Atomic Layer Deposition of Mixed-Layered Aurivillius Phase on TiO2 Nanotubes: Synthesis, Characterization and Photoelectrocatalytic Properties
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
20-33-90220
Russian Foundation for Basic Research
PubMed
33147745
PubMed Central
PMC7693954
DOI
10.3390/nano10112183
PII: nano10112183
Knihovny.cz E-resources
- Keywords
- Aurivillius phase, TiO2 nanotubes, atomic layer deposition, layered perovskite, photocatalysis, photoelectrocatalysis,
- Publication type
- Journal Article MeSH
For the first time, one-dimensional phase-modulated structures consisting of two different layered Aurivillius phases with alternating five and six perovskite-like layers were obtained by atomic layer deposition (ALD) on the surface of TiO2 nanotubes (Nt). It was shown that the use of vertically oriented TiO2 Nt as the substrate and the ALD technology of a two-layer Bi2O3-FeOx sandwich-structure make it possible to obtain a layered structure due to self-organization during annealing. A detailed study by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that the coating is conformal. Raman spectroscopic analysis indicated the structure of the layered Aurivillius phases. Transient photocurrent responses under Ultraviolet-Visible (UV-Vis) light irradiation show that the ALD coating benefits the efficiency of photon excitation of electrons. The results of the photoelectrocatalytic experiments (PEC) with methyl orange degradation as a model demonstrate the significant potential of the synthesized structure as a photocatalyst. Photoluminescent measurement showed a decrease in the probability of recombination of photogenerated electron-hole pairs for ALD-coated TiO2 Nt, which demonstrates the high potential of these structures for use in photocatalytic and photoelectrochemical applications.
Central European Institute of Technology BUT Purkyňova 123 61200 Brno Czech Republic
Nanosciences African Network 1 Old Faure Road 7129 P O Box 722 Somerset West 8000 South Africa
See more in PubMed
Krzhizhanovskaya M., Filatov S., Gusarov V., Paufler P., Bubnova R., Morozov M., Meyer D.C. Aurivillius phases in the Bi4Ti3O12/ BiFeO3 system: Thermal behaviour and crystal structure. Z. Anorg. Allg. Chem. 2005;631:1603–1608. doi: 10.1002/zaac.200500130. DOI
Lomanova N.A., Morozov M.I., Ugolkov V.L., Gusarov V.V. Properties of Aurivillius phases in the Bi4Ti3O12-BiFeO3 system. Inorg. Mater. 2006;42:189–195. doi: 10.1134/S0020168506020142. DOI
Lomanova N.A., Semenov V.G., Panchuk V.V., Gusarov V.V. Structural changes in the homologous series of the Aurivillius phases Bin+1Fen-3Ti3O3n+3. J. Alloys Compd. 2012;528:103–108. doi: 10.1016/j.jallcom.2012.03.040. DOI
Deepak N., Carolan P., Keeney L., Pemble M.E., Whatmore R.W. Tunable nanoscale structural disorder in Aurivillius phase, n = 3 Bi4Ti3O12 thin films and their role in the transformation to n = 4, Bi5Ti3FeO15 phase. J. Mater. Chem. C. 2015;3:5727–5732. doi: 10.1039/C5TC01064K. DOI
