Surface Modification and Enhancement of Ferromagnetism in BiFeO3 Nanofilms Deposited on HOPG

. 2020 Oct 09 ; 10 (10) : . [epub] 20201009

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33050330

Grantová podpora
TN01000008 Technology Agency of the Czech Republic
RVO:68081731 Akademie Věd České Republiky
FEKT-S-20-6352 Internal Grant Agency of Brno University of Technology
LQ1601 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018110 Ministerstvo Školství, Mládeže a Tělovýchovy

BiFeO3 (BFO) films on highly oriented pyrolytic graphite (HOPG) substrate were obtained by the atomic layer deposition (ALD) method. The oxidation of HOPG leads to the formation of bubble regions creating defective regions with active centers. Chemisorption occurs at these active sites in ALD. Additionally, carbon interacts with ozone and releases carbon oxides (CO, CO2). Further annealing during the in situ XPS process up to a temperature of 923 K showed a redox reaction and the formation of oxygen vacancies (Vo) in the BFO crystal lattice. Bubble delamination creates flakes of BiFeO3-x/rGO heterostructures. Magnetic measurements (M-H) showed ferromagnetism (FM) at room temperature Ms ~ 120 emu/cm3. The contribution to magnetization is influenced by the factor of charge redistribution on Vo causing the distortion of the lattice as well as by the superstructure formed at the boundary of two phases, which causes strong hybridization due to the superexchange interaction of the BFO film with the FM sublattice of the interface region. The development of a method for obtaining multiferroic structures with high FM values (at room temperature) is promising for magnetically controlled applications.

Zobrazit více v PubMed

Baek S.-H., Choi S., Kim T.L., Jang H.W. Domain engineering in BiFeO3 thin films. Curr. Appl. Phys. 2017;17:688–703. doi: 10.1016/j.cap.2017.02.016. DOI

Guo R., You L., Zhou Y., Lim Z.S., Zou X., Chen L., Ramesh R., Wang J. Non-volatile memory based on the ferroelectric photovoltaic effect. Nat. Commun. 2013;4:1990. doi: 10.1038/ncomms2990. PubMed DOI PMC

Vila-Fungueiriño J.M., Gomez A., Antoja-Lleonart J., Gazquez J., Magen C., Noheda B., Carretero-Genevrier A. Direct and converse piezoelectric responses at the nanoscale from epitaxial BiFeO3 thin films grown by polymer assisted deposition. Nanoscale. 2018;10:20155–20161. doi: 10.1039/C8NR05737K. PubMed DOI

Huang C., Chen L. Effects of Interfaces on the Structure and Novel Physical Properties in Epitaxial Multiferroic BiFeO3 Ultrathin Films. Materials. 2014;7:5403–5426. doi: 10.3390/ma7075403. PubMed DOI PMC

Steffes J., Ristau R.A., Ramesh R., Huey B.D. Thickness scaling of ferroelectricity in BiFeO3 by tomographic atomic force microscopy. Proc. Natl. Acad. Sci. USA. 2019;116:2413–2418. doi: 10.1073/pnas.1806074116. PubMed DOI PMC

Graf M., Sepliarsky M., Machado R., Stachiotti M. Dielectric and piezoelectric properties of BiFeO3 from molecular dynamics simulations. Solid State Commun. 2015;218:10–13. doi: 10.1016/j.ssc.2015.06.002. DOI

Jeon J.H., Joo H.-Y., Kim Y.M., Lee D.H., Kim J.-S., Kim Y.S., Choi T., Park B.H. Selector-free resistive switching memory cell based on BiFeO3 nano-island showing high resistance ratio and nonlinearity factor. Sci. Rep. 2016;6:23299. doi: 10.1038/srep23299. PubMed DOI PMC

Jiang A.Q., Zhang Y. Next-generation ferroelectric domain-wall memories: Principle and architecture. NPG Asia Mater. 2019;11:2. doi: 10.1038/s41427-018-0102-x. DOI

Shima H., Naganuma H., Okamur S. Materials Science—Advanced Topics. IntechOpen; London, UK: 2013. Optical Properties of Multiferroic BiFeO3 Films.

