• This record comes from PubMed

Homocysteine enhances the excitability of cultured hippocampal neurons without altering the gene expression of voltage-gated ion channels

. 2025 Apr 10 ; 18 (1) : 31. [epub] 20250410

Language English Country Great Britain, England Media electronic

Document type Journal Article

Grant support
2/0081/22 VEGA
2/0081/22 VEGA
2/0081/22 VEGA
2/0081/22 VEGA
2/0081/22 VEGA
START/MED/054 Charles University
START/MED/054 Charles University
START/MED/054 Charles University
START/MED/054 Charles University

Links

PubMed 40211242
PubMed Central PMC11983933
DOI 10.1186/s13041-025-01205-x
PII: 10.1186/s13041-025-01205-x
Knihovny.cz E-resources

Elevated plasma homocysteine (Hcy) levels lead to hyperhomocysteinemia, a condition associated with various neurological disorders affecting multiple brain regions, including the hippocampus. In this study, we investigated the effects of exposing cultured rat hippocampal neurons to Hcy concentrations corresponding to mild, moderate, and severe hyperhomocysteinemia. A short 24-hour exposure had minimal effects, whereas prolonged exposure up to 14 days moderately enhanced hippocampal excitability without altering the gene expression of voltage-dependent calcium, sodium, or potassium channels or intracellular calcium levels. These findings suggest that Hcy-induced changes in neuronal excitability may contribute to neuropathologies associated with hyperhomocysteinemia.

See more in PubMed

Nygård O, Vollset SE, Refsum H, Brattström L, Ueland PM. Total homocysteine and cardiovascular disease. J Intern Med. 1999;246:425–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10583714 PubMed

González-Lamuño D, Arrieta-Blanco FJ, Fuentes ED, Forga-Visa MT, Morales-Conejo M, Peña-Quintana L et al. Hyperhomocysteinemia in Adult Patients: A Treatable Metabolic Condition. Nutrients. 2023;16:135. Available from: http://www.ncbi.nlm.nih.gov/pubmed/38201964 PubMed PMC

Postnikova TY, Amakhin DV, Trofimova AM, Tumanova NL, Dubrovskaya NM, Kalinina DS et al. Maternal Hyperhomocysteinemia Produces Memory Deficits Associated with Impairment of Long-Term Synaptic Plasticity in Young Rats. Cells. 2022;12:58. Available from: http://www.ncbi.nlm.nih.gov/pubmed/36611852 PubMed PMC

Tagliari B, Zamin LL, Salbego CG, Netto CA, Wyse ATS. Homocysteine increases neuronal damage in hippocampal slices receiving oxygen and glucose deprivation. Metab Brain Dis. 2006;21:273–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17103328 PubMed

Schaub C, Uebachs M, Beck H, Linnebank M. Chronic homocysteine exposure causes changes in the intrinsic electrophysiological properties of cultured hippocampal neurons. Exp Brain Res. 2013;225:527–34. Available from: http://link.springer.com/10.1007/s00221-012-3392-1 PubMed

Gaifullina AS, Lazniewska J, Gerasimova EV, Burkhanova GF, Rzhepetskyy Y, Tomin A et al. A potential role for T-type calcium channels in homocysteinemia-induced peripheral neuropathy. Pain. 2019;160:2798–810. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31365467 PubMed

Deep SN, Mitra S, Rajagopal S, Paul S, Poddar R. GluN2A-NMDA receptor-mediated sustained Ca2 + influx leads to homocysteine-induced neuronal cell death. J Biol Chem. 2019;294:11154–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31167782 PubMed PMC

Vitale P, Librizzi F, Vaiana AC, Capuana E, Pezzoli M, Shi Y et al. Different responses of mice and rats hippocampus CA1 pyramidal neurons to in vitro and in vivo-like inputs. Front Cell Neurosci. 2023;17:1281932. Available from: http://www.ncbi.nlm.nih.gov/pubmed/38130870 PubMed PMC

Jindal A, Rajagopal S, Winter L, Miller JW, Jacobsen DW, Brigman J et al. Hyperhomocysteinemia leads to exacerbation of ischemic brain damage: Role of GluN2A NMDA receptors. Neurobiol Dis. 2019;127:287–302. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30885791 PubMed PMC

Yakovlev AV, Kurmashova E, Gataulina E, Gerasimova E, Khalilov I, Sitdikova GF. Maternal hyperhomocysteinemia increases seizures susceptibility of neonatal rats. Life Sci. 2023;329:121953. Available from: http://www.ncbi.nlm.nih.gov/pubmed/37467884 PubMed

Postnikova TY, Griflyuk AV, Tumanova NL, Dubrovskaya NM, Mikhel AV, Vasilev DS et al. Prenatal Hyperhomocysteinemia Leads to Synaptic Dysfunction and Structural Alterations in the CA1 Hippocampus of Rats. Biomolecules. 2025;15:305. Available from: http://www.ncbi.nlm.nih.gov/pubmed/40001608 PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...