci. Rep. 2017;7:1–14. doi: 10.1038/srep45030. PubMed DOI PMC
Ganguly A., Sharma S., Papakonstantinou P., Hamilton J. Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution In Situ X-ray-Based Spectroscopies. J. Phys. Chem. C. 2011;115:17009–17019. doi: 10.1021/jp203741y. DOI
Gao W. Graphene Oxide. Springer; Cham, Switzerland: 2015. The Chemistry of Graphene Oxide; pp. 61–95. DOI
Sun Y., Hu X., Luo W., Huang Y. Self-Assembled Hierarchical MoO2/Graphene Nanoarchitectures and Their Application as a High-Performance Anode Material for Lithium-Ion Batteries. ACS Nano. 2011;5:7100–7107. doi: 10.1021/nn201802c. PubMed DOI
Kaspar P., Sobola D., Dallaev R., Ramazanov S., Nebojsa A., Rezaee S., Grmela L. Characterization of Fe2O3 thin film on highly oriented pyrolytic graphite by AFM, Ellipsometry and XPS. Appl. Surf. Sci. 2019;493:673–678. doi: 10.1016/j.apsusc.2019.07.058. DOI
Theofanidis S.A., Galvita V.V., Konstantopoulos C., Poelman H., Marin G.B. Fe-Based Nano-Materials in Catalysis. Materials. 2018;11:831. doi: 10.3390/ma11050831. PubMed DOI PMC
Xuan S., Chen M., Hao L., Jiang W., Gong X., Hu Y., Chen Z. Preparation and characterization of microsized FeCO3, Fe3O4 and Fe2O3 with ellipsoidal morphology. J. Magn. Magn. Mater. 2008;320:164–170. doi: 10.1016/j.jmmm.2007.05.019. DOI
Han S., Kim C.S. Weak ferromagnetic behavior of BiFeO3 at low temperature. J. Appl. Phys. 2013;113:17D921-1–17D921-3. doi: 10.1063/1.4801338. DOI
Zhang N., Chen D., Niu F., Wang S., Qin L., Huang Y. Enhanced visible light photocatalytic activity of Gd-doped BiFeO3 nanoparticles and mechanism insight. Sci. Rep. 2016;6:26467. doi: 10.1038/srep26467. PubMed DOI PMC
Guan H., Zhang X., Xie Y. Soft-Chemical Synthetic Nonstoichiometric Bi2O2.33 Nanoflower: A New Room-Temperature Ferromagnetic Semiconductor. J. Phys. Chem. C. 2014;118:27170–27174. doi: 10.1021/jp509045d. DOI
Gomez-Polo C., Larumbe S., Pastor J.M. Room temperature ferromagnetism in non-magnetic doped TiO2 nanoparticles. J. Appl. Phys. 2013;113:17B511-1–17B511-3. doi: 10.1063/1.4795615. DOI
Chen S., Wang H., Kang Z., Jin S., Wang H., Zheng X., Qi Z., Zhu J.-F., Pan B., Xie Y. Oxygen vacancy associated single-electron transfer for photofixation of CO2 to long-chain chemicals. Nat. Commun. 2019;10:1–8. doi: 10.1038/s41467-019-08697-x. PubMed DOI PMC
Sharma V., Ghosh R.K., Kuanr B.K. Investigation of room temperature ferromagnetism in transition metal doped BiFeO3. J. Phys. Condens. Matter. 2019;31:395802. doi: 10.1088/1361-648X/ab29d1. PubMed DOI
Paudel T.R., Jaswal S.S., Tsymbal E.Y. Intrinsic defects in multiferroic BiFeO 3 and their effect on magnetism. Phys. Rev. B. 2012;85 doi: 10.1103/PhysRevB.85.104409. DOI
Albrecht D., Lisenkov S., Ren W., Rahmedov D., Kornev I., Bellaiche L. Ferromagnetism in multiferroicBiFeO3films: A first-principles-based study. Phys. Rev. B. 2010;81:140401. doi: 10.1103/PhysRevB.81.140401. DOI
Bilican D., Menéndez E., Zhang J., Solsona P., Fornell J., Pellicer E., Sort J. Ferromagnetic-like behaviour in bismuth ferrite films prepared by electrodeposition and subsequent heat treatment. RSC Adv. 2017;7:32133–32138. doi: 10.1039/C7RA04375A. DOI
Sepioni M., Nair R.R., Tsai I.-L., Geim A.K., Grigorieva I.V. Revealing common artifacts due to ferromagnetic inclusions in highly oriented pyrolytic graphite. EPL Europhysics Lett. 2012;97:47001. doi: 10.1209/0295-5075/97/47001. DOI
Huang F., Wang Z., Lu X., Zhang J., Min K., Lin W., Ti R., Xu T., He J., Yue C., et al. Peculiar magnetism of BiFeO3 nanoparticles with size approaching the period of the spiral spin structure. Sci. Rep. 2013;3:srep02907. doi: 10.1038/srep02907. PubMed DOI PMC
Rumaiz A.K., Ali B., Ceylan A., Boggs M., Beebe T., Shah S.I. Experimental studies on vacancy induced ferromagnetism in undoped TiO2. Solid State Commun. 2007;144:334–338. doi: 10.1016/j.ssc.2007.08.034. DOI
Rajkumar N., Ramachandran K. Oxygen Deficiency and Room Temperature Ferromagnetism in Undoped and Cobalt-Doped TiO2 Nanoparticles. IEEE Trans. Nanotechnol. 2010;10:513–519. doi: 10.1109/TNANO.2010.2049745. DOI
Chen P., Huang Z., Li M., Yu X., Wu X., Li C., Bao N., Zeng S., Yang P., Qu L., et al. Enhanced Magnetic Anisotropy and Orbital Symmetry Breaking in Manganite Heterostructures. Adv. Funct. Mater. 2019;30 doi: 10.1002/adfm.201909536. DOI
Wu Y.-F., Song H.-D., Zhang L., Yang X., Ren Z., Liu D., Wu H.-C., Wu J., Li J.-G., Jia Z., et al. Magnetic proximity effect in graphene coupled to a BiFeO3 nanoplate. Phys. Rev. B. 2017;95 doi: 10.1103/PhysRevB.95.195426. DOI
Lee Y.H., Han T.C., Huang J.C.A. Magnetic properties of Fe3C nanograins embedded in carbon matrix. J. Appl. Phys. 2003;93:8462–8464. doi: 10.1063/1.1555852. DOI
Wang Z., Tang C., Sachs R., Barlas Y., Shi J. Proximity-Induced Ferromagnetism in Graphene Revealed by the Anomalous Hall Effect. Phys. Rev. Lett. 2015;114:016603. doi: 10.1103/PhysRevLett.114.016603. PubMed DOI
Multiferroic/Polymer Flexible Structures Obtained by Atomic Layer Deposition
Brief Theoretical Overview of Bi-Fe-O Based Thin Films