García-Guaderrama M., Fuentes L., Márquez-Lucero A., Blanco O. Structural stability and cation disorder in Aurivillius phases. Mater. Res. Bull. 2012;47:3850–3854. doi: 10.1016/j.materresbull.2012.08.038. DOI
Wu M., Tian Z., Yuan S., Huang Z. Magnetic and optical properties of the Aurivillius phase Bi5Ti3FeO15. Mater. Lett. 2012;68:190–192. doi: 10.1016/j.matlet.2011.09.113. DOI
Yan S., Feng Z., Ma Z., Zhang Y., Ye W. Multiferroic properties of Bi5Ti3FeO15 ceramics prepared by hot-pressing methods. Mater. Lett. 2018;227:247–249. doi: 10.1016/j.matlet.2018.05.096. DOI
Ola O., Maroto-Valer M.M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol. C Photochem. Rev. 2015;24:16–42. doi: 10.1016/j.jphotochemrev.2015.06.001. DOI
Sun S., Wang W., Xu H., Zhou L., Shang M., Zhang L. Bi5FeTi3O15 hierarchical microflowers: Hydrothermal synthesis, growth mechanism, and associated visible-light-driven photocatalysis. J. Phys. Chem. C. 2008;112:17835–17843. doi: 10.1021/jp807379c. DOI
Naresh G., Malik J., Meena V., Mandal T.K. PH-Mediated Collective and Selective Solar Photocatalysis by a Series of Layered Aurivillius Perovskites. ACS Omega. 2018;3:11104–11116. doi: 10.1021/acsomega.8b01054. PubMed DOI PMC
Abbas W.A., Abdullah I.H., Ali B.A., Ahmed N., Mohamed A.M., Rezk M.Y., Ismail N., Mohamed M.A., Allam N.K. Recent advances in the use of TiO2 nanotube powder in biological, environmental, and energy applications. Nanoscale Adv. 2019;1:2801–2816. doi: 10.1039/C9NA00339H. PubMed DOI PMC
Dvorak F., Zazpe R., Krbal M., Sopha H., Prikryl J., Ng S., Hromadko L., Bures F., Macak J.M. One-dimensional anodic TiO2 nanotubes coated by atomic layer deposition: Towards advanced applications. Appl. Mater. Today. 2019;14:1–20. doi: 10.1016/j.apmt.2018.11.005. DOI
Orudzhev F.F., Aliev Z.M., Gasanova F.G., Isaev A.B., Shabanov N.S. Photoelectrocatalytic Oxidation of Phenol on TiO2 Nanotubes under Oxygen Pressure. Russ. J. Electrochem. 2015;51:1247–1253. doi: 10.1134/S1023193515110130. DOI
Sobola D., Ramazanov S., Konečný M., Orudzhev F., Kaspar P., Papež N., Knápek A., Potoček M. Complementary SEM-AFM of Swelling Bi-Fe-O Film on HOPG Substrate. Materials. 2020;13:2402. doi: 10.3390/ma13102402. PubMed DOI PMC
Ramazanov S., Sobola D., Orudzhev F., Knápek A., Polčák J., Potoček M., Dallaev R. Surface Modification and Enhancement of Ferromagnetism in BiFeO3 Nanofilms Deposited on HOPG. Nanomaterials. 2020;10:1990. doi: 10.3390/nano10101990. PubMed DOI PMC
Leu C.C., Lin T.J., Chen S.Y., Hu C.T. Effects of bismuth oxide buffer layer on BiFeO3 thin film. J. Am. Ceram. Soc. 2015;98:724–731. doi: 10.1111/jace.13377. DOI
Akbashev A.R., Chen G., Spanier J.E. A facile route for producing single-crystalline epitaxial perovskite oxide thin films. Nano Lett. 2014;14:44–49. doi: 10.1021/nl4030038. PubMed DOI
Shen Y.D., Li Y.W., Li W.M., Zhang J.Z., Hu Z.G., Chu J.H. Growth of Bi2O3 ultrathin films by atomic layer deposition. J. Phys. Chem. C. 2012;116:3449–3456. doi: 10.1021/jp205180p. DOI
Aurivillius B. Mixed Bismuth Oxides with Layer lattices: I. The Structure Type of CaBi2Nb2O9. Ark. Kemi Band I. 1949;54:463–480.