Zhu M., Du Z., Liu Q., Chen B., Tsang S.H., Teo E.H.T. Ferroelectric BiFeO3 thin-film optical modulators. Appl. Phys. Lett. 2016;108:233502. doi: 10.1063/1.4953201. DOI

Liou Y.-D., Chiu Y.-Y., Hart R.T., Kuo C.-Y., Huang Y.-L., Wu Y.-C., Chopdekar R.V., Liu H.-J., Tanaka A., Chen C.-T., et al. Deterministic optical control of room temperature multiferroicity in BiFeO3 thin films. Nat. Mater. 2019;18:580–587. doi: 10.1038/s41563-019-0348-x. PubMed DOI

Pisarev R.V., Moskvin A.S., Kalashnikova A.M., Rasing T. Charge transfer transitions in multiferroic BiFeO3 and related ferrite insulators. Phys. Rev. B. 2009;79:79. doi: 10.1103/PhysRevB.79.235128. DOI

Si Y.-H., Xia Y., Shang S.-K., Xiong X.-B., Zeng X., Zhou J., Li Y.-Y. Enhanced Visible Light Driven Photocatalytic Behavior of BiFeO₃/Reduced Graphene Oxide Composites. Nanomaterials. 2018;8:526. doi: 10.3390/nano8070526. PubMed DOI PMC

Pan H., Ma J., Ma J., Zhang Q., Liu X., Guan B., Gu L., Zhang X., Zhang Y.-J., Li L., et al. Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nat. Commun. 2018;9:1813. doi: 10.1038/s41467-018-04189-6. PubMed DOI PMC

Qiao Z., Ren W., Chen H., Bellaiche L., Zhang Z., Macdonald A.H., Niu Q. Quantum Anomalous Hall Effect in Graphene Proximity Coupled to an Antiferromagnetic Insulator. Phys. Rev. Lett. 2014;112:112. doi: 10.1103/PhysRevLett.112.116404. PubMed DOI

Kumar P., Sharma V., Reboredo F.A., Yang L.-M., Pushpa R. Tunable magnetism in metal adsorbed fluorinated nanoporous graphene. Sci. Rep. 2016;6:31841. doi: 10.1038/srep31841. PubMed DOI PMC

Huang D.J., Jeng H.-T., Chang C.-F., Guo G.Y., Chen J., Wu W.P., Chung S.-C., Shyu S.G., Wu C.C., Lin H.-J., et al. Orbital magnetic moments of oxygen and chromium inCrO2. Phys. Rev. B. 2002;66:174440. doi: 10.1103/PhysRevB.66.174440. DOI

Yuan H., Chen H., Kuang A., Wu B. Spin–orbit effect and magnetic anisotropy in Pt clusters. J. Magn. Magn. Mater. 2013;331:7–16. doi: 10.1016/j.jmmm.2012.10.039. DOI

Shin H.W., Son J.Y. Multiferroic BiFeO3 thin films and nanodots grown on highly oriented pyrolytic graphite substrates. J. Cryst. Growth. 2017;480:13–17. doi: 10.1016/j.jcrysgro.2017.10.006. DOI

Catalan G., Scott J.F. Physics and Applications of Bismuth Ferrite. Adv. Mater. 2009;21:2463–2485. doi: 10.1002/adma.200802849. DOI

Zhu J., Chen M., Qu H., Luo Z., Wu S., Colorado H.A., Wei S., Guo Z. Magnetic field induced capacitance enhancement in graphene and magnetic graphene nanocomposites. Energy Environ. Sci. 2013;6:194–204. doi: 10.1039/C2EE23422J. DOI

Miao Q., Zeng M., Zhang Z., Lu X., Dai J., Gao X., Liu J.-M. Self-assembled nanoscale capacitor cells based on ultrathin BiFeO3 films. Appl. Phys. Lett. 2014;104:182903. doi: 10.1063/1.4875617. DOI

Kartavtseva M., Gorbenko O., Kaul A., Murzina T., Savinov S., Barthélémy A. BiFeO3 thin films prepared using metalorganic chemical vapor deposition. Thin Solid Films. 2007;515:6416–6421. doi: 10.1016/j.tsf.2006.11.133. DOI

Huang Y.Q. Study on preparation and property of BiFeO3 thin films by PLD. Gongneng Cailiao/J. Funct. Mater. 2013;44:1469–1471. doi: 10.3969/j.issn.1001-9731.2013.10.022. DOI

