Prosaposin deficiency: further characterization of the sphingolipid activator protein-deficient sibs. Multiple glycolipid elevations (including lactosylceramidosis), partial enzyme deficiencies and ultrastructure of the skin in this generalized sphingolipid storage disease
Jazyk angličtina Země Německo Médium print
Typ dokumentu kazuistiky, časopisecké články, práce podpořená grantem
PubMed
8370580
DOI
10.1007/bf00219682
Knihovny.cz E-zdroje
- MeSH
- aktivace enzymů MeSH
- ceramidy metabolismus MeSH
- chromatografie na tenké vrstvě MeSH
- fibroblasty metabolismus MeSH
- gangliosidy metabolismus MeSH
- glykolipidy metabolismus MeSH
- glykoproteiny nedostatek MeSH
- glykosfingolipidy metabolismus MeSH
- játra metabolismus MeSH
- kůže metabolismus ultrastruktura MeSH
- ledviny metabolismus MeSH
- lidé MeSH
- liposomy metabolismus MeSH
- lyzozomy ultrastruktura MeSH
- mozek - chemie MeSH
- nemoci plodu metabolismus patologie MeSH
- novorozenec MeSH
- proteinové prekurzory nedostatek MeSH
- saposiny MeSH
- sfingolipidózy metabolismus patologie MeSH
- sulfoglykosfingolipidy metabolismus MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ceramidy MeSH
- gangliosidy MeSH
- glykolipidy MeSH
- glykoproteiny MeSH
- glykosfingolipidy MeSH
- liposomy MeSH
- proteinové prekurzory MeSH
- PSAP protein, human MeSH Prohlížeč
- saposiny MeSH
- sulfoglykosfingolipidy MeSH
Sphingolipid activator protein (SAP) deficiency, previously described in two sibs and shown to be caused by the absence of the common saposin precursor (prosaposin), was further characterized by biochemical lipid and enzyme studies and by ultrastructural analysis. The 20-week-old fetal sib had increased concentrations of neutral glycolipids, including mono-, di-, tri- and tetrahexosylceramide, in liver, kidney and cultured skin fibroblasts compared with the controls. Glucosylceramide and lactosylceramide were particularly elevated. The kidney of the affected fetus showed additional increases in the concentration of sulphatide, galactosylceramide and digalactosylceramide. Free ceramide was stored in the liver and kidney, and GM3 and GM2 gangliosides were elevated in the liver, but not the brain, of the fetus. Phospholipids, however, were normal in the affected fetus. In the liver biopsy of the propositus, who later died at 16 weeks of age, only a few lipids could be studied. Glucosylceramide, dihexosylceramide and ceramide were elevated in agreement with our previous study. Enzyme studies were undertaken using detergent-free liposomal substrate preparations and fibroblast extracts. The sibs' beta-glucocerebrosidase and beta-galactocerebrosidase activities were clearly reduced, but their sphingomyelinase activities were normal. The normal activity of the latter enzyme and the almost normal tissue concentration of sphingomyelin in prosaposin deficiency suggest that the prosaposin-derived SAPs are not required for sphingomyelinase activity in vivo. In keeping with the biochemical findings, skin biopsies from the sibs showed massive lysosomal storage with a vesicular and membranous ultrastructure. The function of SAPs in sphingolipid degradation and the role of SAPs for enzyme activity in vitro are discussed. In addition, the similarity in neutral glycolipid accumulations in Niemann-Pick disease type C and in prosaposin deficiency are noted. The phenotype of the prosaposin deficient sibs resembled acute neuronopathic (type 2) Gaucher disease more than Farber disease in several aspects, but their genotype was unique.
Zobrazit více v PubMed
Clin Chim Acta. 1985 Mar 15;146(2-3):147-56 PubMed
Dev Neurosci. 1991;13(4-5):307-14 PubMed
J Biol Chem. 1992 Feb 15;267(5):3312-5 PubMed
Biochim Biophys Acta. 1986 Nov 14;879(2):215-20 PubMed
J Chromatogr. 1990 Nov 30;533:297-9 PubMed
J Biol Chem. 1991 Aug 15;266(23):15021-7 PubMed
Klin Wochenschr. 1989 Oct 2;67(19):999-1003 PubMed
Biol Chem Hoppe Seyler. 1988 May;369(5):317-28 PubMed
Lipids. 1970 May;5(5):494-6 PubMed
J Biol Chem. 1990 Feb 5;265(4):1933-7 PubMed
Proc Natl Acad Sci U S A. 1989 May;86(9):3389-93 PubMed
Proc Natl Acad Sci U S A. 1983 Mar;80(5):1313-7 PubMed
Arch Biochem Biophys. 1987 Dec;259(2):627-38 PubMed
Anal Biochem. 1985 Apr;146(1):220-31 PubMed
Virchows Arch A Pathol Anat Histopathol. 1984;402(3):307-17 PubMed
J Chromatogr. 1973 Nov 7;86(1):200-4 PubMed
Science. 1988 Aug 26;241(4869):1098-101 PubMed
Biol Chem Hoppe Seyler. 1986 Sep;367(9):879-90 PubMed
Biochim Biophys Acta. 1984 Apr 18;793(2):141-8 PubMed
Am J Hum Genet. 1981 Nov;33(6):900-6 PubMed
Biol Chem Hoppe Seyler. 1985 Mar;366(3):245-56 PubMed
Proc Natl Acad Sci U S A. 1978 Aug;75(8):3979-83 PubMed
Eur J Pediatr. 1989 Oct;149(1):31-9 PubMed
Methods Enzymol. 1987;138:792-815 PubMed
Hum Genet. 1992 Jul;89(5):513-8 PubMed
J Biol Chem. 1985 Feb 10;260(3):1867-71 PubMed
Biochim Biophys Acta. 1982 Sep 14;712(3):639-49 PubMed
FASEB J. 1991 Mar 1;5(3):301-8 PubMed
Eur J Cell Biol. 1990 Feb;51(1):157-64 PubMed
Pediatr Neurol. 1990 May-Jun;6(3):177-83 PubMed
J Biol Chem. 1957 May;226(1):497-509 PubMed
J Lipid Res. 1980 Jan;21(1):53-64 PubMed
Biochem Biophys Res Commun. 1988 Oct 14;156(1):403-10 PubMed
Biochem J. 1992 Jul 15;285 ( Pt 2):481-8 PubMed
Enzyme. 1987;38(1-4):262-6 PubMed
J Neurochem. 1956 May;1(1):42-53 PubMed
FEBS Lett. 1991 Jun 17;284(1):57-9 PubMed
Science. 1973 Jul 27;181(4097):352-4 PubMed
Biochem J. 1988 Aug 15;254(1):77-84 PubMed
Leptomeningeal lipid storage patterns in Fabry disease