Lu C.D., Chang L.S., Lu Y.F., Lu F.H. The growth of interfacial compounds between titanium dioxide and bismuth oxide. Ceram. Int. 2009;35:2699–2704. doi: 10.1016/j.ceramint.2009.03.001. DOI
Morozov M.I., Gusarov V.V. Synthesis of Am-1Bi2MmO3m+3 compounds in the Bi4Ti3O12-BiFeO3 system. Inorg. Mater. 2002;38:723–729. doi: 10.1023/A:1016252727831. DOI
Sun S., Wang G., Huang Y., Wang J., Peng R., Lu Y. Structural transformation and multiferroic properties in Gd-doped Bi7Fe3Ti3O21 ceramics. RSC Adv. 2014;4:30440–30446. doi: 10.1039/C4RA04945D. DOI
Sun S., Chen Z., Wang G., Geng X., Xiao Z., Sun Z., Sun Z., Peng R., Lu Y. Nanoscale Structural Modulation and Lowerature Magnetic Response in Mixed-layer Aurivillius-type Oxides. Sci. Rep. 2018;8:871. doi: 10.1038/s41598-018-19448-1. PubMed DOI PMC
Sun S., Yan H., Wang G., Wang J., Peng R., Fu Z., Zhai X., Mao X., Chen X., Lu Y. Room-temperature multiferroic responses arising from 1D phase modulation in correlated Aurivillius-type layer structures. J. Phys. D Appl. Phys. 2016;49:125005. doi: 10.1088/0022-3727/49/12/125005. DOI
Armstrong R.A., Newnham R.E. Bismuth titanate solid solutions. Mater. Res. Bull. 1972;7:1025–1034. doi: 10.1016/0025-5408(72)90154-7. DOI
Kikuchi T. Stability of layered bismuth compounds in relation to the structural mismatch. Mater. Res. Bull. 1979;14:1561–1569. doi: 10.1016/0025-5408(72)90226-7. DOI
Macak J.M., Tsuchiya H., Ghicov A., Yasuda K., Hahn R., Bauer S., Schmuki P. TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Curr. Opin. Solid State Mater. Sci. 2007;11:3–18. doi: 10.1016/j.cossms.2007.08.004. DOI
Achary S.N., Patwe S.J., Krishna P.S.R., Shinde A.B., Tyagi A.K. Cation disorder and structural studies on Bi4-xNd xTi3O12 (0.0 ≤ × ≤ 2.0) Pramana J. Phys. 2008;71:935–940. doi: 10.1007/s12043-008-0203-0. DOI
Zhang S.T., Lu M.H., Wu D., Chen Y.F., Ming N.B. Larger polarization and weak ferromagnetism in quenched BiFeO3 ceramics with a distorted rhombohedral crystal structure. Appl. Phys. Lett. 2005;87:262907. doi: 10.1063/1.2147719. DOI
Venkata Ramana E., Prasad N.V., Figueiras F., Lajaunie L., Arenal R., Otero-Irurueta G., Valente M.A. The growth and improved magnetoelectric response of strain-modified Aurivillius SrBi4.25La0.75Ti4FeO18 thin films. Dalt. Trans. 2019;48:13224–13241. doi: 10.1039/C9DT01667H. PubMed DOI
Giorgi L., Dikonimos T., Giorgi R., Buonocore F., Faggio G., Messina G., Lisi N. Electrochemical synthesis of self-organized TiO2 crystalline nanotubes without annealing. Nanotechnology. 2018;29:095604. doi: 10.1088/1361-6528/aaa448. PubMed DOI
Du Y.L., Chen G., Zhang M.S. Grain size effects in Bi4Ti3O12 nanocrystals investigated by Raman spectroscopy. Solid State Commun. 2004;132:175–179. doi: 10.1016/j.ssc.2004.07.056. DOI
Rodríguez Aranda M.D.C., Rodríguez-Vázquez Á.G., Salazar-Kuri U., Mendoza M.E., Navarro-Contreras H.R. Raman effect in multiferroic Bi5Fe1+xTi3-xO15 solid solutions: A temperature study. J. Appl. Phys. 2018;123:084101. doi: 10.1063/1.5019291. DOI