Cha J., Ahn J., Lee K., JeongOk C., JeungSun A., KwangBae L. Multiferroic BiFeO3 Thin Films Prepared by Using a Conventional RF Magnetron Sputtering Method. J. Korean Phys. Soc. 2009;54:844–848. doi: 10.3938/jkps.54.844. DOI

Akbashev A.R., Chen G., Spanier J.E. A Facile Route for Producing Single-Crystalline Epitaxial Perovskite Oxide Thin Films. Nano Lett. 2013;14:44–49. doi: 10.1021/nl4030038. PubMed DOI

Marchand B., Jalkanen P., Tuboltsev V., Vehkamäki M., Puttaswamy M., Kemell M., Mizohata K., Hatanpää T., Savin A.M., Räisänen J., et al. Electric and Magnetic Properties of ALD-Grown BiFeO3 Films. J. Phys. Chem. C. 2016;120:7313–7322. doi: 10.1021/acs.jpcc.5b11583. PubMed DOI

Coll M., Gazquez J., Fina I., Khayat Z., Quindeau A., Alexe M., Varela M., Trolier-McKinstry S., Obradors X., Puig T. Nanocrystalline Ferroelectric BiFeO3 Thin Films by Low-Temperature Atomic Layer Deposition. Chem. Mater. 2015;27:6322–6328. doi: 10.1021/acs.chemmater.5b02093. DOI

Cavanagh A.S., Wilson C.A., Weimer A.W., George S.M. Atomic layer deposition on gram quantities of multi-walled carbon nanotubes. Nanotechnol. 2009;20:255602. doi: 10.1088/0957-4484/20/25/255602. PubMed DOI

Xuan Y., Wu Y.Q., Shen T., Qi M., Capano M.A., Cooper J.A., Ye P.D. Atomic-layer-deposited nanostructures for graphene-based nanoelectronics. Appl. Phys. Lett. 2008;92:013101. doi: 10.1063/1.2828338. DOI

Young M.J., Musgrave C.B., George S.M. Growth and Characterization of Al2O3 Atomic Layer Deposition Films on sp2-Graphitic Carbon Substrates Using NO2/Trimethylaluminum Pretreatment. ACS Appl. Mater. Interfaces. 2015;7:12030–12037. doi: 10.1021/acsami.5b02167. PubMed DOI

Wang X., Mao W., Wang Q., Zhu Y., Min Y., Zhang J., Yang T., Yang J., Li X., Huang W. Low-temperature fabrication of Bi25FeO40 /rGO nanocomposites with efficient photocatalytic performance under visible light irradiation. RSC Adv. 2017;7:10064–10069. doi: 10.1039/C6RA27025E. DOI

Knápek A., Sobola D., Tománek P., Pokorná Z., Urbánek M. Field emission from the surface of highly ordered pyrolytic graphite. Appl. Surf. Sci. 2017;395:157–161. doi: 10.1016/j.apsusc.2016.05.002. DOI

Papež N., Sobola D., Škvarenina Ľ., Skarvada P., Hemzal D., Tofel P., Grmela L. Degradation analysis of GaAs solar cells at thermal stress. Appl. Surf. Sci. 2018;461:212–220. doi: 10.1016/j.apsusc.2018.05.093. DOI

Jalil M.A., Chowdhury S.S., Alam Sakib M., Yousuf S.M.E.H., Ashik E.K., Firoz S.H., Basith M.A. Temperature-dependent phase transition and comparative investigation on enhanced magnetic and optical properties between sillenite and perovskite bismuth ferrite-rGO nanocomposites. J. Appl. Phys. 2017;122:084902. doi: 10.1063/1.4985840. DOI

Zhang Y., Wang Y., Qi J., Tian Y., Sun M., Zhang J., Hu T., Wei M., Liu Y., Yang J. Enhanced Magnetic Properties of BiFeO3 Thin Films by Doping: Analysis of Structure and Morphology. Nanomaterials. 2018;8:711. doi: 10.3390/nano8090711. PubMed DOI PMC

Lesiak B., Kövér L., Tóth J., Zemek J., Jiříček P., Kromka A., Rangam N. C sp2/sp3 hybridisations in carbon nanomaterials—XPS and (X)AES study. Appl. Surf. Sci. 2018;452:223–231. doi: 10.1016/j.apsusc.2018.04.269. DOI

Webb M., Palmgren P., Pal P., Karis O., Grennberg H. A simple method to produce almost perfect graphene on highly oriented pyrolytic graphite. Carbon. 2011;49:3242–3249. doi: 10.1016/j.carbon.2011.03.050. DOI

Liu L., Zhou Z., Tian H., Li J. Effect of Bismuth Oxide on the Microstructure and Electrical Conductivity of Yttria Stabilized Zirconia. Sensors. 2016;16:369. doi: 10.3390/s16030369. PubMed DOI PMC

Pang X., Liu Z.-Q., Wang S., Shang J. First-principles Investigation of Bi Segregation at the Solder Interface of Cu/Cu3Sn (010) J. Mater. Sci. Technol. 2010;26:1057–1062. doi: 10.1016/S1005-0302(11)60001-7. DOI

Yang C.-W., Lu Y.-H., Hwang I.-S. Imaging surface nanobubbles at graphite–water interfaces with different atomic force microscopy modes. J. Physics: Condens. Matter. 2013;25:184010. doi: 10.1088/0953-8984/25/18/184010. PubMed DOI

Teshima H., Nishiyama T., Takahashi K. Nanoscale pinning effect evaluated from deformed nanobubbles. J. Chem. Phys. 2017;146:014708. doi: 10.1063/1.4973385. PubMed DOI

Backreedy R., Pourkashanian M., Jones J.M., Williams A. A study of the reaction of oxygen with graphite: Model chemistry. Faraday Discuss. 2001;119:385–394. doi: 10.1039/b102063n. PubMed DOI

Yang B., Jin L., Wei R., Tang X., Hu L., Tong P., Yang J., Song W., Dai J., Zhu X., et al. Chemical Solution Route for High-Quality Multiferroic BiFeO3 Thin Films. Small. 2019:e1903663. doi: 10.1002/smll.201903663. PubMed DOI

Ahmad M., Al-Hawat S., Akel M., Mrad O. Characterization of bismuth nanospheres deposited by plasma focus device. J. Appl. Phys. 2015;117:63301. doi: 10.1063/1.4907579. DOI

Terajima H., Fujiwara S. Temperature dependence of the surface diffusion distance of bismuth atoms adsorbed on mica, carbon and silicon monoxide surfaces. Thin Solid Films. 1975;30:55–64. doi: 10.1016/0040-6090(75)90304-1. DOI

Sobola D., Papež N., Dallaev R., Ramazanov S., Hemzal D., Holcman V. Characterization of nanoblisters on HOPG surface Obtaining AlN thin films using hydrazine chloride N2H5Cl View project Plasmon-enhanced Raman spectroscopy View project Characterization of nanoblisters on HOPG surface. Artic. J. Electr. Eng. 2019;70:1–5. doi: 10.2478/jee-2019-00xx. DOI

Sobola D., Ramazanov S., Konečný M., Orudzhev F.F., Kaspar P., Papez N., Knápek A., Potoček M. Complementary SEM-AFM of Swelling Bi-Fe-O Film on HOPG Substrate. Materials. 2020;13:2402. doi: 10.3390/ma13102402. PubMed DOI PMC

Zhang Q., Sando D., Nagarajan V. Chemical route derived bismuth ferrite thin films and nanomaterials. J. Mater. Chem. C. 2016;4:4092–4124. doi: 10.1039/C6TC00243A. DOI

Chen D., Niu F., Qin L., Wang S., Zhang N., Huang Y. Defective BiFeO3 with surface oxygen vacancies: Facile synthesis and mechanism insight into photocatalytic performance. Sol. Energy Mater. Sol. Cells. 2017;171:24–32. doi: 10.1016/j.solmat.2017.06.021. DOI

Wanger C.D., Riggs W.M., Davis L.E., Moulder J.F., Muilenberg G.E. Handbook of X-ray Photoelectron Spectroscopy, Briggs, D., Ed.; Perkin-Elmer Corp., Physical Electronics Division, Eden Prairie, MN, USA, 1979; pp. 190. Surf. Interface Anal. 1981;3 doi: 10.1002/sia.740030412. DOI

Yamashita T., Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008;254:2441–2449. doi: 10.1016/j.apsusc.2007.09.063. DOI

Mukherjee A., Chakrabarty S., Kumari N., Su W.-N., Basu S. Visible-Light-Mediated Electrocatalytic Activity in Reduced Graphene Oxide-Supported Bismuth Ferrite. ACS Omega. 2018;3:5946–5957. doi: 10.1021/acsomega.8b00708. PubMed DOI PMC