Rodrigues H.O., Pires Junior G.F.M., Sales A.J.M., Silva P.M.O., Costa B.F.O., Alcantara P., Moreira S.G.C., Sombra A.S.B. BiFeO3 ceramic matrix with Bi2O3 or PbO added: Mössbauer, Raman and dielectric spectroscopy studies. Phys. B Condens. Matter. 2011;406:2532–2539. doi: 10.1016/j.physb.2011.03.050. DOI
Quintana-Cilleruelo J.Á., Veerapandiyan V.K., Deluca M., Algueró M., Castro A. Mechanosynthesis of the whole Y1-xBixMn1-xFexO3 perovskite system: Structural characterization and study of phase transitions. Materials. 2019;12:1515. doi: 10.3390/ma12091515. PubMed DOI PMC
Lv K., Hu J., Li X., Li M. Cysteine modified anatase TiO2 hollow microspheres with enhanced visible-light-driven photocatalytic activity. J. Mol. Catal. A Chem. 2012;356:78–84. doi: 10.1016/j.molcata.2011.12.028. DOI
Yu J., Ma T., Liu S. Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel. Phys. Chem. Chem. Phys. 2011;13:3491–3501. doi: 10.1039/C0CP01139H. PubMed DOI
Iatsunskyi I., Coy E., Viter R., Nowaczyk G., Jancelewicz M., Baleviciute I., Załeski K., Jurga S. Study on Structural, Mechanical, and Optical Properties of Al2O3-TiO2 Nanolaminates Prepared by Atomic Layer Deposition. J. Phys. Chem. C. 2015;119:20591–20599. doi: 10.1021/acs.jpcc.5b06745. DOI
Li D., Haneda H., Hishita S., Ohashi N. Visible-light-driven N-F-codoped TiO2 photocatalysts. 2. Optical characterization, photocatalysis, and potential application to air purification. Chem. Mater. 2005;17:2596–2602. doi: 10.1021/cm049099p. DOI
Zhu A., Zhao Q., Li X., Shi Y. BiFeO3/TiO2 Nanotube Arrays Composite Electrode: Construction, Characterization, and Enhanced Photoelectrochemical Properties. ACS Appl. Mater. Interfaces. 2014;6:671–679. doi: 10.1021/am404774z. PubMed DOI
Zhang G., Cai L., Zhang Y., Wei Y. Bi5+, Bi(3−x)+, and Oxygen Vacancy Induced BiOClxI1−x Solid Solution toward Promoting Visible-Light Driven Photocatalytic Activity. Chem. Eur. J. 2018;24:7434–7444. doi: 10.1002/chem.201706164. PubMed DOI
Yuan B., Yang J., Song D.P., Zuo X.Z., Tang X.W., Zhu X.B., Dai J.M., Song W.H., Sun Y.P. Structural, magnetic, and dielectric studies of the Aurivillius compounds SrBi5Ti4MnO18 and SrBi5Ti4Mn0.5Co0.5O18. J. Appl. Phys. 2015;117:023907. doi: 10.1063/1.4905848. DOI
Zuo X., Zhu S., Bai J., He E., Hui Z., Zhang P., Song D., Song W., Yang J., Zhu X., et al. Enhanced multiferroicity and narrow band gap in B-site Co-doped Aurivillius Bi5FeTi3O15. Ceram. Int. 2019;45:137–143. doi: 10.1016/j.ceramint.2018.09.144. DOI
Wanger C.D., Riggs W.M., Davis L.E., Moulder J.F., Muilenberg G.E. Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Corp., Physical Electronics Division; Eden Prairie, MN, USA: 1979. 190p
Song D., Zuo X., Yuan B., Tang X., Song W., Yang J., Zhu X., Sun Y. Enhanced remnant polarization in ferroelectric Bi6Fe2Ti3O18 thin films. CrystEngComm. 2015;17:1609–1614. doi: 10.1039/C4CE02381A. DOI
Liu X., Xu L., Huang Y., Qin C., Qin L., Seo H.J. Improved photochemical properties of Aurivillius Bi5Ti3FeO15 with partial substitution of Ti4+ with Fe3+ Ceram. Int. 2017;43:12372–12380. doi: 10.1016/j.ceramint.2017.06.103. DOI