Das R., Sharma S., Mandal K. Aliovalent Ba 2+ doping: A way to reduce oxygen vacancy in multiferroic BiFeO3. J. Magn. Magn. Mater. 2016;401:129–137. doi: 10.1016/j.jmmm.2015.10.022. DOI

Barreca D., Morazzoni F., Rizzi G.A., Scotti R., Tondello E. Molecular oxygen interaction with Bi2O3: A spectroscopic and spectromagnetic investigation. Phys. Chem. Chem. Phys. 2001;3:1743–1749. doi: 10.1039/b009482j. DOI

Ohgi T., Sheng H.-Y., Dong Z.-C., Nejoh H., Fujita D. Charging effects in gold nanoclusters grown on octanedithiol layers. Appl. Phys. Lett. 2001;79:2453–2455. doi: 10.1063/1.1409585. DOI

Sarkar S., Chowdhury S., Raghunathan R., Choudhary R.J., Phase D.M. Proceedings Of The International Conference On Advanced Materials: ICAM, Kerala, India, 12–14 June 2019. Volume 2162. AIP Publishing; New York, NY, USA: 2019. Strain induced modification in physical properties of charge-ordered insulator BaBiO3 thin films; p. 020139.

Pei S., Cheng H.-M. The reduction of graphene oxide. Carbon. 2012;50:3210–3228. doi: 10.1016/j.carbon.2011.11.010. DOI

Stobinski L., Lesiak B., Malolepszy A., Mazurkiewicz M., Mierzwa B., Zemek J., Jiricek P., Bieloshapka I. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectrosc. Relat. Phenom. 2014;195:145–154. doi: 10.1016/j.elspec.2014.07.003. DOI

Gupta B., Kumar N., Panda K., Kanan V., Joshi S., Visoly-Fisher I. Role of oxygen functional groups in reduced graphene oxide for lubrication. Sci. Rep. 2017;7:1–14. doi: 10.1038/srep45030. PubMed DOI PMC

Ganguly A., Sharma S., Papakonstantinou P., Hamilton J. Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution In Situ X-ray-Based Spectroscopies. J. Phys. Chem. C. 2011;115:17009–17019. doi: 10.1021/jp203741y. DOI

Gao W. Graphene Oxide. Springer; Cham, Switzerland: 2015. The Chemistry of Graphene Oxide; pp. 61–95. DOI

Sun Y., Hu X., Luo W., Huang Y. Self-Assembled Hierarchical MoO2/Graphene Nanoarchitectures and Their Application as a High-Performance Anode Material for Lithium-Ion Batteries. ACS Nano. 2011;5:7100–7107. doi: 10.1021/nn201802c. PubMed DOI

Kaspar P., Sobola D., Dallaev R., Ramazanov S., Nebojsa A., Rezaee S., Grmela L. Characterization of Fe2O3 thin film on highly oriented pyrolytic graphite by AFM, Ellipsometry and XPS. Appl. Surf. Sci. 2019;493:673–678. doi: 10.1016/j.apsusc.2019.07.058. DOI

Theofanidis S.A., Galvita V.V., Konstantopoulos C., Poelman H., Marin G.B. Fe-Based Nano-Materials in Catalysis. Materials. 2018;11:831. doi: 10.3390/ma11050831. PubMed DOI PMC

Xuan S., Chen M., Hao L., Jiang W., Gong X., Hu Y., Chen Z. Preparation and characterization of microsized FeCO3, Fe3O4 and Fe2O3 with ellipsoidal morphology. J. Magn. Magn. Mater. 2008;320:164–170. doi: 10.1016/j.jmmm.2007.05.019. DOI

Han S., Kim C.S. Weak ferromagnetic behavior of BiFeO3 at low temperature. J. Appl. Phys. 2013;113:17D921-1–17D921-3. doi: 10.1063/1.4801338. DOI

Zhang N., Chen D., Niu F., Wang S., Qin L., Huang Y. Enhanced visible light photocatalytic activity of Gd-doped BiFeO3 nanoparticles and mechanism insight. Sci. Rep. 2016;6:26467. doi: 10.1038/srep26467. PubMed DOI PMC

Guan H., Zhang X., Xie Y. Soft-Chemical Synthetic Nonstoichiometric Bi2O2.33 Nanoflower: A New Room-Temperature Ferromagnetic Semiconductor. J. Phys. Chem. C. 2014;118:27170–27174. doi: 10.1021/jp509045d. DOI

Gomez-Polo C., Larumbe S., Pastor J.M. Room temperature ferromagnetism in non-magnetic doped TiO2 nanoparticles. J. Appl. Phys. 2013;113:17B511-1–17B511-3. doi: 10.1063/1.4795615. DOI

Chen S., Wang H., Kang Z., Jin S., Wang H., Zheng X., Qi Z., Zhu J.-F., Pan B., Xie Y. Oxygen vacancy associated single-electron transfer for photofixation of CO2 to long-chain chemicals. Nat. Commun. 2019;10:1–8. doi: 10.1038/s41467-019-08697-x. PubMed DOI PMC

Sharma V., Ghosh R.K., Kuanr B.K. Investigation of room temperature ferromagnetism in transition metal doped BiFeO3. J. Phys. Condens. Matter. 2019;31:395802. doi: 10.1088/1361-648X/ab29d1. PubMed DOI

Paudel T.R., Jaswal S.S., Tsymbal E.Y. Intrinsic defects in multiferroic BiFeO 3 and their effect on magnetism. Phys. Rev. B. 2012;85 doi: 10.1103/PhysRevB.85.104409. DOI

Albrecht D., Lisenkov S., Ren W., Rahmedov D., Kornev I., Bellaiche L. Ferromagnetism in multiferroicBiFeO3films: A first-principles-based study. Phys. Rev. B. 2010;81:140401. doi: 10.1103/PhysRevB.81.140401. DOI

Bilican D., Menéndez E., Zhang J., Solsona P., Fornell J., Pellicer E., Sort J. Ferromagnetic-like behaviour in bismuth ferrite films prepared by electrodeposition and subsequent heat treatment. RSC Adv. 2017;7:32133–32138. doi: 10.1039/C7RA04375A. DOI

Sepioni M., Nair R.R., Tsai I.-L., Geim A.K., Grigorieva I.V. Revealing common artifacts due to ferromagnetic inclusions in highly oriented pyrolytic graphite. EPL Europhysics Lett. 2012;97:47001. doi: 10.1209/0295-5075/97/47001. DOI

Huang F., Wang Z., Lu X., Zhang J., Min K., Lin W., Ti R., Xu T., He J., Yue C., et al. Peculiar magnetism of BiFeO3 nanoparticles with size approaching the period of the spiral spin structure. Sci. Rep. 2013;3:srep02907. doi: 10.1038/srep02907. PubMed DOI PMC

Rumaiz A.K., Ali B., Ceylan A., Boggs M., Beebe T., Shah S.I. Experimental studies on vacancy induced ferromagnetism in undoped TiO2. Solid State Commun. 2007;144:334–338. doi: 10.1016/j.ssc.2007.08.034. DOI

Rajkumar N., Ramachandran K. Oxygen Deficiency and Room Temperature Ferromagnetism in Undoped and Cobalt-Doped TiO2 Nanoparticles. IEEE Trans. Nanotechnol. 2010;10:513–519. doi: 10.1109/TNANO.2010.2049745. DOI

Chen P., Huang Z., Li M., Yu X., Wu X., Li C., Bao N., Zeng S., Yang P., Qu L., et al. Enhanced Magnetic Anisotropy and Orbital Symmetry Breaking in Manganite Heterostructures. Adv. Funct. Mater. 2019;30 doi: 10.1002/adfm.201909536. DOI

Wu Y.-F., Song H.-D., Zhang L., Yang X., Ren Z., Liu D., Wu H.-C., Wu J., Li J.-G., Jia Z., et al. Magnetic proximity effect in graphene coupled to a BiFeO3 nanoplate. Phys. Rev. B. 2017;95 doi: 10.1103/PhysRevB.95.195426. DOI

Lee Y.H., Han T.C., Huang J.C.A. Magnetic properties of Fe3C nanograins embedded in carbon matrix. J. Appl. Phys. 2003;93:8462–8464. doi: 10.1063/1.1555852. DOI

Wang Z., Tang C., Sachs R., Barlas Y., Shi J. Proximity-Induced Ferromagnetism in Graphene Revealed by the Anomalous Hall Effect. Phys. Rev. Lett. 2015;114:016603. doi: 10.1103/PhysRevLett.114.016603. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...