Sanjinés R., Tang H., Berger H., Gozzo F., Margaritondo G., Lévy F. Electronic structure of anatase TiO2 oxide. J. Appl. Phys. 1994;75:2945. doi: 10.1063/1.356190. DOI
Bertóti I., Mohai M., Sullivan J.L., Saied S.O. Surface characterisation of plasma-nitrided titanium: An XPS study. Appl. Surf. Sci. 1995;84:357–371. doi: 10.1016/0169-4332(94)00545-1. DOI
Bharti B., Kumar S., Lee H.N., Kumar R. Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci. Rep. 2016;6:32355. doi: 10.1038/srep32355. PubMed DOI PMC
Di Mo S., Ching W.Y. Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Phys. Rev. B. 1995;51:13023–13032. PubMed
Li X., Ju Z., Li F., Huang Y., Xie Y., Fu Z., Knize R.J., Lu Y. Visible light responsive Bi7Fe3Ti3O21 nanoshelf photocatalysts with ferroelectricity and ferromagnetism. J. Mater. Chem. A. 2014;2:13366–13372. doi: 10.1039/C4TA01799D. DOI
Urbach F. The long-wavelength edge of photographic sensitivity and of the electronic Absorption of Solids. Phys. Rev. 1953;92:1324. doi: 10.1103/PhysRev.92.1324. DOI
Ilican S., Caglar Y., Caglar M., Kundakci M., Ates A. Photovoltaic solar cell properties of CdxZn1-xO films prepared by sol-gel method. Int. J. Hydrog. Energy. 2009;34:5201–5207. doi: 10.1016/j.ijhydene.2008.10.022. DOI
Bai W., Xu W.F., Wu J., Zhu J.Y., Chen G., Yang J., Lin T., Meng X.J., Tang X.D., Chu J.H. Investigations on electrical, magnetic and optical behaviors of five-layered Aurivillius Bi6Ti3Fe2O18 polycrystalline films. Thin Solid Films. 2012;525:195–199. doi: 10.1016/j.tsf.2012.10.058. DOI
Choudhury B., Choudhury A. Oxygen defect dependent variation of band gap, Urbach energy and luminescence property of anatase, anatase-rutile mixed phase and of rutile phases of TiO2 nanoparticles. Phys. E Low-Dimens. Syst. Nanostruct. 2014;56:364–371. doi: 10.1016/j.physe.2013.10.014. DOI
Kim S., Ko K.C., Lee J.Y., Illas F. Single oxygen vacancies of (TiO2)35 as a prototype reduced nanoparticle: Implication for photocatalytic activity. Phys. Chem. Chem. Phys. 2016;18:23755–23762. doi: 10.1039/C6CP04515D. PubMed DOI
Ouyang B., Zhang K., Yang Y. Photocurrent Polarity Controlled by Light Wavelength in Self-Powered ZnO Nanowires/SnS Photodetector System. IScience. 2018;1:16–23. doi: 10.1016/j.isci.2018.01.002. PubMed DOI PMC
Morgan B.J., Watson G.W. Intrinsic n-type defect formation in TiO2: A comparison of rutile and anatase from GGA+U calculations. J. Phys. Chem. C. 2010;114:2321–2328. doi: 10.1021/jp9088047. DOI
Takahashi M., Noguchi Y., Miyayama M. Electrical conduction mechanism in Bi4Ti3O12 single crystal. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 2002;41:7053–7056. doi: 10.1143/JJAP.41.7053. DOI
Long M., Cai W., Cai J., Zhou B., Chai X., Wu Y. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. J. Phys. Chem. B. 2006;110:20211–20216. doi: 10.1021/jp063441z. PubMed DOI
Multiferroic/Polymer Flexible Structures Obtained by Atomic Layer Deposition